Midea Service Manual

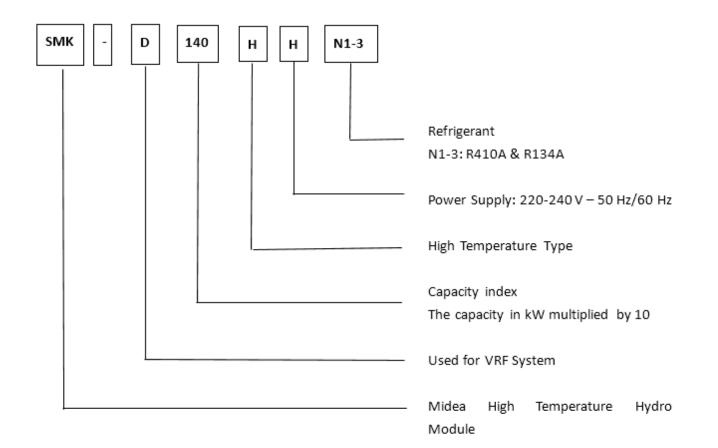
Commercial Air Conditioners

High Temperature Hydro Module

SMK-D140HHN1-3

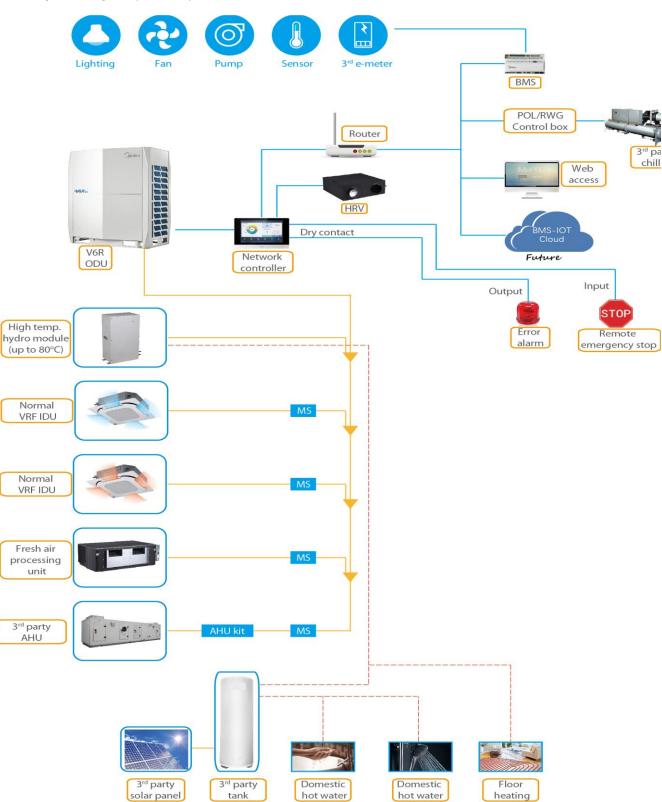
1 External Appearance
2 Nomenclature
3 System Schematic 4
4 Specifications5
5 Electric Control Box Layout7
6 Working Range12
7 Refrigerant Flow Diagrams13
8 High Temperature Hydro Module Control Logic
9 Appearance of the Wired Controller25
10 Status Icons 26
11 Using Home Pages 27
12 Basic Application35
13 Functions
14 Menu Structure Overview 79
15 Maintenance 80
16 Error Code Table 81
17 Troubleshooting
18 Accessories

Midea



1 External Appearance

Figure 1.1: Appearance


2 Nomenclature

3 System Schematic

Figure 3.1: High Temperature Hydro Module connection method

4 Specifications

Specification	Standard	Unit	Value						
Heating capacity	Rated	kW	14						
	Water outlet : 45°C, inlet 40°C								
	Outdoor air : 7°C DB / 6°C WB								
Casing	Colour		Polar white						
Net Dimensions	Height	mm	795						
	Width	mm	450						
	Depth	mm	300						
Packaging Dimensions	Height	mm	940						
	Width	mm	748						
	Depth	mm	390						
Veight	Unit	kg	63						
	Packed unit	kg	71						
Water Flow Rate	Minimum	m³/h	1.2						
	Nominal	m³/h	2.4						
	Maximum	m³/h	2.9						
Vater circuit	Inlet piping connection diameter	mm	25.4						
	Outlet piping connection diameter	mm	25.4						
	Connection type		External screw						
			thread						
Design pressure	Allowed water pressure	MPa	0.1~0.3						
	R410a	MPa	4						
	R134a	MPa	3.1						
R134a refrigerant circuit	Refrigerant type		R-134a						
	Refrigerant charged volume	kg	1.2						
	Oil type		FV50S						
	Oil charged volume	L	0.4						
410a refrigerant circuit	Gas piping connection diameter	mm	12.7						
	Liquid piping connection diameter	mm	9.52						
	Connection type		Welding						
ound pressure level	Nom.	dB (A)	43						
Sound Power Level	Nom.	dB (A)	54						
leating	Ambient, Min	°C	-20						
Operation Range	Ambient, Max	°C	30						
	Water Side, Min	°C	25						
34a refrigerant circuit 10a refrigerant circuit und pressure level und Power Level ating eration Range mestic Hot Water	Water Side, Max	°C	80						
Domestic Hot Water	Ambient, Min	°C	-20						
Dperation Range	Ambient, Max	°C	43						
	Water Side, Min	°C	25						
	Water Side, Max	°C	80						

High Temperature Hydro N	Iodule		
Specification	Standard	Unit	Value
Refrigerant side heat exchanger	Туре		Plate heat
			exchanger
	Quantity		1
	Plate	Pieces	76
Water side heat exchanger	Туре		Plate heat
			exchanger
	Quantity		1
	Plate	Pieces	38
Unit Location	Ambient, Min-Max	°C	0~40
Installation place			Indoor only
Power supply	Phase		1-ph
	Frequency	Hz	50/60
	Voltage	V	220 ~ 240
	Voltage Range, Min/Max	%	± 10
Current Amperes	Maximum running current (MCA)	А	16
	Recommended Fuse	А	20

Notes:

*Nominal heating conditions

Inlet water temperature: 40 $\,\,^\circ\!\mathrm{C}$

Water Flow rate: 2.4 m3/h

Outdoor Temperature: 7°CDB/6°CWB

*The water circuit must use a closed circuit.

*Please do not use it as a drinking water.

* Due to continuous improvement, the above specifications may be subject to change without notice.

* Please don't use the steel material for the water piping material. *

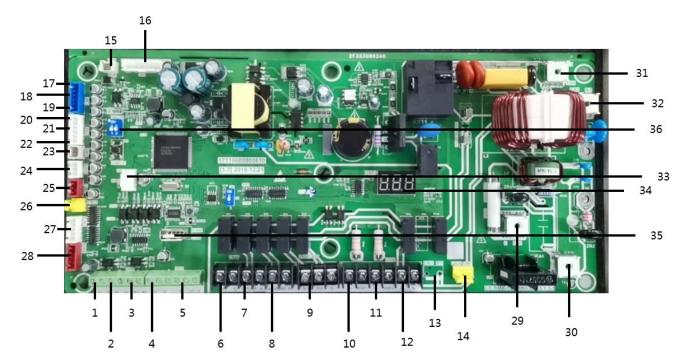
* Please always make water circulate or pull out the circulation water completely when not using it.

*Please do not use groundwater and well water.

5 Electric Control Box Layout

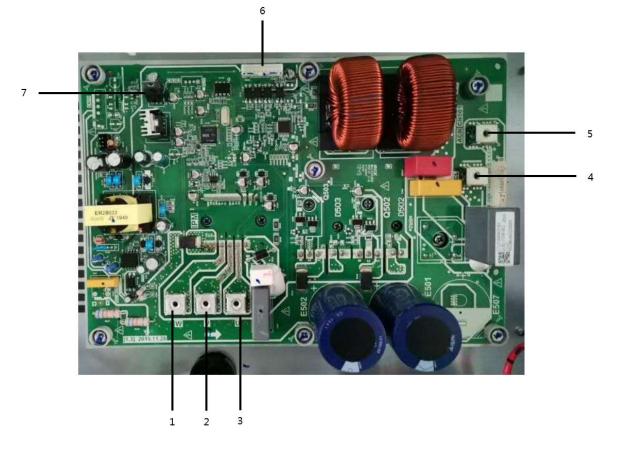
Electric Control Box

Inverter Module

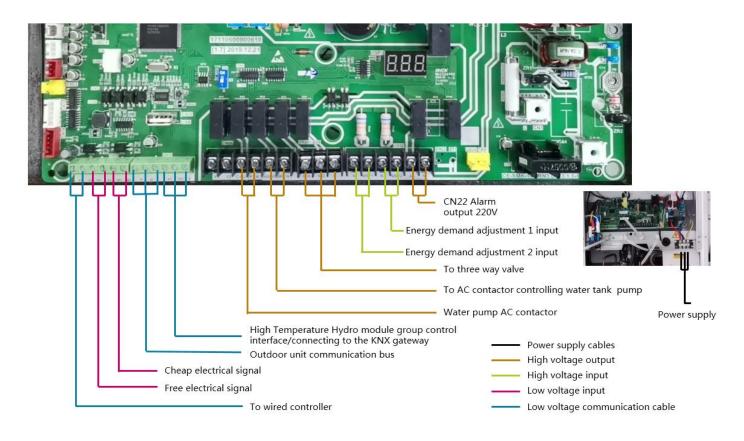


Main PCB

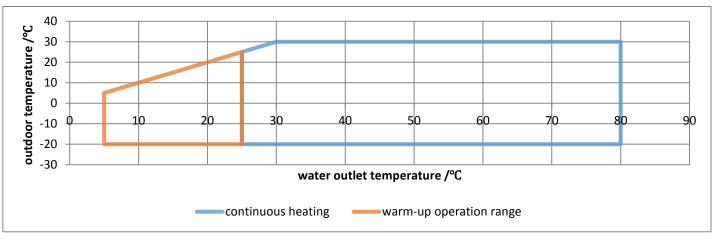
5.1 Main PCB

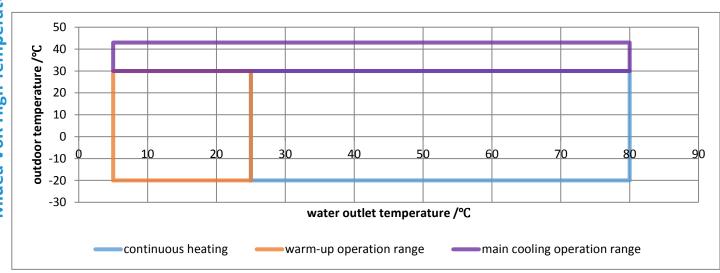

NO.	Port code	Port code	Content	Port voltage						
1	X1X2	CN15	Port for communication with wired controller	0 or 18VDC						
2	N1N2		Port for signal of free electricity	0 or 12VDC						
3	M1M2		Port for signal of cheap electricity	0 or 12VDC						
4	PQE	CN17	Port for communication with outdoor unit	2.5-2.7VDC						
5	D1D2E		Port for communication with KNX gateway or port for	2.5-2.7VDC						
			communication with slave hydro box (group control)							
6	Y1Y2	CN20	Reserved	λ						
7	C-PUMP N		Port for circulating pump	220V AC						
8	DHW-PUMP		Port for DHW pump	220V AC						
	Ν									
9	SV3	CN21	Port for three way valve (NC. N for normal close valve,	220V AC						
			NO. N for normal open valve)							
10	N MSP1	CN22	Port for multiple set point 1	220V AC						
11	N MSP2		Port for multiple set point 2	220V AC						
12	AL. N		Reserved	1						

NO.	Port code	Port	Content	Port voltage
		code		
13	ST 1	CN23	Reserved	λ
14	FAN	CN24	Port for fan	220V AC
15	OD	CN6	Port for communication with PC	2.5-2.7VDC
16	FS	CN5	Port for water flow switch as well as connect between main control board and inverter module board	0 - 12V
17	Twin	CN7	Port for inlet water temperature sensor	0-5V DC(varying)
18	Twout		Port for outlet water temperature sensor	0-5V DC(varying)
19	Ttank		Port for water tank temperature sensor	0-5V DC(varying)
20	Т7	CN8	Port for suction pipe temperature sensor	0-5V DC(varying)
21	T2A		Port for R410a circle liquid pipe temperature sensor	0-5V DC(varying)
22	Т3		Port for R134a circle liquid pipe temperature sensor	0-5V DC(varying)
23	T7C	CN9	Port for discharge pipe temperature sensor	0-5V DC(varying)
24	H-YL	CN10	Port for high pressure sensor	0-5V DC(varying)
25	L-YL	CN11	Port for low pressure sensor	0-5V DC(varying)
26	H-Pro	CN12	Port for high pressure switch	0 or 5V DC
27	EEV2	CN13	Port for electronic expansion valve 2	0 or 12V DC
28	EEV1	CN14	Port for electronic expansion valve 1	0 or 12V DC
29	L	CN1	Power supply port for main PCB (L)	220V AC
30	Ν	CN2	Power supply port for main PCB (N)	220V AC
31	L-1	CN4	Power supply port for inverter PCB (L)	220V AC
32	N-1	CN3	Power supply port for inverter PCB (N)	220V AC
33	DEBUG	CN30	Port for IC programming	0-5V DC(varying)
34	DSP1	DSP1	Digital display	1
35	USB	CN25	USB port for IC programming	0-5V DC(varying)
36	SW4	SW4	DIP switch	λ


Inverter Module

NO.	Port code	Port code	Content	Port voltage
1	/	U	Compressor connection port U	380V AC
2	/	V	Compressor connection port V	380V AC
3	/	W	Compressor connection port W	380V AC
4	ACL	CN502	Power supply port for inverter PCB (L)	310V AC
5	ACN	CN501	Power supply port for inverter PCB (N)	310V AC
6	/	CN32	Communication with main PCB	0-5V DC(varying)
7	/	IC315	7805 Power chip	λ.


Installation Cables



6 Working Range

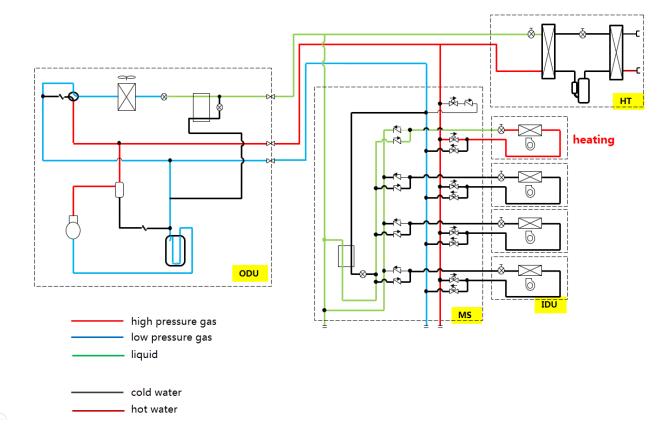
Heating Mode

DHW Mode

7 Wiring Diagram

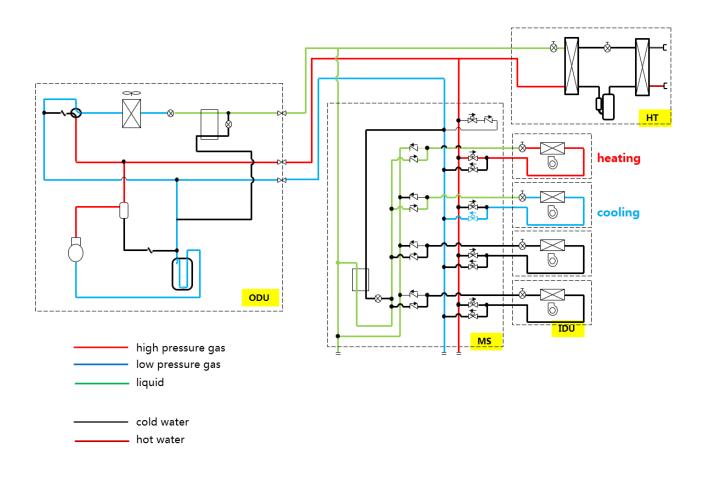
SW4 definition SW4 Group control function:		S	HEN 12 01:Reserve	b.D.C. In the Group control function is available and this hydraulic module is the main box.	ON I Childication that the Group control function is available and this hydraulic module is the t2 sub box	S1 Query Instruction	Display Discription	-	2 Address 3 Compressor frequency	4	5	9		8	9 Tc 10 Te	+	╈	+			17			╈	21 0DU_TC	23	24 ODU_T4	25 ODU_INV	26 Primary current	H	╡	Software version	30 Inesixin to last raunt 24 The fifth to last fault	╈	\mathbf{T}	34 Penultimate fault	35 Last to last fault	╡	37 Number of times the address is set by the remote controller	38	L		1601060000888 22th Jan. 2020 A
	_		WAIT 3 MINUTES AFTER DISCONNECTING POWER, THEN VERIFY DC VOLTAGE LESS THAN 42 VDC AT INVERTER	TEST POINTS DC-BUSCOMPONENTS MAY STORE A DANGEROUS ELECTRICAL POTENTIAL OF 380 VOLTS FAILURE TO FOLLOW THIS WARNING COULD RESULT	N PERSONAL INJURY OR DEATH Error code	ode	FE Undefined address error	\top	E9 EEPROM mismatch H4 Inverter module proteition		H5 P4 protection appears three times in 00 minutes H6 P4 protection appears three times in 100 minutes	1		E 1 Communication error between hydro box and wir	ed controller E8 Water flow failure(FS)	t			FA Suction pipe temperature senso error (T7)	PATO same auress			H8 High pressure sensor error(H-YL)	Hb Low pressure sensor error(L-YL)	E 2 Communication error between hydro box and	H0 Communication error between main control chip	and inverter driver chip Communication arrar hatwoon master budeo		Outdoor unit erre	E5 Abnormal power supply Commission discharge insufficient sumarhaat	pp protection	P1 Discharge pipe high pressure protection		P3 Compressor current protection P4 Discharge temperature protection	Inverter module	Π	NOTE -	NOIE:	 Refer to manual for communication wiring Please use the 3-core shielded wire for communication 	3. Ground connection in PQE is different from D1D2E	4.The water pump and tank pump are connected to an ext-	ernal contactor for control	5.For more details, please read installation menu
	Code Name		Twout Water outlet temperature sensor Tank Water tank temperature sensor	BLUE T7 Suction pipe temperature sensor T2A liquid pipe temperature sensor on the R410a loop	ACLO RED 13 Inquid pre temperature sensor on the K134a loop T7C Discharge pipe temperature sensor H-YL High pressure sensor	L-YL Low pressure sensor u pport university and a	EEV1/EEV2 Electronic expansion valve		AS1-8 Prlug FS Water flow switch	XT1 Terminal block	\$ <u></u>		BLUE	RED		C	<u>.</u>		CM3 N-1		Let 1	5	DSP1		, a	6	CN	0		, ,		`	N MSP1 N MSP2 AL N			5	FAN				ARM OUTPUT	NUNCTIONAL CLOSE I ENVIRONMENT OF POWER IN	Value
		Ô,	كالحل								NOWN							C Ttank C	, , , , , , ,	XP6 XS6 T2A Z	XS7 T3				Ŵ	PRO H-PRO] 	EEV2	9		CN15 CN17		<u>א</u>	electric control electric control box	<u> </u>			DHW PUMP CONTRAL	To Low Price Electrical To KNX Gateway I SIGNAL OUTPUT I P	N1 N2 Signal Interface POE control interface countrol interface countrol interface		iunits comm. bus	10 Three way Value

Service Manual


High Temperature Hydro Module

8 Refrigerant Flow Diagrams

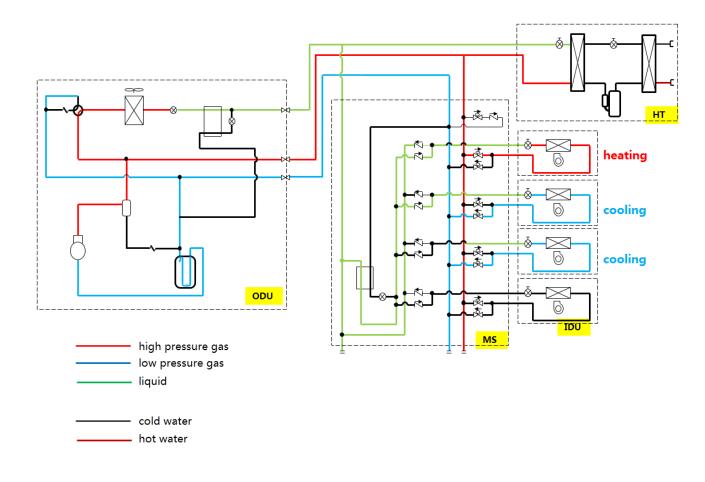
ONLY HEATING


Indoor heating + Hydro box Or only Hydro box

MAIN HEATING (Outdoor heat exchanger works as evaporator)

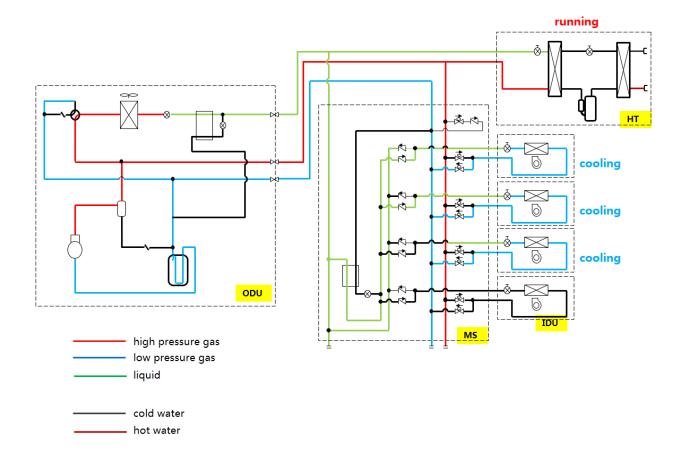
Indoor units in cooling mode +Hydro box

Indoor units in cooling/heating + Hydro box

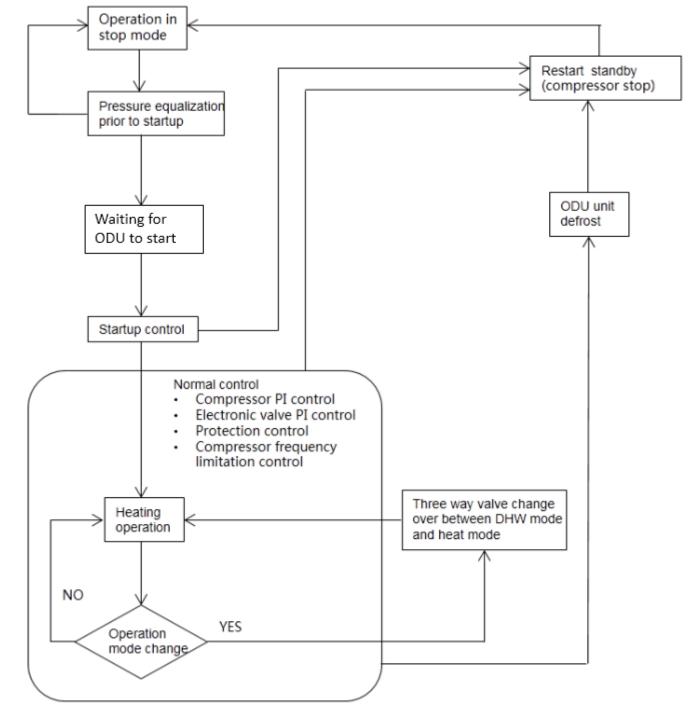


MAIN COOLING (Outdoor heat exchanger works as evaporator)

Indoor units in cooling mode +Hydro box


Indoor units in cooling/heating + Hydro box

HEAT RECOVERY (Free to provide hot water)


All indoor units in cooling mode + Hydro box

9 High Temperature Hydro Module Control Logic

9.1 Start/Stop/ Mode Change

9.2 High Temperature Hydro Module Control Principle

9.2.1 Compressor Control

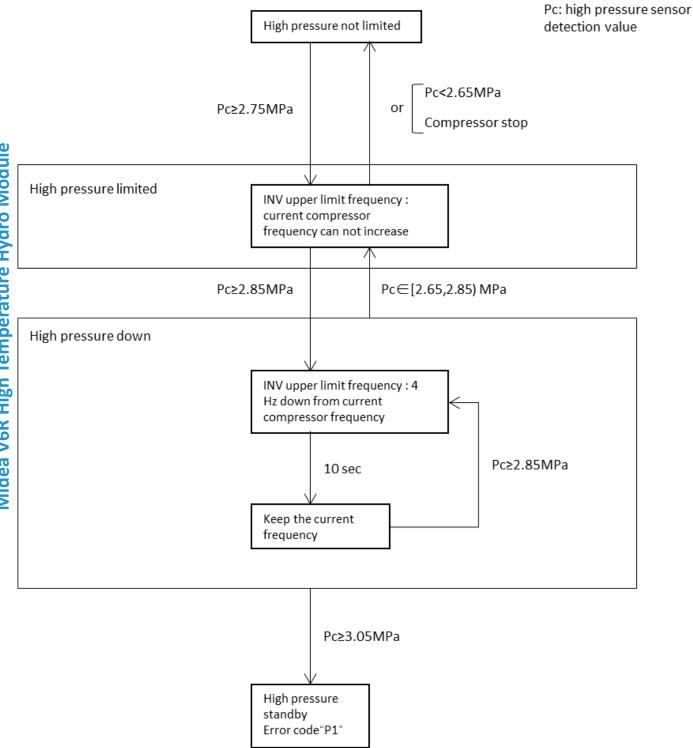
The compressor frequency is calculated according to the deviation between Tc and Tcs.

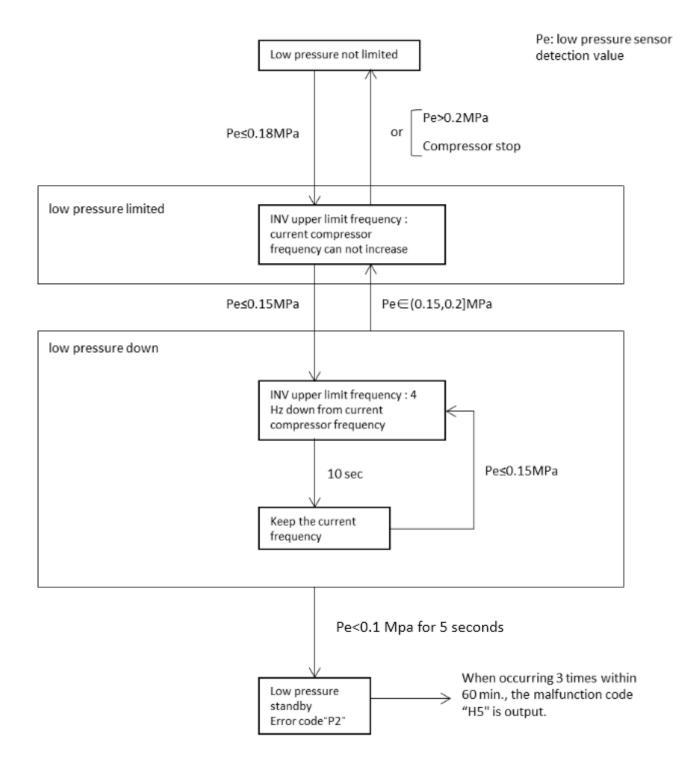
Tc: Measured high pressure saturation temperature

Tcs: Target high pressure saturation temperature

9.2.2 EEV1 Control

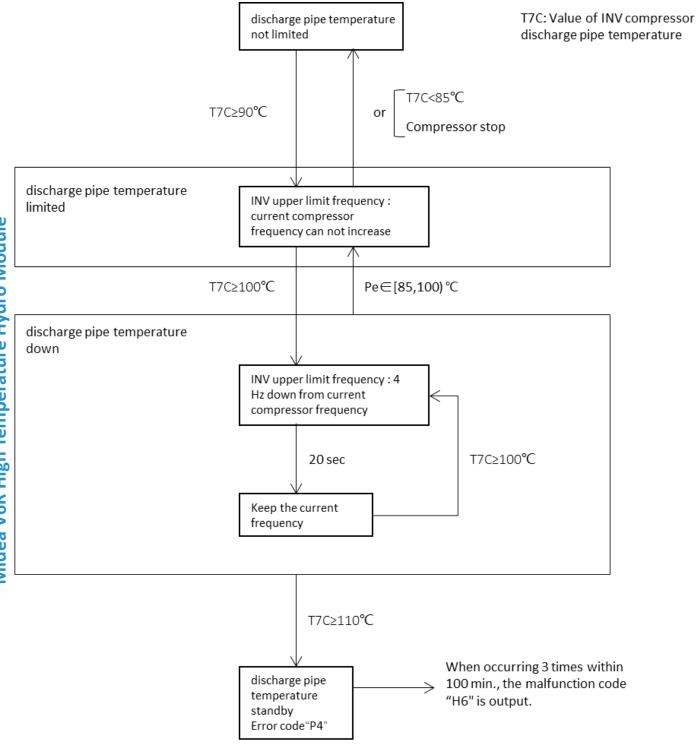
EEV1 opening degree is calculated according to the deviation of DSH= T7C-Tc from the DSHS DSH=T7C-Tc: measured discharge superheat DSHS: Target discharge superheat

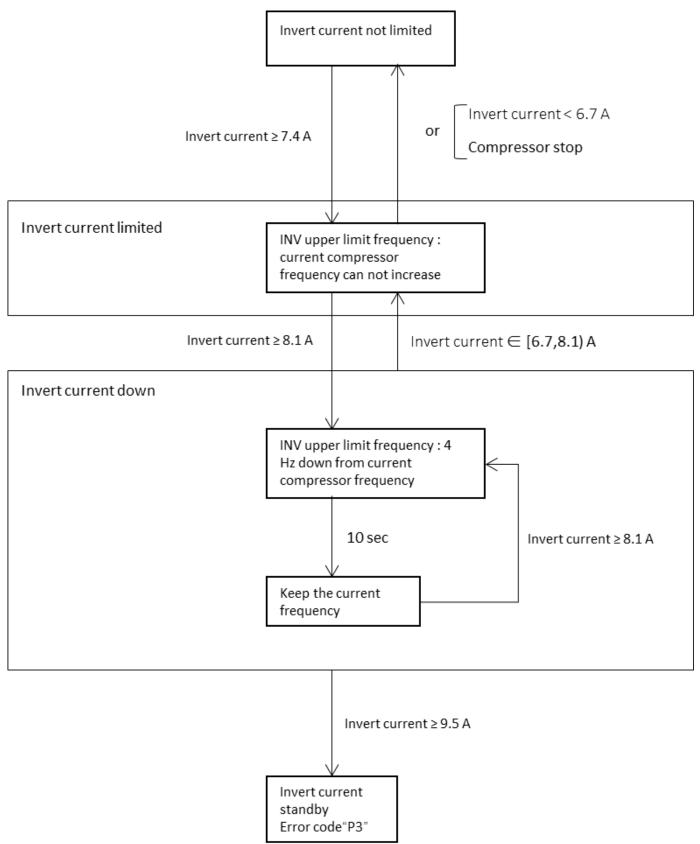

9.2.3 EEV 2 Control


EEV2 open degree is calculated according to the deviation of SC= ODU Tc-T2a from SCS. SC: Measured supercooling from the outlet coper pipe of plate heat exchanger SCS: Target supercooling from the outlet coper pipe of plate heat exchanger

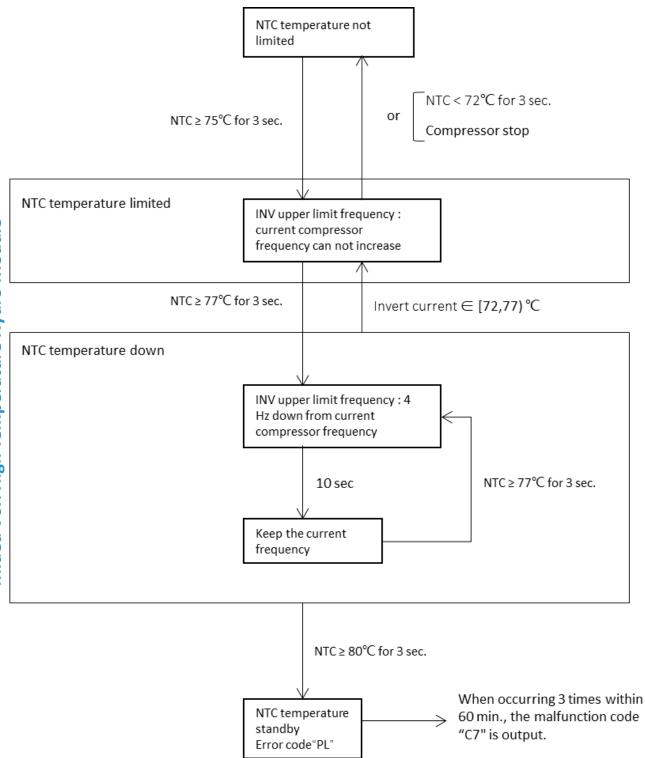
9.2.4 Frequency Limit and Protection Control

Midea

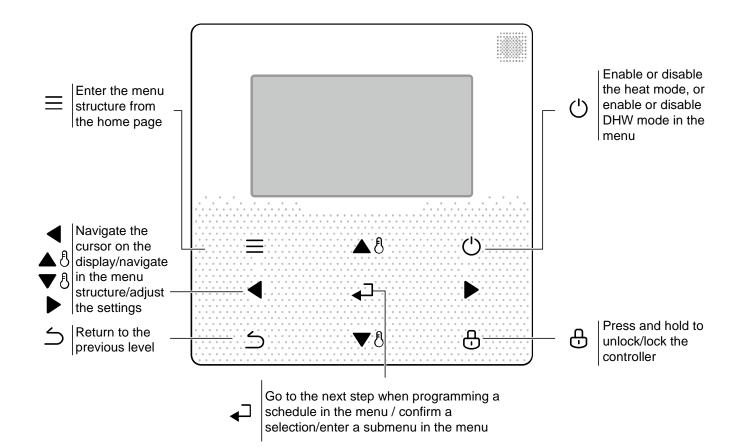

High Pressure limits the frequency



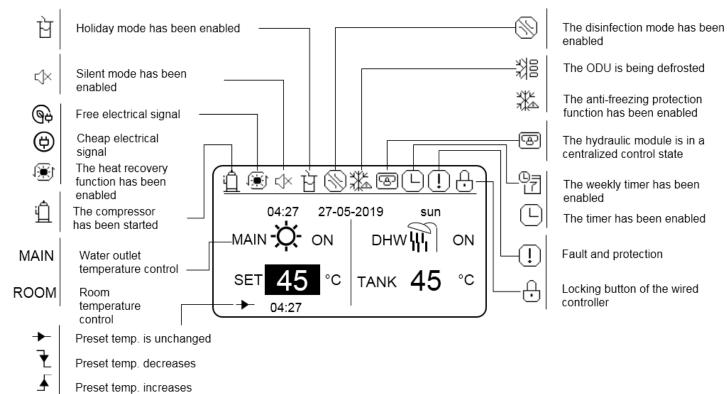
Discharge Temperature Limits the frequency protection



Compressor current limits the frequency protection



Inverter module temperature limits the frequency protection



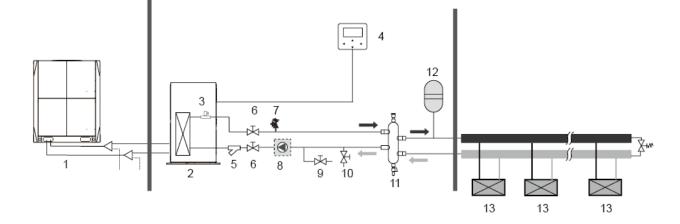
10 Appearance of the Wired Controller

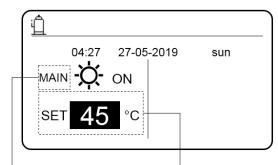
11 Status Icons

12 Using Home Pages

The hydro module features the heating function and water heating function, which can be classified into the hydro module that supports heat mode only ("FOR SERVICEMAN" > "Heat mode setting" > "HEAT MODE=YES" and "FOR SERVICEMAN" > "DHW mode setting" > "DHW MODE=NON"), the hydro module that supports DHW mode only (FOR SERVICEMAN" > "Heat mode setting" > "HEAT MODE=NON" and "FOR SERVICEMAN" > "DHW mode setting" > "DHW MODE=NON" and "FOR SERVICEMAN" > "DHW mode setting" > "DHW MODE=YES"), and the hydro module that supports both heat mode and DHW mode ("FOR SERVICEMAN" > "Heat mode setting" > "HEAT MODE=YES"), and the hydro module that supports both heat mode and DHW mode ("FOR SERVICEMAN" > "Heat mode setting" > "HEAT MODE=YES" and "FOR SERVICEMAN" > "DHW mode setting" > "HEAT MODE=YES" and "FOR SERVICEMAN" > "DHW mode setting" > "LEAVING WATER TEMP.=YES") and room temperature control ("FOR SERVICEMAN" > "Heat mode setting" > "LEAVING WATER TEMP.=YES") and room temperature control ("FOR SERVICEMAN" > "Heat mode setting" > "ROOM TEMP.=YES"). The water outlet temperature control and room temperature control is either-or. In water outlet temperature control mode, the hydro module sets the desired water outlet temperature and operates according to the defined desired temperature. In room temperature control mode, the hydro module sets the desired controller. The wired controller interfaces are subject to on-site settings. Definitions of symbols of the wired controller:

ROOM----Room temperature control

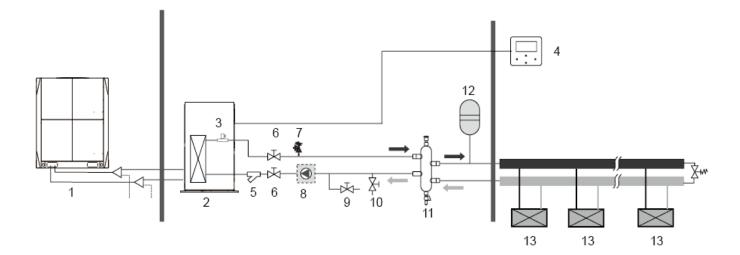

MAIN---Water outlet temperature control

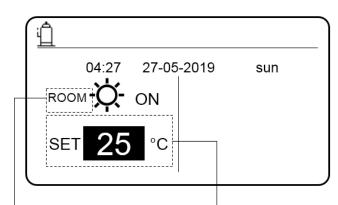

DHW---- Water heating mode

12.1 Scenario 1

Only heating mode is available and the hydro module is operating in water outlet temperature control mode. (For more information, please read the *Engineering Data Book*.)

Indicates that the hydraulic module operates in water outlet temperature control mode.

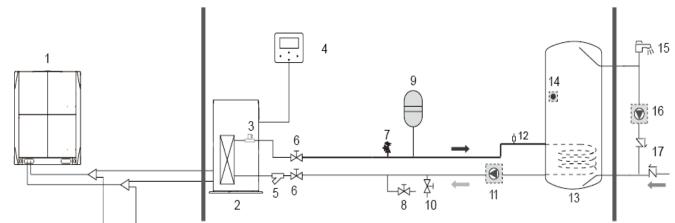

Sets the desired water outlet temperature, ranging from 25°C to 80°C.

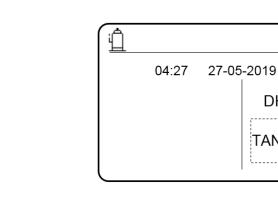


12.2 Scenario 2

Only heating mode is available and the hydro module operates in water outlet room control mode. (For more information, please read the *Engineering Data Book*.)

Note: The wired controller must be installed indoors, where heating is required. The wired controller is equipped with a temperature sensor for detecting room temperature.


Indicates that the hydraulic module operates in room temperature control mode.


Sets the desired room temperature, ranging from 17°C to 30°C.

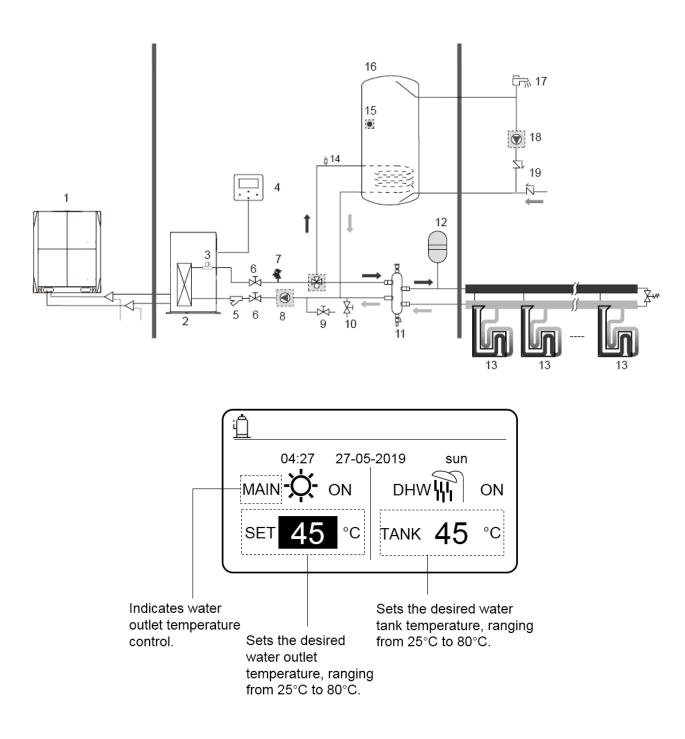
12.3 Scenario 3

Only heating mode is available. (For more information, please read the *Engineering Data Book*)

Sets the desired water tank temperature, ranging from 25°C to 80°C.

sun

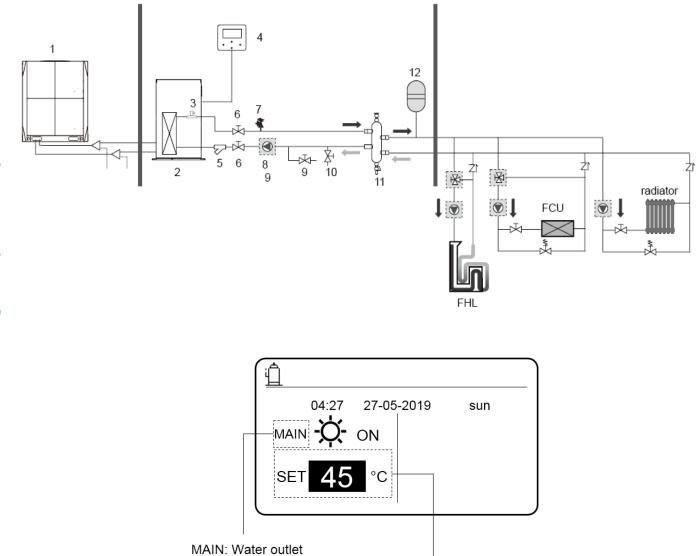
ON


DHW

TANK

12.4 Scenario 4

Both heating mode and DHW mode are available. (For more information, please read the Engineering Data Book)



12.5 Scenario 5

Only heating mode is available and there are multiple set points for the heating mode. (For more information, please read the *Engineering Data* and see "Multiple Set Points" on Page XX in this document.)

The settings of multiple set points do not affect the main interface. The temperature of multiple set points is set through the menu of the wired controller, while only the main room temperature is set on the main interface.

Note: The temperature of multiple set point 2 is lower than the temperature of multiple set point 1 and the temperature of multiple set point 1 is lower than the temperature set on the main interface.

temperature control ROOM: Room temperature control

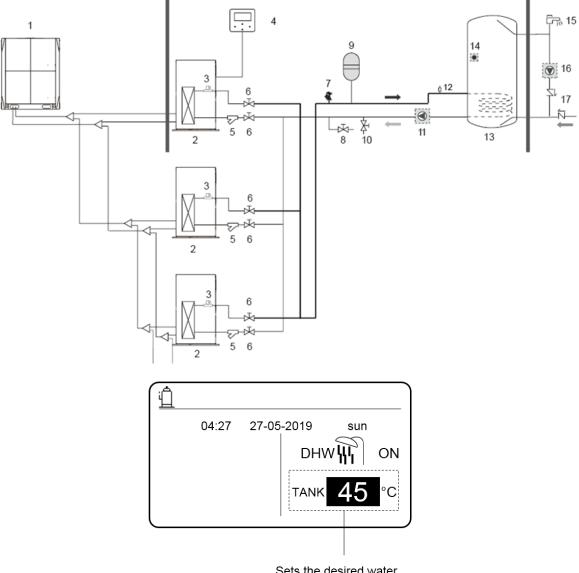
Sets the desired temperature of the main set point.

Midea

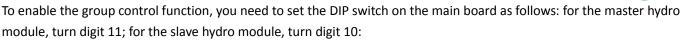
12.6 Scenario 6

Group control of the hydro module.

When multiple hydro modules heat water in one water tank, the group control function of the hydro module should be used. (For more information, please read the *Engineering Data*.) The group control function is only valid for the DHW mode. Notes:


1. The group control function of the hydro module is valid for the DHW mode only.

2. Master and slave hydro modules should be set. For instructions on how to set master and slave hydro modules, see the Engineering Data.


3. The master hydro module must be connected to a wired controller. The main wired controller can be used to set temperature.

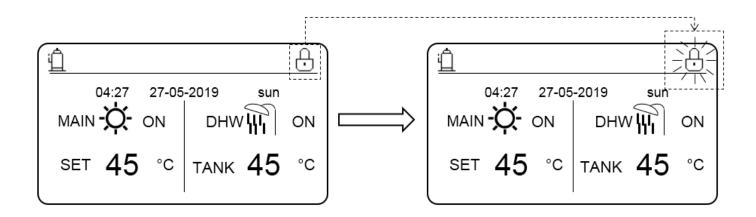
4. The slave hydro module can be connected to or not connected to a wired controller. The secondary wired controller provides some functions, such as parameter query.

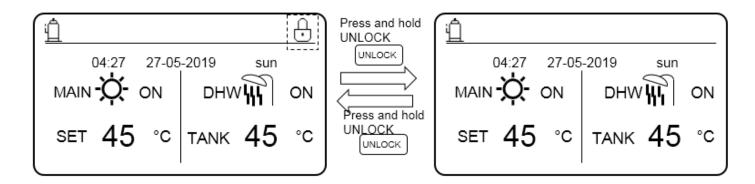
5. The circulating pump and water tank temperature sensor should be connected to the master hydro module.

Sets the desired water tank temperature, ranging from 25°C to 80°C.

Notes for installers and service engineers lpha

- The master unit must be connected to a wired controller. The wired controller is used to set the desired water tank temperature.
- The slave unit can be connected to or not connected to a wired controller. The wired controller of the slave unit provides the query function only.
- The pump is controlled by the master unit. The temperature sensor of the water tank is connected to the master unit.
- The wired controller connected to the master unit is used to set the desired water tank temperature.


idea


13 Basic Application

13.1 Unlocking the screen

If the \bigcirc icon is displayed on the screen, it indicates that the wired controller has been locked. If you press any key, the \bigcirc icon blinks. Press and hold the **UNLOCK** key, the \bigcirc icon will disappear. In this case, you can operate using the wired controller interface.

If you do not operate the wired controller for a long time (by default, 120s, which can be set on the wired controller. For details, see section 6.7 "Service Information".), the wired controller will lock automatically. If the wired controller is unlocked, press and hold the **UNLOCK** key, and the wired controller will be locked.

13.2 Enabling/Disabling Mode and Setting Temperature

Both heat mode and DHW mode can be enabled and disabled through the wired controller

13.2.1 Heat Mode

There are two control methods for the heat mode:

- Water outlet temperature control
- Room temperature control

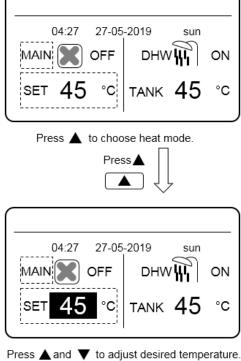
Water outlet temperature control

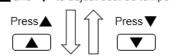
In water outlet temperature control mode, the hydro module operates according to the defined water outlet temperature so that the water outlet temperature reaches the defined desired water outlet temperature. The water outlet temperature can be set manually, or through the timer function and weather temperature curve.

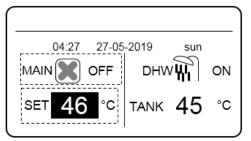
- Steps for setting the water outlet temperature control mode of the hydro module: MENU > FOR SERVICEMAN > HEAT MODE > LEAVING WATER TEMP.
- Set **LEAVING WATER TEMP.** to **YES**.
- The water outlet temperature ranges from 25°C to 80°C.
- Sets the mode to water outlet temperature control and heating main interface to MAIN.

Notes:

If LEAVING WATER TEMP. is set to YES, ROOM TEMP. is automatically set to NON. If ROOM TEMP. is set to YES, LEAVING WATER TEMP. is automatically set to NON


Notes:


If LEAVING WATER TEMP. is set to YES, ROOM TEMP. is automatically set to NON. If ROOM TEMP. is set to YES, LEAVING WATER TEMP. is automatically set to NON

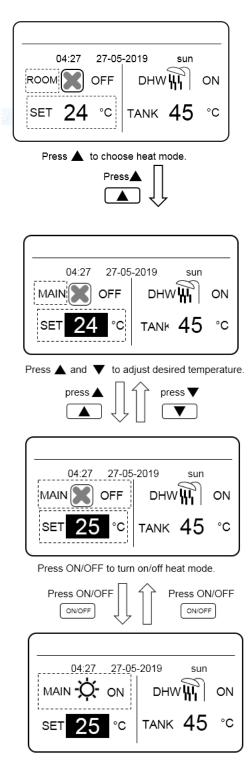

۸idea

Midea

High Temperature Hydro Module

Press ON/OFF to turn on/off heat mode.

Press ON/OFF	Press ON/OFF
04:27 27-05	
MAIN 🔆 ON	
set 46 °⊂	тамк 45 °с


Room Temperature Control

In room temperature control mode, set the desired room temperature. The hydro module will control the operating of the hydro module according to the room temperature collected by the wired controller. The desired room temperature can be set manually, or through the timer function and weather temperature curve.

- Take the following steps to set room temperature control mode: MENU > FOR SERVICEMAN > HEAT MODE > ROOM TEMP..
- Set **ROOM TEMP.** to **YES**.
- Room temperature ranges from 17 C to 30 C.
- Sets the mode to water outlet temperature control and heating main interface to ROOM.

Notes:

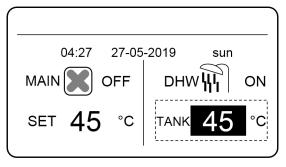
- 1. The wired controller should be installed where heating is needed.
- 2. If LEAVING WATER TEMP. is set to YES, ROOM TEMP. is automatically set to NON. If ROOM TEMP. is set to YES, LEAVING WATER TEMP. is automatically set to NON.

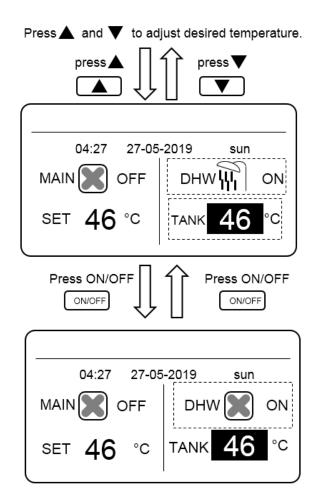
Assume that the temperature adjustment function in heat mode or mode on/off function are locked on the wired controller. If you adjust temperature or enable/disable a mode, the following interface is displayed:

If you press NO, you will return to the main interface. If you press YES, you will enter the CHILD LOCK interface.

	04:27	27-05-201	9 sun
Heating temperature adjusting function is locked. Do you want to unlock ?			
	NO		YES
ок	CONFIRM	SCROLL	
	04:27	27-05-20	19 sun
	mode ON vant to un		ion is locked. Do
	NO		YES

If temperature adjustment function or mode on/off function are locked on the centralized controller, the icon on the top will be lit. If you adjust temperature or enable/disable a mode on the wired controller, the following interface is displayed: In this case, the hydro module can be only unlocked on the centralized controller.


	Ę.	9
04:27	27-05-2019	sun
	ERATURE ADJU S LOCKED BY C ER.	
OK CONFIR	M	


	8		
04:27	27-05-2019	sun	
	ON/OFF FUNCT CENTRALIZED R.	ION IS	
OK CONFIRM	1		

13.2.2 DHW Mode

- Take the following steps to set the DHW mode: **MENU** > **FOR SERVICEMAN** > **DHW MODE**.
- Set **DHW MODE** to **YES**.
- The water tank temperature ranges from 25°C to 80 $^\circ\,$ C.

Press ON/OFF to turn on/off heat mode.

Assume that the temperature adjustment function in DHW mode or mode on/off function are locked on the wired controller. If you adjust temperature or enable/disable a mode, the following interface is displayed:

If you press NO, you will return to the main interface. If you press YES, you will enter the CHILD LOCK interface.

	04:27	27-05-	2019	sun
DHW temperature adjusting function is locked. Do you want to unlock it?				
	NO			YES
ОК	CONFIRM	sci	ROLL	
	04:27	27-05-	2019	sun
	mode ON ant to un		Inction	is locked. Do
	NO			YES
ок	CONFIRM	sc	ROLL	

If temperature adjustment function or mode on/off function are locked on the centralized controller, the icon on the top will be lit. If you adjust temperature or enable/disable a mode on the wired controller, the following interface is displayed: In this case, the hydro module can be only unlocked on the centralized controller.

		Ð]	
	04:27	27-05-2019	sun	
LOCK		DN/OFF FUNCTI ENTRALIZED R.	ON IS	
ОК	CONFIRM			
)	

· 		(B))
	04:27	27-05-2019	sun
DHW TEMPERATURE ADJUSTING FUNCTION IS LOCKED BY CENTRALIZED CONTROLLER.			
ок	CONFIRM		

14 Functions

14.1 Heat Mode

In heat mode, PRESET TEMP.\WEATHER TEMP. SET\MULTIPLE SET POINT are available.

14.1.1 Pre-set Temperature

In heat mode, PRESET TEMP.\WEATHER TEMP. SET\MULTIPLE SET POINT are available.

- PRESET TEMP. =PRESET TEMPERATURE ٠
- The PRESET TEMP. function will be automatically disabled in the following conditions:
- 1) Timer is set.
- 2) Weekly schedule is set.

Take the following steps to enable PRESET TEMP.: MENU > PRESET TEMPERATURE > PRESET TEMP. Press OK.

The following interface is displayed:

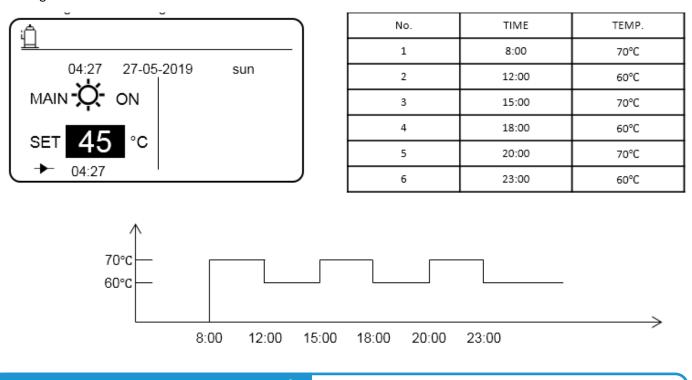
HEA	HEAT MODE			
	SET MP.	WEATHER TEMP. SET	MULTIPLE SET POINT	
No.		TIME	TEMP.	
1		00:00	45°C	
2		00:00	45°C	
3		00:00	45°C	
	SCROLL		1/2	

HEAT MODE				
PRE TEM		WEATHER TEMP. SET	MULTIPLE SET POINT	
No.		TIME	TEMP.	
4		00:00	45°C	
5		00:00	45°C	
6		00:00	45°C	
,	SCROLL		1/2	

use "▲ ", "▼ ", "▶ ", " ◀ " to scroll and use▲ ", ▼ " to adjust the time and the temperature. When the cursor is on "∎", as in the following page:

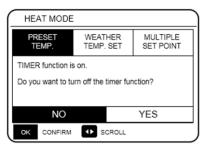
HE	AT MODE		
	ESET EMP.	WEATHER TEMP. SET	MULTIPLE SET POINT
No.		TIME	TEMP.
1		00:00	45°C
2		00:00	45°C
3		00:00	45°C
ок	SELEC	et 🍦 🚺 scro	DLL 1/2

HE	AT MODE		
	RESET EMP.	WEATHER TEMP. SET	MULTIPLE SET POINT
No.		TIME	TEMP.
1	$\overline{\Delta}$	00:00	45°C
2	Þ	00:00	45°C
3	N	00:00	45°C
ок		el 🗧 🚺 scro)LL 1/2


Press "OK", and the "∎" becomes "N". The timer 1 is selected. Press "OK" again, and "N" becomes "∎". The timer 1 is unselected.

Use "▲ ", "▼ ", "▶ ", "◀ " to scroll and use "▲ ", "▼" to adjust the time and the temperature. Six temperatures can be set.

For example:


The time is 8:00 and temperature is 60°C. If PRESET TEMP. is set as follows, the hydro module will operate according to the following curve.

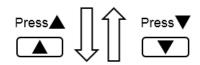
Notes for installers and service engineers 🛠

Important Notes

- When the multiple set point function is enabled, the PRESET TEMP. function is valid to space0 only.
- If the hydro module is powered off, the preset temperature at the current time is invalid. The hydro module will be started at the time point where the next preset temperature is set.
- When the timer function is valid, if you move the cursor to PRESET TEMP. and press the OK key, the following prompt is displayed:

 The preset temperature is only valid for the water outlet temperature control of heat mode. If ROOM TEMP. is set to YES on the wired controller, the following information is displayed:

HEAT MODE		
PRESET TEMP.	WEATHER TEMP. SET	MULTIPLE SET POINT
🗧 🔹 scroll		

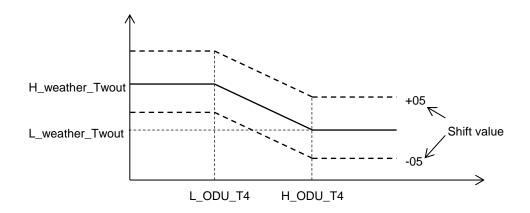


14.1.2 Weather Temperature Set

- WEATHER TEMP. SET=WEATHER TEMPERATURE
- On the **WEATHER TEMP.SET** page, you cannot set the desired water outlet temperature. The desired water outlet temperature is calculated according to the outside ambient temperature. The higher the outside ambient temperature, the lower the desired water temperature.
- During the operation of the weather temperature curve, you can set the shift value of the weather temperature curve with the range of [-5,+5]. The shift value is the difference between the calculation value and the actual operation value. Example: +5°C indicates that the actual operation value is 5°C greater than the calculation value.
- Take the following steps to set the weather temperature curve: MENU > PRESET TEMPERATURE > WEATHER TEMP.
 SET. Press OK. The following interface is displayed:

HEAT MODE		Breac	HEAT MODE			
PRESET TEMP.	WEATHER TEMP. SET	MULTIPLE SET POINT	Press	PRESET TEMP.	WEATHER TEMP. SET	MULTIPLE SET POINT
WEATHER TEN	1P. SET	OFF		WEATHER TEM	IP. SET	OFF
SHIFT VALUE		0 °C		SHIFT VALUE		0 °C
			Press			
SCROL	L		J	ON/OFF ON/OFF	SCROLL	
				· · · · ·		

Press ON/OFF button to turn on/off weather temperature function.


HEAT MODE					
PRESET TEMP.	MULTIPLE SET POINT				
WEATHER TEM	OFF				
SHIFT VALUE	0 °C				
🖨 ADJUST 🚺	SCROLL				

	Press	⇒
~		r
٦	Press	

(HEAT MODE		
	PRESET TEMP.	WEATHER TEMP. SET	MULTIPLE SET POINT
ו	WEATHER TEM	OFF	
	SHIFT VALUE		0 °C
ĺ		L	

Press "' or """ to adjust the shift value.

H_ODU_T4: high outdoor temperature (indicates the high temperature point among outdoor ambient temperature) L_ODU_T4: low outdoor temperature (indicates the low temperature point among outdoor ambient temperature) L_weather_Twout: the desired leaving water temperature when the outdoor temperature equals or drops below the low ambient temperature (indicates that the desired water outlet temperature is lower than the low temperature point of the outdoor ambient temperature)

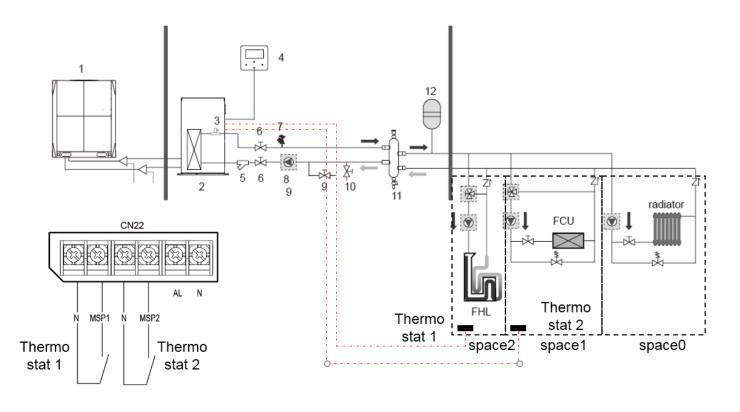
H_weather_Twout: the desired leaving water temperature when the outdoor temperature equals or rises above the high ambient temperature (indicates the desired water outlet temperature is higher than the high temperature point of the outside ambient temperature)

If Weather TEMP.SET is enabled, you cannot set the desired water outlet temperature. If you press ∇ or \blacktriangle , the following interface is displayed.

	04:27	27-05-2019	9 sun
	HER TE ant to tur		iction is on. Do
	NO		YES
ОК	CONFIRM	1	

Press **OK** at **NO** to return to the main interface. Move the cursor to **YES**, and then press **OK**. The weather temperature curve setting interface is displayed as follows.

HEAT MODE					
PRESET TEMP.	MULTIPLE SET POINT				
WEATHER TEM	OFF				
SHIFT VALUE	0 °C				
SCROLI	-				


High Temperature Hydro Module

14.1.3 Multiple Set Point Function

When the hydro module is connected to multiple terminals that raise different water temperature requirements, you need to use the multiple set point function. The multiple set point function is used to set the desired water outlet temperature of space1 and space2. (For more information, please read the *Engineering Data*.)

The hydro module will calculate the space that requires energy and operate at the highest water temperature among the water outlet temperature requirements.

Note: For space0, water temperature is set on the main interface.

Notes:

1. The hydro module can meet the control requirements at different water temperatures. You must connect an external thirdparty temperature reduction device to the circuits of space1 and space2.

2. The multiple set point switch can be set on the FOR SERVICEMAN interface of the wired controller. If multiple set point 1=YES or multiple set point 2=YES, this indicates that multiple set points exist.

3. On the wired controller, multiple set point 1 required temp. is corresponding to the required water temperature of multiple set point 1, while multiple set point 2 required temp. is corresponding to the required water temperature of multiple set point 2.

4. The energy demand of space1 is determined according to the level signal of the external thermostat 1 of the main control board. If the level is low, it indicates that there is an energy demand, while if the level is high, it indicates that energy is not demanded.

5. Energy demand of space2 is determined according to the level signal of the external thermostat 2 of the main control board. If the level is low, it indicates that there is an energy demand, while if the level is high, it indicates that energy is not demanded.

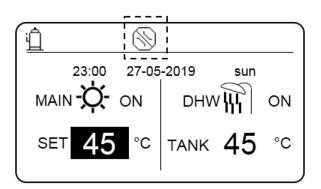
HEAT MODE			
PRESET TEMP.	MULTIPLE SET POINT		
SPACE 1 DESIF	45	°C	
SPACE 2 DESIF	RED TEMP.	30	°C
	-		

No.	Desired temperature	Thermo status (energy demand status)				
space 0	а	OFF	ON	OFF	OFF	
space 1	b	OFF	ON/OFF	ON	OFF	
space 2	С	OFF	ON/OFF	ON/OFF	ON	
Resulting desired temp.		OFF	а	b	С	

14.2 Domestic Hot Water

Midea

DOMESTIC HOT WATER (DHW) has DISINFECT/DHW PUMP 2 items.

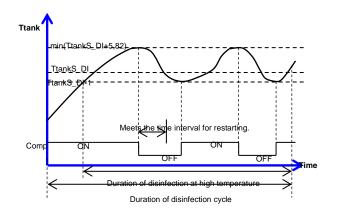

14.2.1 Disinfection Mode

In disinfection mode, legionella bacteria can be killed. In disinfection mode, the water tank temperature will forcedly rise to 70°C to 80°C. The disinfection temperature can be set on the FOR SERVICEMAN interface

Choose **MENU** > **DOMESTIC HOT WATER** > **DISINFECT**. Press **OK**. The following interface is displayed.

DOMESTIC HOT WA	TER (DHW)
DISINFECT	DHW PUMP
CURRENT STATE	OFF
OPERATION DAY	FRI.
START	23:00
SCROLL	
press ▼ 1	press
DOMESTIC HOT WAT	ER (DHW)
DISINFECT	DHW PUMP
CURRENT STATE	OFF
OPERATION DAY	FRI.
START	23:00
ON/OFF ON/OFF SCRO	
Press ON/OFF	Press ON/OFF
DOMESTIC HOT WAT	rer (DHW)
DISINFECT	DHW PUMP
CURRENT STATE	ON <
OPERATION DAY	FRI.
START	23:00
I <u> </u>	
ON/OFF ON/OFF IN SCRO	DLL

Use " \blacktriangleleft ", " \blacktriangleright ", " \checkmark ", " \blacktriangle " to scroll and use " \checkmark ", " \blacktriangle " to adjust the parameters when setting "OPERATE DAY" and "START". If the OPERATE DAY is set to FRIDAY and the START is set 23:00, the disinfect function will activate at 23:00 on Friday. If the disinfect function is running, the following page will appear



Note:

When the hydro module operates in disinfection mode, if you press the **On/Off** key, the pressing is invalid and the following interface is displayed.

04	4:27	27-05-	2019	sun	
DISINFECT function is on.					
Do you w	ant to	turn it o	ff?		
	NO			YES	
OK CON	NFIRM	SCF	ROLL		

In disinfection mode, the hydro module will operate according to the following figure. The water temperature of the water tank will keep the disinfection temperature TtankS_DI.

idea

14.2.2 DHW Pump

The DHW PUMP function is used to control the start time of the water tank and pump so that hot water can flow out of the tap at any time.

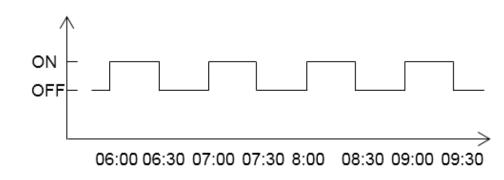
Choose **MENU > DOMESTIC HOT WATER > DHW PUMP**. Press **OK**. The following interface is displayed.

DOMESTIC HOT WATER (DHW)						
DISINFECT				DHW F	PUMP	
No.		TIME	No.		TIME	
1		00:00	4		00:00	
2		00:00	5		00:00	
3		00:00	6		00:00	
SCROLL 1/2						

DC	DOMESTIC HOT WATER (DHW)						
	DISIN	FECT		DHW P	UMP		
No.		TIME	No.		TIME		
7		00:00	10		00:00		
8		00:00	11		00:00		
9		00:00	12		00:00		
Ð	SCROLL 2/2						

Move to " \blacksquare ", press " OK " to select or unselect. (\square the timer is selected. \square the timer is unselected.)

DO	DOMESTIC HOT WATER (DHW)									
	DISIN	FECT	DHW PUMP							
No.		TIME	No.		TIME]				
1	Ø	00:00	4		00:00					
2		00:00	5		00:00					
3		00:00	6		00:00					
,	SCROLL 1/2									


Use "◄", "▶", "▼", "▲" to scroll and use "▼", "▲" to adjust the parameters.

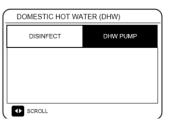
Use " \blacktriangleleft ", " \blacktriangleright ", " \checkmark ", " \blacktriangle " to scroll and use " \checkmark ", " \blacktriangle " to adjust the parameters.

For example: You have set the parameter about the DHW PUMP (See "FOR SERVICEMAN" > "DHW MODE SETTING" on "Engineering Data"). PUMP RUNNING TIME is 30 minutes. Set as follows:



Notes for installers and service engineers 🛠

Important Notes


• If DHW MODE=NON, choose MENU > DOMESTIC HOT WATER. Press OK. The following interface is displayed.

- If DISINFECT MODE=NON on the FOR SERVICEMAN interface, choose MENU > DOMESTIC HOT WATER > DOMESTIC HOT WATER. Press OK. The following interface is displayed.
- If DISINFECT MODE=NON on the FOR SERVICEMAN interface, choose MENU > DOMESTIC HOT WATER > DOMESTIC HOT WATER. Press OK. The following interface is displayed.

DOMESTIC HOT WATER (DHW)						
DISINFECT	DHW PUMP					
SCROLL						

 If DHW PUMP RUNNING TIME=NON, choose MENU > DOMESTIC HOT WATER > DHW PUMP. Press OK. The following interface is displayed.

The **SCHEDULE** menu contains the following items:

1) TIMER

2) WEEKLY SCHEDULE

3) SCHEDULE CHECK

4) CANCEL TIMER

14.3.1 TIMER Function

If the timer function is enabled, the icon \Box will be displayed on the main interface of the wired controller. If the weekly schedule function is enabled, the timer function will be disabled.

SCHEDULE								
TIMER		WEEKLY SCHEDULE	SCHEDULE CHECK		CANCEL TIMER			
No.		START	END	MOD	DE TEMP.			
1		00:00	00:00	HEA	AT 45°C			
2		00:00	00:00	HEA	AT 45°C			
3		00:00	00:00	HEA	AT 45°C			

(SCHEDULE								
	TIN	1ER	WEEKLY SCHEDULE	SCHEDULE CHECK		CANCEL TIMER			
	No.		START	END	MOE	ЭE	TEMP.		
	4		00:00	00:00	HEA	٩T	45°C		
	5		00:00	00:00	HEA	۸T	45°C		
	6		00:00	00:00	HEA	٩T	45°C		
	SCROLL								

Use " \blacktriangleleft ", " \triangleright ", " \checkmark ", " \blacktriangle " to scroll and use " \checkmark ", " \blacktriangle " to adjust the time, the mode and the temperature. Move to " \blacksquare ", press " OK " to select or unselect.

the timer is selected. the timer is unselected.) six timers can be set.

If you want to cancel the TIMER, change the cursor to $^{\prime\prime}$

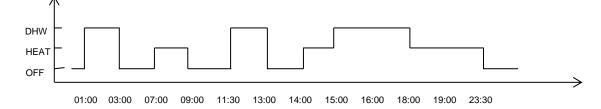
", and press "OK". The



will become

and the timer is disabled.

If the start time is later than the end time, the following interface is displayed.



For example:

Six groups of schedules are set, as shown in the following table:

No.	START	END	MODE	TEMP.
1	01:00	03:00	DHW	70
2	07:00	09:00	HEAT	50
3	11:30	13:00	DHW	70
4	14:00	16:00	HEAT	50
5	15:00	19:00	DHW	70
6	18:00	23:30	HEAT	50

The hydro module will operate as shown in the following figure:

TIME	The operation of the controller
01:00	DHW mode is turned ON
03:00	DHW mode is turned OFF
07:00	HEAT MODE is turned ON
09:00	HEAT MODE is turned OFF
11:30	DHW MODE is turned ON
13:00	DHW MODE is turned OFF
14:00	HEAT MODE is turned ON
15:00	DHW MODE is turned ON and HEAT MODE is turned OFF
18:00	HEAT MODE is turned ON and DHW MODE is turned OFF
23:30	HEAT mode is turned OFF

Notes for installers and service engineers 🛠

Caution

If the start time is the same as the end time, the schedule is invalid.

Timer and weekly schedule cannot take effect at the same time. The time which is set later will take effect first. If the weekly schedule is set, the icon will be displayed on the main interface.

Choose **MENU** > **SCHEDULE** > **WEEKLY SCHEDULE** . Press **OK**. The following interface is displayed.

	SCHEDULE										
	TIMER			WEEKLY SCHEDULE		SCHEDULE CHECK			ANCEL		
ſ	MON.	τu	E.	WED.	TH	IU.	FRI.	SA	Т.	SUN.	
					(
		EN	ΤE	R			С	AN	ICE	EL	
	ОК	MON	SEI	LECT	¢		♦ so	CROL	.L		

SCHEDULE							
TIMER	WEEKLY SCHEDULE CANCEL SCHEDULE CHECK TIMER						
MON. TU	E. WED. THU. FRI. SAT. SUN.						
EN	TER CANCEL						
OK ENTER	r 🖨 🚺 SCROLL						

First select the days of the week you wish to schedule. Use "◄" and "▶" to scroll. Press "OK" to select or unselect the day. "

" means that the day is selected, "

MON.

" means that the day is unselected.

Use "◀" or "▶" to SET, and press "ENTER". The Monday to Friday are selected to be scheduled and they have the same schedule. The following pages will appear:

(SCHEDULE									
	TIMER		WEEKLY SCHEDULE	SCHEDULE CHECK		CANCEL TIMER				
	No.		START	END	MOE	DE TE	EMP.			
	1		00:00	00:00	HEA	AT 4	5°C			
	2		00:00	00:00	HEA	AT 4	5°C			
	3		00:00	00:00	HEA	AT 4	5°C			
	OK	MON	SELECT		SCROI	LL				

SCHEDULE								
TIMER		WEEKLY SCHEDULE	SCHE CHE			NCEL MER		
No.		START	END	MOD	Ε	TEMP.		
4		00:00	00:00	HEA	λT	45°C		
5		00:00	00:00	HEA	T	45°C		
6		00:00	00:00	HEA	T	45°C		
OK	MON	SELECT		SCROL	.L			

Use "◀", "▶", "▼", "▲" to scroll and adjust the time, the mode and the temperature. Timers can be set, including start time and end time, mode and temperature. The mode includes heat mode, cool mode and DHW mode. The setting method refer to timer setting. The end time must be later than the start time. Otherwise this will show that Timer is disabled.

14.3.3 Schedule Check

Schedule check can only check the weekly schedule. Go to "MENU" > "SCHEDULE" > "SCHEDULE' CHECK". Press "OK". The following page will appear:

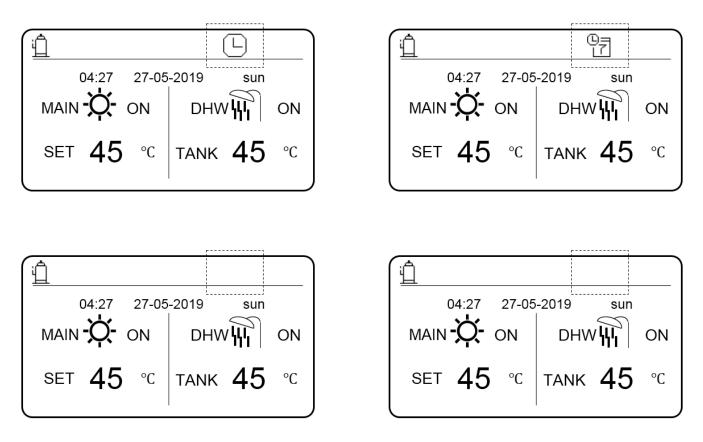
SCHEDU	ILE					
TIMER	WEEKLY SCHEDULE	SCHEDULE CHECK	CANCEL TIMER			
WEEKLY SCHEDULE CHECK.						
OK ENTE		SCROLL				

SCH	IEDULE						
DAY	NO. MODE	SET	START	END			
	T1 🗌 HEAT	45°C	00:00	00:00			
	T2 🗌 HEAT	45°C	00:00	00:00			
	T3 🗌 HEAT	45°C	00:00	00:00			
	T4 🗌 HEAT	45°C	00:00	00:00			
	T5 🗌 HEAT	45°C	00:00	00:00			
\$	T6 🗌 HEAT	45°C	00:00	00:00			

Press " $\mathbf{\nabla}$ ", " $\mathbf{\Delta}$ ", the timer from Monday to Sunday will appear.

14.3.4 Cancel Timer

Go to "MENU" > "SCHEDULE" > "CANCEL TIMER". Press "OK". The following page will appear:


SCHEDULE								
TIMER WEEKLY SCHEDULE CANCEL SCHEDULE CHECK TIMER								
Do you want to cancel the timer and weekly								
schee	dule ?							
NO YES								
ОК	OK CONFIRM							

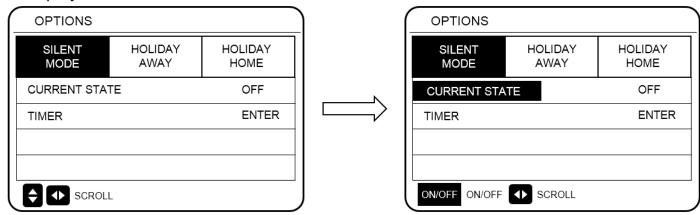
Use "< ", "▶ ", "▼", "▲" to move to "YES". Press "OK" to cancel the timer. If you want to exit CANCEL TIMER, press "BACK".

If TIMER or WEEKLY SCHEDULE is activated, the timer icon "^[]" or weekly schedule icon "^[]" will display on the home page. If TIMER or WEEKLY SCHEDULE is canceled, icon "^[]" or "^[]" will disappear on the home page.

Midea

High Temperature Hydro Module

You have to reset TIMER/WEEKLY SCHEDULE, if you change the LEAVING WATER TEMP. to the ROOM TEMP. or you change the ROOM TEMP. to the LEAVING WATER TEMP.



OPTIONS menu contents as follows: 1) SILENT MODE 2) HOLIDAY AWAY 3) HOLIDAY HOME

14.4.1 Silent Mode

The silent mode is used to reduce the noise of the hydro module, which may degrade the capability of the hydro module. You can set the hydro module to always operate in silent mode or to enter silent mode within a period of time.

- On the main interface, you can check whether silent mode is enabled. If it is, the icon will be displayed on the main interface.
- Choose MENU > OPTIONS > SILENT MODE. Press OK. The following interface is displayed.

Choose **ON/OFF** to determine whether the silent mode is enabled. If CURRENT STATE=OFF, silent mode is invalid. If CURRENT STATE=ON, silent mode is invalid. On the TIMER page, you can set the time for enabling the silent mode. Two periods of time can be set. The silent mode will be started at the START time, and disabled at the END time. If TIMER is not set, the hydro module will remain in silent mode.

OPTIONS) (OPT	IONS			
SILENT MODE	HOLIDAY AWAY	HOLIDAY HOME			ENT DE	HOLID. AWA		HOLIDAY HOME
CURRENT STA	TE	ON		NO.		START	EN	D
TIMER		ENTER		1		00:00	00	:00
				2		00:00	00	:00
			J	÷	SCROL	L		

If the holiday away mode is enabled, the icon will be displayed on the main interface. The holiday away mode can prevent water from freezing during holidays and start heating and water heating before you are back home thus guaranteeing comfort and hit water at home.

Go to "MENU" > "OPTIONS" > "HOLIDAY AWAY". Press "OK". The following page will appear.

HOLIDAY AWAY	HOLIDAY HOME	
CURRENT STATE		
DHW MODE		
DISINFECT		
HEAT MODE		
	AWAY	

OPTIONS			
SILENT MODE	HOLIDAY AWAY	HOLIDAY HOME	
CURRENT STA	TE	OFF	
DHW MODE		ON	
DISINFECT		ON	
HEAT MODE		ON	
ON/OFF ON/OFF		1/2	

OPTIONS		
SILENT MODE	HOLIDAY AWAY	HOLIDAY HOME
FROM		02-01-2019
UNTIL		16-01-2019
SCROLL		2/2

SETTING	VALUE	
HOLIDAY AWAY	on	
DHW MODE	on	
DISINFECT	on	
HEAT MODE	on	
FROM	02-01-2019	
UNTIL	16-01-2019	

When DISINFECT is set to ON, and you set the disinfection mode, the hydro module will automatically perform disinfection at the set disinfection time prior to the end of the holiday. For example, if FROM=2019-01-02, UNTIL=2019-01-16, and disinfection time is set to 23:00 on Friday, disinfection begins from 23:00 on 2015-12-11. If you do not set the disinfection mode, the hydro module will forcedly enter disinfection mode at 22:00 on the day before the end of the holiday. If you do not set the disinfection mode, the hydro module will begin disinfection from 22:00 on 2015-12-19. After the hydro module exits disinfection mode, the wired controller will send the heat mode start-up command and DHW mode start-up command to the hydro module. TwoutS=TwoutS_H.A_H indicates the heat mode, while TtankS=TtankS_H.A_DHW indicates the DHW mode.

TwoutS_H.A_H and TtankS_H.A_DHW are set on the FOR SERVICEMAN interface of the wired controller.

Notes:

- In holiday mode, timer and weekly schedule are invalid until the hydro module exits from holiday mode.
- The CURRENT STATE option determines whether to enable holiday mode. If CURRENT STATE = OFF, HOLIDAY AWAY = OFF. If CURRENT STATE = ON, HOLIDAY AWAY = ON.
- The multiple set point is invalid when the hydro module operates in holiday mode.
- If disinfection mode is set in holiday mode, the hydro module will enter the disinfection mode at 22:00 on the day before the end of the holiday mode.
- In holiday mode, the weather temperature curve is invalid until the hydro module exits from holiday mode.
- In holiday mode, Preset Temp. is invalid until the hydro module exits from holiday mode.

If you operate the wired controller in holiday mode, the following prompt is displayed:

	04:27	27-05-	2019	sun	_
The "HOLIDAY AWAY FUNCTION" is on. Do you want to turn off the holiday away function ?					
	NO			YES	
ОК	CONFIRM	sci	ROLL		

14.4.3 HOLIDAY HOME Mode

In holiday home mode, the hydro module can operate according to the schedule settings of the holiday mode without affecting the normal schedule.

Period	Then		
Before and after your holiday	Your normal schedules will be used.		
During your holiday	The configured holiday setting will be used.		

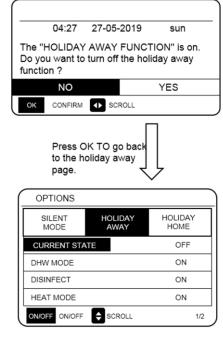
If the holiday home mode is activated,

will display on the home page.

Go to "MENU" > "OPTIONS" > "HOLIDAY HOME". Press "OK" . The following page will appear:

ਮੋ

OPTIONS					
SILENT MODE	HOLIDAY AWAY	HOLIDAY HOME			
CURRENT STA	OFF				
FROM	02-01-2019				
UNTIL	16-01-2019				
TIMER	ENTER				
ON/OFF ON/OFF					


Use "ON/OFF" to select "OFF" or "ON" and use "◀", "▶", "▼", "▲" to scroll and adjust.

If the CURRENT STATE is OFF, the HOLIDAY HOME is OFF. If the CURRENT STATE is ON, the HOLIDAY HOME is ON. Use "▼'' and "▲" to adjust the date. Before and after your holiday, your normal schedule will be used. During your holiday, you will save energy and prevent your house from freezing.

Notes for installers and service engineers 🛠

Important Points

 If both HOLIDAY AWAY and HOLIDAY HOME are set to ON, FROM and UNTIL set on the HOLIDAY AWAY page cannot coincide or overlap with those set on the HOLIDAY HOME page. If they coincide or overlap, the following page is displayed:

14.5 Child Lock

The CHILD Lock function is used to prevent children error operation. The mode setting and temperature adjusting can be locked or unlocked by using CHILD LOCK function.

Go to" MENU" > "CHILD LOCK". The page is displayed:

CHILD LOCK				
Please input the password:				
1 2 3				
OK ENTER 🖨 ADJUST 🕩 SCROLL				

Input the correct password, and the following page will appear:

CHILD LOCK	
HEAT TEMP. ADJUST	UNLOCK
HEAT MODE ON/OFF	UNLOCK
DHW TEMP. ADJUST	UNLOCK
DHW MODE ON/OFF	UNLOCK
	SCROLL

Use "▼" and "▲" to scroll and" ON/OFF" to select LOCK or UNLOCK.

The heat/DHW temperature can't be adjusted when the HEAT TEMP. ADJUST/DHW TEMP. ADJUST is locked. If you want to adjust the heat/DHW temperature when heat/DHW temperature is locked, the following page will appear:

The heat/DHW mode can't turn on or off when the HEAT/DHW MODE ON/OFF is locked. If you want to turn the heat/DHW mode on or off when HEAT/DHW MODE ON/OFF is locked, the following page will appear:

27-05-2019

The heating temperature adjusting function

27-05-2019

The DHW temperature adjusting function is

SCROLL

is locked. Do you want to unlock it?

CONFIRM SCROLL

locked. Do you want to unlock it?

sun

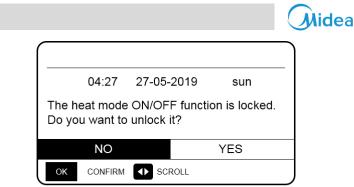
YES

sun

YES

04:27

NO


04:27

NO

CONFIRM

OK

OK

	04:27	27-05-20	19 sur	1		
	The DHW mode ON/OFF function is locked. Do you want to unlock it?					
	NO		YES			
ОК	CONFIRM	SCROL	L			

If you press NO, you will return to the home page. If you press YES, you will go to the CHILD LCOK page.

14.6 Service Information14.6.1 About Service Information

Service information menu contents are as follows:

1) SERVICE CALL

2) ERROR CODE

3) PARAMETER

4) DISPLAY

14.6.2 How to go to Service Information Menu

Go to "MENU" > "SERVICE INFORMATION". Press "OK" . The following page will appear:

The service call can show the service phone or mobile number. The installer can input the phone number. See "FOR SERVICEMAN".

SERVICE INFORMATION					
SERVICE ERROR CALL CODE		PARAMETER	DISPLAY		
PHONE NO.		000000000000000000000000000000000000000			
MOBILE NO.		000000000	000000000		
SCRO	LL				

An error code is used to show when the fault happened and show the meaning of the error code.

(SERVICE INFORMATION						
	SERVICE CALL	ERROR CODE		PARA	AMETER	DISPLAY	
ľ	HB01#	E1	17	7:32	03-(06-2019	
	HB01#	E2	0	9:20	04-0	06-2019	
	HB01#	Ed	1:	2:10	20-0	06-2019	
	HB01#	PL	1	9:32	03-0	07-2019	
l	†	SCROLL				1/5	

Press OK and the following page will appear:

SERVICE CALL	ERROF CODE		RAMETER	DISPLA	λY
HB01#	E1	17:32	03-0	06-2019	
HB01#	E2	09:20	04-0	06-2019	
HB01#	Ed	12:10	20-0	06-2019	
HB01#	PL	19:32	03-0	07-2019	
OK EN	ITER 🗧	SCROLL			1/5

Press OK to show the mean of the error code:

	04:27	27-05-2019	sun
HB01# Commu hydro b	inication	fault between contr	oller and
Please	contact y	our dealer.	

NOTE:

A total of twenty fault codes can be recorded.

The parameter function is used to display the main parameter, and there are two pages to show the parameter:

SERVICE INFORMATION					
SERVICE CALL	ERROR CODE	PARAMETER	DISPLAY		
ROOM SET TEMP.			°C		
MAIN SE	45°C				
TANK SET TEMP.			50°C		
ROOM ACTUAL TEMP.			°C		
SCROL	LL		1/2		

(SERVICE INFORMATION					
	SERVICE CALL	ERROR CODE	PARAMETER	DISPLAY		
	MAIN ACTUAL TEMP.			25°C		
	TANK ACTUAL TEMP.			55°C		
	SCROI	LL		2/2		

The display function is used to set the interface:

SERVICE INFORMATION					
SERVICE CALL	ERROR CODE	PARAMETER	DISPLAY		
TIME			18:39		
DATE		(03-06-2019		
LANGUA	GE		EN		
BACKLIG	θHT		ON		
SCROI	L		1/2		

SERVICE INFORMATION					
SERVICE CALL		ROR DDE	PARAMETER	DISPLAY	
BUZZER				ON	
SCREEN LOCK TIME			300 SEC		
ON/OFF	ON/OFF	= 🖨 s	CROLL	2/2	

Use "OK" to enter and use " \blacktriangleleft ", " \blacktriangleright ", " \checkmark ", " \blacktriangle " to scroll.

14.7 Operation Parameters

Spot check the operating parameters of the hydro module and some operating parameters of the ODU. This menu is for installer or service engineer reviewing the operation parameter of hydro box and ODU units.

- At the home page, go to "MENU" > "OPERATION PARAMETERS".
- Press "OK". There are six pages for the operating parameter as following. Use "▼", "▲" to scroll.

OPERATION PARAMETERS
HYDRO BOX
OUTDOOR UNITS
OK ENTER 🖨 SCROLL

OPERATION PARAMETERS		
OPERATION MODE		OFF
CURRENT		0.0 A
COMPRESSOR FREQUENCY		0 HZ
COMP. RUN TIME 1	1	MIN
COMP. RUN TIME 2	95	MIN
COMP. RUN TIME 3	3	MIN
SCROLL		1/6

The parameters of high temperature hydro module are as follows:

OPERATION PARAMETERS	
COMP. RUN TIME 4	80 Hrs
EXPANSION VALVE 1	0 P
EXPANSION VALVE 2	0 P
TWOUT	25 °C
TWIN	25 °C
TTANK	25 °C
SCROLL	2/6

OPERATION PARAMETERS	
SC	25 ℃
PRIMARY CURRENT	0.0 A
SECONDARY CURRENT	0.0 A
PRIMARY VOLTAGE	0 V
POWER CONSUMPTION	0 W
HEAT POWER	0 W
SCROLL	5/6


OPERATION PARAMETERS		
TCS		25 °C
PC	0	kPa
PE	0	kPa
тс		25 °C
TE		25 °C
T7C		25 °C
SCROLL		3/6

V00
V01

OPERATION PARAMETE	RS
τ7	25 °C
Т3	25 °C
T2A	25 °C
TF	25 °C
DSH	25 °C
SSH	25 °C
SCROLL	4/6

The parameters of ODU units are as follows:

OPERATION PARAMETERS		
ODU2_INV		0 HZ
ODU2_PC	0	kPa
ODU2_PE	0	kPa
ODU2_DSH		0°C
ODU2_T4		25 °C
ODU2_SOFTWARE		V01
SCROLL		1/3

OPERATION PARAMETERS		
ODU1_INV		0 HZ
ODU1_PC	0	kPa
ODU1_PE	0	kPa
ODU1_DSH		0 °C
ODU1_T4		25 °C
ODU1_SOFTWARE		V01
SCROLL		1/3

OPERATION PARAMETERS			
ODU3_INV		0 HZ	_
ODU3_PC	0	kPa	-
ODU3_PE	0	kPa	_
ODU3_DSH		0 °C	_
ODU3_T4		25 ℃	_
ODU3_SOFTWARE		V01	
SCROLL		1/3	

Parameter	Meaning
OPERATION MODE	Operating Mode
CURRENT	Current
COMPRESSOR FREQUENCY	Compressor frequency
COMP. RUN TIME 1	Compressor operating time
COMP. RUN TIME 2	
COMP. RUN TIME 3	
COMP. RUN TIME 4	
EXPANSION VALVE 1	EEV1 open degree
EXPANSION VALVE 2	EEV2 open degree
ТWOUT	Water outlet temperature
TWIN	Water inlet temperature
TTANK	Water tank temperature
TCS	Desired saturation temperature
PC	Discharge pressure
PE	Air return pressure
тс	Discharge pressure saturation temperature
ТЕ	Air return pressure saturation temperature
Т7С	Discharge temperature
Т7	Suction temperature
Т3	Cold outlet temperature
T2A	Liquid pipe temperature at R410a side
TF	Module temperature
DSH	Discharge Superheat
SSH	Air return superheat
SC	Supercoiling degree of liquid pipe at R410a side
PRIMARY CURRENT	Primary current
SECONDARY CURRENT	Secondary current
PRIMARY VOLTAGE	Primary voltage
POWER CONSUMPTION	Secondary voltage
HEAT POWER	Heating ability

14.8 User Settings

Code	Description	Default Value	Min. Value	Max. Value	Adjustment Step	Unit
TwoutS	Water outlet temperature of heating mode set on the main interface	45	25	80	1	°C
TaS	Room temperature of heating mode set on the main interface	24	17	30	1	°C
TtankS	Water tank temperature of DHW mode set on the main interface	50	25	80	1	°C
HEAT	Heat mode on/off: 0 = Off, 1 = On	0	0	1	1	1
DHW	DHW mode on/off: 0 = Off, 1 = On	0	0	1	1	1
PRESET TEMP. TIMER1	PRESET TEMP. timer 1 on/off: 0 = Off , 1 = On	0	0	1	1	/
PRESET TEMP. TIME1	PRESET TEMP. time 1	00:00	00:00	23:50	1/10	h/min
Temper.1	PRESET TEMP. 1	45	25	80	1	°C
PRESET TEMP. TIMER2	PRESET TEMP. timer 2 on/off: 0 = Off , 1 = On	0	0	1	1	/
PRESET TEMP. TIME2	PRESET TEMP. time 2	00:00	00:00	23:50	1/10	h/min
Temper.3	PRESET TEMP. 2	45	25	80	1	°C
PRESET TEMP. TIMER3	PRESET TEMP. timer 2 on/off: 0 = Off , 1 = On	0	0	1	1	1
PRESET TEMP. TIME3	PRESET TEMP. time 3	00:00	00:00	23:50	1/10	h/min
Temper.3	PRESET TEMP. 3	45	25	80	1	°C
PRESET TEMP. TIMER4	PRESET TEMP. timer 3 on/off: 0 = Off , 1 = On	0	0	1	1	/
PRESET TEMP. TIME4	PRESET TEMP. time 4	00:00	00:00	23:50	1/10	h/min
Temper.4	PRESET TEMP. 4	45	25	80	1	°C
PRESET TEMP. TIMER5	PRESET TEMP. timer 4 on/off: 0 = Off , 1 = On	0	0	1	1	/
PRESET TEMP. TIME5	PRESET TEMP. time 5	00:00	00:00	23:50	1/10	h/min
Temper.5	PRESET TEMP. 5	45	25	80	1	°C
PRESET TEMP. TIMER6	PRESET TEMP. timer 6 on/off: 0 = Off , 1 = On	0	0	1	1	/

Midea		H	ligh Ten	neratu	re Hydro I	Module
PRESET TEMP. TIME6	PRESET TEMP. time 6	00:00	00:00	23:50	1/10	h/min
Temper.6	PRESET TEMP. 6	45	25	80	1	°C
•					•	
weather temp. set	Temperature setting curve on/off: OFF = 0, ON = 1	0	0	1	1	/
shift value	Temperature setting curve shift value	0	-5	5	1	°C
multiple set point 1 required temp.	Sets water temperature at multiple set point 1	65	25	80	1	°C
multiple set point 2	Sets water temperature at	35	25	80	1	°C
required temp.	multiple set point 2		20	00	I	U
DISINFECT CURRENT	Disinfection on/off: $OFF = 0$,	0	0	1	1	1
STATE	ON = 1			I	•	/
DISINFECT OPERATE DAY	Disinfection week	FRI	MON	SUN	1	/
DISINFECT START	Start time for disinfection	23:00	00:00	23:50	1/10	h/min
DHW PUMPTIMER1-16	Pipeline water return pump timer on/off: OFF = 0, ON = 1	0	0	1	1	/
DHW PUMP START 1- 16	Pipeline water return pump start time: 1-16	00:00	00:00	23:50	1/10	h/min
TIMER1-TIMER6	Timers 1-6 on/off: 0 = Off , 1 =	0	0	1	1	1
	On					
TIMER1-TIMER6 START	Timers 1-6 start time	00:00	00:00	23:50	1/10	h/min
TIMER1-TIMER6 END	Timers 1-6 end time	00:00	00:00	23:50	1/10	h/min
TIMER MODE 1-6	Timer mode: 0 = HEAT, 3 = DHW	0	0	3	1	1
TIMER TEMP. 1-6	Temperature setting timer	45	25	80	1	°C
CANCEL TIMER	Cancels all the defined timers	0	0	1	1	1
SILENT MODE CURRENT STATE	Silent mode on/off: 0 = Off , 1 = On	0	1	1	1	/
SILENT TIMER	Silent mode timer on/off: 0 = Off , 1 = On	1	0	1	1	1
SILENT MODE TIMER START 1	Silent mode timer start time 1	12:00	00:00	23:50	1/10	h/min
SILENT MODE TIMER END 1	Silent mode timer end time 1	15:00	00:00	23:50	1/10	h/min
SILENT MODE TIMER START 2	Silent mode timer start time 2	22:00	00:00	23:50	1/10	h/min
SILENT MODE TIMER ENDT 2	Silent mode timer end time 2	07:00	00:00	23:50	1/10	h/min
HOLIDAY AWAY CURRENT STATE	Holiday away mode on/off: 0 = Off , 1 = On	0	0	1	1	/

						\
High Temperature						Midea
HOLIDAY AWAY DHW	Holiday away DHW mode	1	0	1	1	/
MODE	on/off: $0 = Off$, $1 = On$					
HOLIDAY AWAY	Holiday away disinfection	1	0	1	1	1
DISINFECT	mode on/off: $0 = Off$, $1 = On$					
HOLIDAY AWAY HEAT	Holiday away heat mode	1	0	1	1	1
MODE	on/off: $0 = Off$, $1 = On$					
HOLIDAY AWAY	Holiday away start date	Current	1/1/2018	1/1/2100	1	1
FROM		date + 1				
HOLIDAY AWAY UNTIL	Holiday away end date	Current date + 8	1/1/2018	1/1/2100	1	/
HOLIDAY home	Holiday home mode on/off: 0 =	0	0	1	1	1
CURRENT STATE	Off , 1 = On					
HOLIDAY home FROM	Holiday home start date	Current date	1/1/2018	1/1/2100	1	/
HOLIDAY home	Holiday home end date	Current date + 7	1/1/2018	1/1/2100	1	/
HOLIDAY home TIMER	Holiday home timer on/off: 0 =		0	1	1	1
	Off , 1 = On					
CURRENT TIME	Current time	00:00	00:00	23:59	1/10	h/min
CURRENT DATE	Current date	1/1/2018	1/1/2018	1/1/2100	1	1
LANGUAGE	Language: EN = 0 , FR = 1 ,	0	0	5	1	1
	IT = 2 , SP = 3 , PL = 4 ,					
	DE = 5, TR = 6					
BACKLIGHT	Backlight on/off: 0 = Off,1 =	1	0	1	1	/
	On					
BUZZER	Buzzer on/off: 0 = Off , 1 = On	1	0	1	1	/
SCREEN LOCK TIME	Screen locking time	120	60	300	10	Second
	1		1		1	1

14.9 On- Site FOR SERVICEMAN Settings

14.9.1 About FOR SERVICEMAN

FOR SERVICEMAN is used for installers and service engineers.

- Setting the function of equipment.
- Setting the parameters.

14.9.2 How to go to "FOR SERVICEMAN"

Go to "MENU" > "FOR SERVICEMAN". Press "OK".

FOR SERVICEMAN
Please input the password:
2 3 4
OK ENTER 🖨 ADJUST 🚺 SCROLL

- The FOR SERVICEMAN is used for installers or service engineers. It is NOT intended for home owners to alter setting with this menu.
- It is for this reason that password protection is required to prevent unauthorised access to the service settings.
- The password is 234.

14.9.3 How to exit "FOR SERVICEMAN"

If you have set all the parameters. Press "BACK", and the following page will appear:

FOR SERVICEMAN			
Apply settings and exit?			
NO	YES		
OK CONFIRM 🖨 ADJUS	ST		

Select "YES" and press "OK" to exit the FOR SERVICEMAN. After exiting the FOR SERVICEMAN, the unit will be turned off.

14.9.4 Meanings of each setting item

	No.		Code	Description	Defaul	Min.	Max.	Adjustme	Unit
					t	Value	Value	nt Step	
					Value				
	1	DHW MODE SETTING	DHW MODE	DHW mode on/off: 0 = NON , 1 = YES	1	0	1	1	/
	•	0ETTING			4	0	4	4	1
	2		DISINFECT MODE	Disinfection on/off: 0 = NON , 1 = YES	1	0	1	1	/
J	3		DHW PRIORITY	Water heating priority on/off: 0 = NON , 1 = YES	1	0	1	1	/
5	4		dTtankSH	Power-on return difference of water heating	5	2	10	1	٦°
	5		TtankS_DI	Sets temperature for disinfection	65	60	70	1	°C
	6		t_DI_HIGHTEMP.	Duration of disinfection at high temperature	15	5	60	5	MIN
	7		t_DI_MAX	Longest disinfection duration	210	90	300	5	MIN
	8		DHW PUMP RUNNING TIME	Time-based control of pipeline water return pump on/off: 0 = Off, 1 = On	1	0	1	1	/
0	9	HEAT MODE SETTING	HEAT MODE	Heat mode on/off: 0 = NON , 1 = YES	1	0	1	1	1
	10		LEAVING WATER TEMP.	Water outlet temperature control on/off: 0 = NON , 1 = YES	1	0	1	1	/
	11		ROOM TEMP.	Room temperature control on/off: 0 = NON , 1 = YES	0	0	1	1	1
	12		t_ODU_T4_FRESH_H	Weather temperature curve T4 refresh time in heat mode	0.5	0.5	6	0.5	hours
	13		dTwoutSH	Power-on return difference in heat mode (Water outlet temperature control)	5	2	10	1	℃
	14		dTaSH	Power-on return difference in heat mode (ambient temperature sensor control Ta)	2	1	10	1	℃
	15	WEATHER TEMP.	L_weather_Twout	Water outlet temperature at low air temperature	70	25	80	1	٦°
	16	SETTING	H_weather_Twout	Water outlet temperature at high air temperature	45	25	80	1	℃
	17		L_ODU_T4	Low ambient temperature	-10	-20	5	1	°C
	18		H_ODU_T4	High ambient temperature	15	10	20	1	°C

	lidea			Ц	iah Ta	mnor	atura H	ydro Module
19	MULTIPLE SET POINT	multiple set point 1	Multiple set point 1 on/off: 0 = OFF, 1 = YES	0	0	1	1	/
20	SETTING	multiple set point 2	Multiple set point 2 on/off: 0 = OFF, 1 = YES	0	0	1	1	/
21	HOLIDAY AWAY	TwoutS_H.A_H	Water outlet temperature of holiday mode	25	28	80	1	°C
22	SETTING	TtankS_H.A_DHW	Water tank temperature of holiday mode	40	25	80	1	°C
23	HEAT RECOVERY MODE	HEAT RECOVERY	Heat recovery mode on/off: 0 = NON , 1 = YES	1	0	1	1	1
24	SRTTING	Ttank_recovery_max	Max. heat recovery water tank temperature	70	45	80	1	°C
25	POWER INPUT LIMITATION	POWER INPUT LIMITATION	Sets input power limitation gear: $0 = Not$ limited, $1 =$ Gear 1, $2 =$ Gear 2, $3 =$ Gear 3	0	0	3	1	1
26	SMART GRID	SMART GRID	Sets smart grid on/off: 0 = NON , 1 = YES	0	0	1	1	/
27		Ttank_smartgrid_max	Sets the highest water tank temperature of the smart grid	70	45	80	1	℃
28	HYDRO BOX ADDERSSING	HYDRO BOX ADDERSSING	Sets hydro module address	0	0	63	1	1
29	TEST RUN	VACUUM PUMPING	Sets vacuumizing mode on/off	0	0	1	1	/
30		CIRCULATED PUMP RUNNING	Sets external water pump on/off	0	0	1	1	1
31		DHW PUMP RUNNING	Sets water tank and pump on/off	0	0	1	1	1

14.9.5 Setting of Special Functions

Maximum Power Limitation Function

This function can limit the power consumption of the hydro module. Choose **MENU** > **FOR SERVICEMAN** > **POWER INPUT LIMITATION**. Press **OK**. The following interface is displayed.

10. POWER INPUT LIMITATIO	ON
LIMITATION LEVEL	0
SCROLL	

Select speed 0 = Not limited; 1 = Speed 1; 2 = Speed 2; 3 = Speed 3.

Speed 0: It indicates that the maximum current for hydro module operation is 16 A.

Speed 1: It indicates that the maximum current for hydro module operation is 15 A.

Speed 2: It indicates that the maximum current for hydro module operation is 14 A.

Speed 3: It indicates that the maximum current for hydro module operation is 13 A.

Heat recovery Function

This function will automatically enable the heat recovery function of the hydro module to produce hot water when the startup capacity of the chiller's IDU is great. Choose **MENU** > **FOR SERVICEMAN** > **HEAT RECOVERY MODE SETTING**. Press **OK**. The following interface is displayed.

9. HEAT RECOVER	Y MODE SETTING
HEAT RECOVERY	
	70 °C

HEAT RECOVERY=YES indicates that the heat recovery function is enabled. HEAT RECOVERY=NON indicates that heat recovery function is disabled.

Ttank_recovery_max indicates that the desired tank temperature of the heat recovery function is set.

15 Menu Structure Overview

15.1 Structure

1.	Heat	mode
-	-	

- 2. Domestic hot
- water(DHW)
- 3. Schedule
- Options
- Child lock
- Service information
- 7. Operation parameter
- 8. For serviceman

2. DHW pump 1. Timer 2. Weekly schedule З. Schedule check 4. Cancel timer 1. Silent mode 2. Holiday away Holiday home 3. 1. Heat temp. adjust 2. Heat mode on/off 3. DHW temp. adjust 4. DHW mode on/off 1. Service call Error code 2. З. Parameter 4. Display Hydro box 1. 2. Outdoor units DHW mode setting 1. 2. Heat mode setting 3. Weather temp. setting 4. Multiple set point setting 5. Holiday away setting 6. Service call 7. Restore factory setting

1.

2.

1.

Preset temp.

Disinfect

Weather temp. set

- Test run
 Heat recovery mode
- setting
- 10. Power input limitation
- 11. SMART GRID
- 12. Hydro box addressing

1. 2. 3. 5. 6. 7. 8.	t_DI_HIGHTEMP.
1. 2. 3. 4. 5. 6.	LEAVING WATER TEMP. ROOM TEMP. t_ODU_t4_FRESH_H dTwoutSH
1. 2. 3. 4.	
1. 2.	Multiple set point 1 Multiple set point 2
1. 2.	TwoutS_H.A_H TtankS_H.A_DHW
1. 2.	HEAT RECOVERY Ttank_recovery_max
1.	POWER INPUT LIMITATION
1. 2.	SMART GRID Ttank_smartgrid_max
1.	HYRDO BOX ADDRESSING

16 Maintenance

Note:

Before repair and maintenance, ensure that the hydro module is powered off.

Water pressure

Check if the water pressure is above 0.3 bar. Add water if necessary.

• Water filter

Clean the water filter.

• Water pressure relief valve

Check for correct operation of the pressure relief valve by turning the red knob along the valve counter-clockwise:

1. If you do not hear a clacking sound, contact your local dealer.

2. If water keeps running out of the unit, close both the water inlet and outlet shut-off valves first and then contact your local dealer.

• Pressure relief valve hose

Check that the pressure relief valve hose is positioned appropriately to drain the water. If the drain pan kit is installed, make sure that the pressure relief valve hose end is positioned in the drain pan.

• Auxiliary heater vessel insulation cover

Check that the auxiliary heater insulation cover is fastened tightly around the auxiliary heater vessel.

• Sanitary hot water tank pressure relief valve (field supply)

Applies only to installations with a sanitary hot water tank. Check for correct operation of the pressure relief valve on the sanitary hot water tank.

• Sanitary hot water electric heater

Applies only to installations with a sanitary hot water tank. It is advisable to remove lime buildup on the electric heater to extend its life span, especially in regions with hot water. To do so, drain the sanitary hot water tank, remove the electric heater from the sanitary hot water tank and immerse in a bucket (or similar) with lime-removing product for 24 hours.

• Indoor unit control box

1. Carry out a through visual inspection of the control box and look for obvious defects such as loose connections or defective wiring.

2. Check for correct operation of contactors by the use of an ohmmeter. All of these contactors must be in open position.

17 Error Code Table

Error Code	Item
EE	EPROM failure
FE	No address set for High Temperature Hydro Module
C7	Protection against excessively high temperature of the inverter module
E9	Unmatched compressor model
H4	Report error H4 after 3 x L0 or L1 failure is displayed.
Н5	Low pressure protection (Unrecoverable)
Н6	Discharge temperature protection (Unrecoverable)
1F6	EEV1 R134A electronic expansion valve failure
2F6	EEV2 R410A electronic expansion valve failure
E1	Communication failure between wired controller and hydro module
E8	Water flow failure
F3	T _{wout} water outlet temperature sensor failure
F9	Twin water inlet temperature sensor failure
F5	T _{Tank} water tank temperature sensor failure
E7	T7C Discharge pipe temperature sensor failure
FA	T7 Suction Pipe temperature sensor failure
F7	Address is same as another indoor unit
FC	Liquid pipe temperature sensor failure at R410A side of T2A evaporation condenser
Fd	T3 cold outlet temperature sensor failure
F8	Ta room temperature sensor wired controller failure
H8	High-pressure sensor failure
Hb	Low-pressure sensor failure
E2	Communication failure between hydro module and ODU
НО	Communication failure between main control chip and driver chip
EO	Slave unit communication failure (only valid to group control)
Ed	ODU failure
E5	Voltage protection failure
РР	Insufficient superheat degree protection
P1	High pressure protection
P2	Low pressure protection
P3	Compressor overcurrent protection (secondary current protection)
P4	T7C discharge temperature protection
PL	Module high-temperature protection
F1	Loop relay protection of module plate

18 Troubleshooting

In this section, we will have a look as to how to do the troubleshooting if we encounter any error code while operating the High Temperature Hydro Module machine.

18.1 EE Troubleshooting

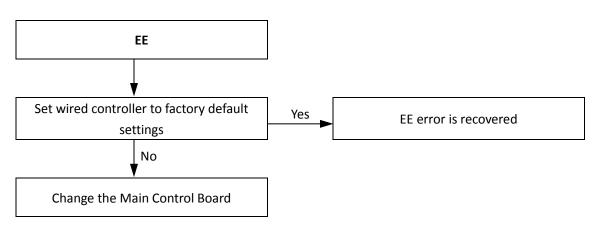
18.1.1 Wired Controller Output:

18.1.2 Description:

- High Temperature Hydro Module Main Board EEPROM error
- High Temperature Hydro Module stops
- Error Code is shown both on the Main Control Board and wired controller

18.1.3 Trigger Condition:

Main Control Board cannot read the EEPROM data


18.1.4 Recover Condition:

Main Control Board is able to read the EEPROM data

18.1.5 Reset Method:

Manual reset

18.1.6 Troubleshooting:

18.2 FE Troubleshooting

18.2.1 Wired Controller Output:

18.2.2 Description:

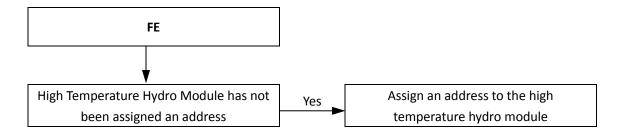
Indoor unit has not been assigned an address

18.2.3 Trigger Condition:

There is no address set for the High Temperature Hydro Module

18.2.4 Recover Condition:

Auto recover


18.2.5 Reset Method:

Auto recover

18.2.6 Possible Causes:

Initial power ON without address

18.2.7 Troubleshooting:

18.3 E9 Troubleshooting

18.3.1 Wired Controller Output:

18.3.2 Description:

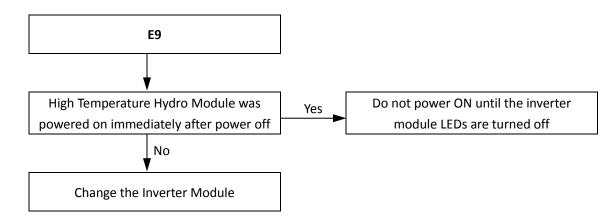
- Compressor Mismatch
- High Temperature Hydro Module stops
- Error code is shown on the main board and the wired controller

18.3.3 Trigger Condition:

Compressor drive parameters mismatch

18.3.4 Recover Condition:

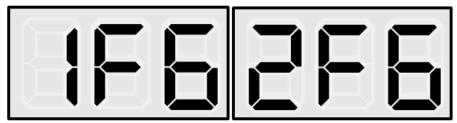
• Compressor Drive parameters match


18.3.5 Reset Method:

• Manual reset

18.3.6 Possible Causes

- Power ON immediately after power OFF
- Inverter module is damaged


18.3.7 Troubleshooting:

18.4 F6 Troubleshooting

18.4.1 Wired Controller Output:

18.4.2 Description:

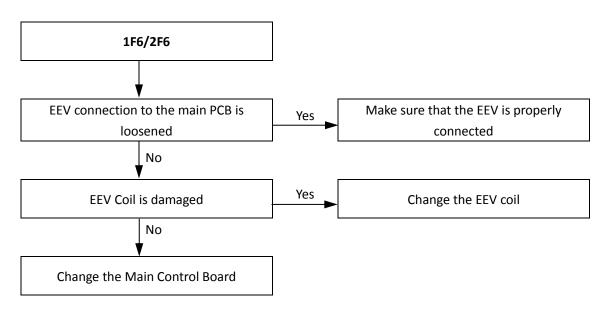
- EEV connection error
- High Temperature Hydro Module stops
- Error code is shown on the main board and wired controller

18.4.3 Trigger Condition:

Main Control Board cannot receive feedback from EEV

18.4.4 Recover Condition:

• Main Board is able to receive feedback from EEV


18.4.5 Reset Method

Manual Reset

18.4.6 Possible Causes:

- EEV is not connected to high temperature hydro module main control board.
- High Temperature Hydro Module Main Control Board is damaged

18.4.7 Troubleshooting:

18.5 E1 Troubleshooting

18.5.1 Wired Controller Output:

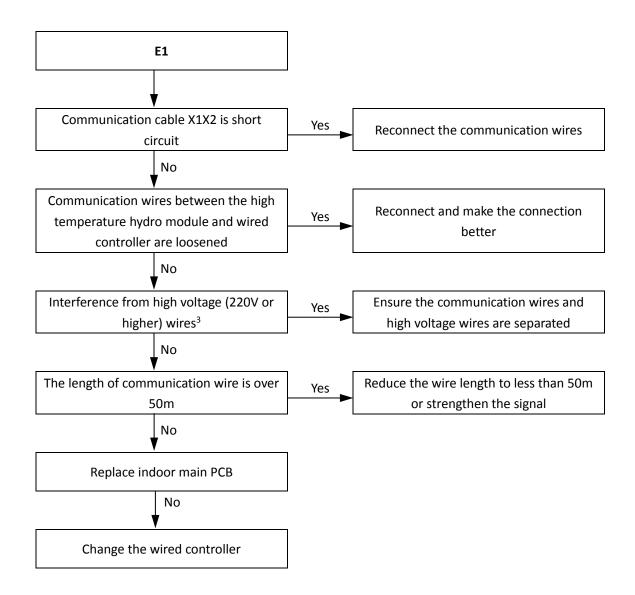
18.5.2 Description:

- Communication error between high temperature hydro module and wired controller
- High Temperature Hydro Module stops
- Error code is shown on the main control board and the wired controller

18.5.3 Possible Causes

- The connection between the high temperature hydro module and wired controller is incorrect
- X1X2 cable is incorrectly connected
- High voltage or other electromagnetic signal interference
- High Temperature hydro module main control board is damaged or wired controller is damaged

18.5.4 Trigger Condition:


• Communication between high temperature hydro module and wired controller is not normal

18.5.5 Recover Condition:

• Communication between high temperature hydro module and wired controller is normal

18.5.6 Troubleshooting:

Midea

18.6 E8 Troubleshooting

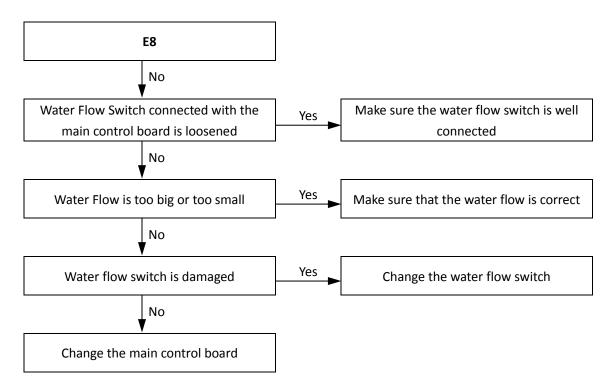
18.6.1 Wired Controller Output:

18.6.2 Description:

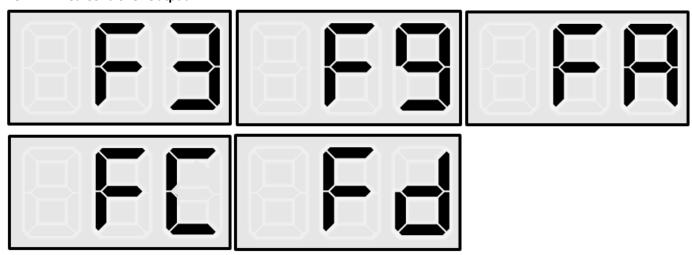
- Water Flow Error
- High Temperature Hydro Module stops
- Error code is shown on the main control board and the wired controller

18.6.3 Trigger Condition:

• High Temperature Hydro Module cannot receive feedback from water switch


18.6.4 Recover Condition:

• High Temperature Hydro Module can receive feedback from water switch


18.6.5 Possible Causes:

- Water Flow switch is not connected or open circuit
- Water flow is too small
- Water Flow switch is damaged
- Water Flow is too big

18.6.6 Troubleshooting:

Midea 18.7 F3/F9/FA/FC/Fd Troubleshooting 18.7.1 Wired Controller Output:

High Temperature Hydro Module

18.7.2 Description:

- F3 indicates water outlet temperature sensor (T_{Wout}) error.
- F9 indicates water inlet temperature sensor (T_{Win}) error.
- FA indicates suction temperature sensor (T2A) error
- FC indicates R410A circuit liquid pipe temperature sensor (T2A) error
- Fd indicates R134a circuit pipe temperature sensor (T3) error
- High Temperature Hydro Module stops
- Error code is shown on the main control board and the wired controller

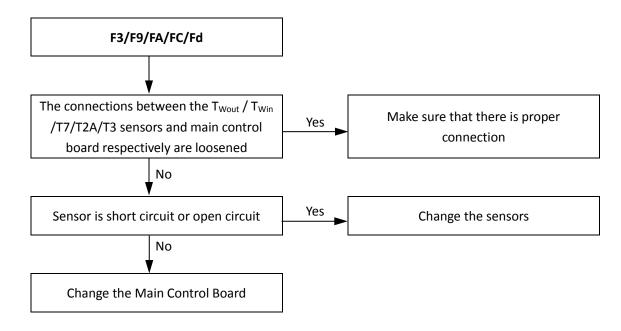
18.7.3 Trigger Condition:

• Main control Board cannot receive feedback signal from T_{Wout} / T_{Win} /T7/T2A/T3 sensors

18.7.4 Recover Condition:

• Main control Board cannot receive feedback signal from T_{Wout} / T_{Win} /T7/T2A/T3 sensors

18.7.5 Reset Method:


Auto Reset

18.7.6 Possible Causes

- Sensors are not well connected to the high temperature hydro module main control board
- High temperature hydro module main control board Is damaged.

18.7.7 Troubleshooting:

Midea 18.8 E7 Troubleshooting

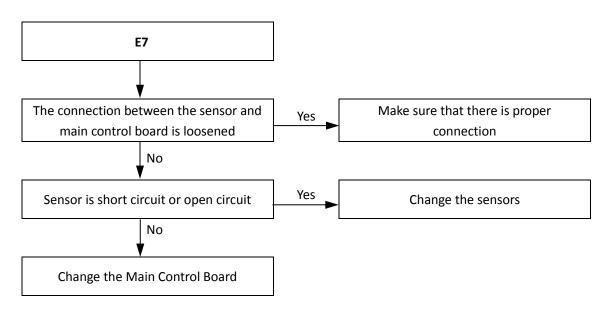
18.8.1 Wired Controller Output:

18.8.2 Description:

- Compressor discharge temperature sensor (T7C) error
- High Temperature Hydro Module stops
- Error code is shown on the main control board and the wired controller

18.8.3 Trigger Condition:

• Discharge pressure≥ 1.2 MPa and discharge temperature≤15°C and lasts for 2 minutes


18.8.4 Recover Condition:

• Discharge temperature and pressure both have normal value

18.8.5 Possible Causes

- Sensor is not connected well with the high temperature hydro module
- High Temperature Hydro Module Main control board is damaged

18.8.6 Troubleshooting:

18.9 F8 Troubleshooting

18.9.1 Wired Controller Output:

18.9.2 Description:

- Room temperature sensor error (Room Temperature sensor is inside the wired controller)
- High Temperature Hydro Module stops
- Error code is shown on the main control board and the wired controller

18.9.3 Trigger Condition:

• High Temperature Hydro Module cannot receive signal from the room temperature sensor which might be damaged.

18.9.4 Recover Condition:

• High Temperature Hydro Module can receive signal from the room temperature sensor.

18.9.5 Possible Causes:

• The wired controller PCB is broken

18.9.6 Troubleshooting:

Midea 18.10 F7 Troubleshooting

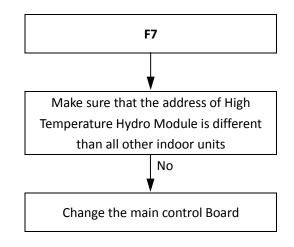
18.10.1 Wired Controller Output:

18.10.2 Description:

- High Temperature Hydro Module has same address as another indoor unit.
- High Temperature Hydro Module stops
- Error code is shown on the main control board and the wired controller

18.10.3 Trigger Condition:

• High Temperature Hydro Module has same address as another indoor unit.


18.10.4 Recover Condition:

• High Temperature Hydro Module address is different than all other indoor units.

18.10.5 Reset Method:

Auto Recovery

18.10.6 Troubleshooting:

18.11 F5 Troubleshooting (Only when DHW Mode= Yes)

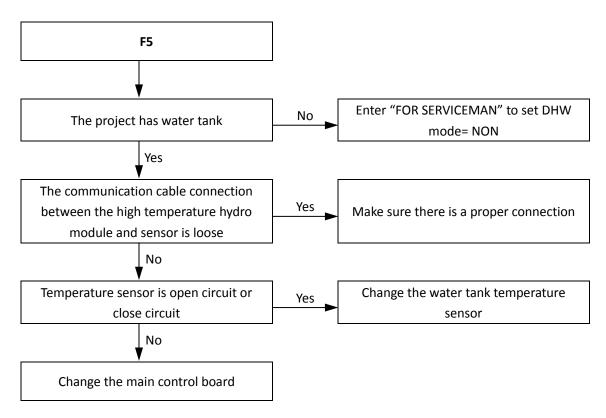
18.11.1 Wired Controller Output:

18.11.2 Description:

- Water Tank temperature sensor error
- High Temperature Hydro Module stops
- Error code is show on the main control board and the wired controller

18.11.3 Trigger Condition:

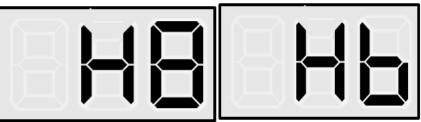
• High Temperature Hydro Module cannot receive signal from the water tank temperature sensor which might be damaged.


18.11.4 Recover Condition:

• High Temperature Hydro Module can receive signal from the water tank temperature sensor.

18.11.5 Possible Causes:

- Temperature sensor is connected improperly
- Wrong setting in job site (MENU > FOR SERVICEMAN)
- High Temperature Hydro Module main control board is broken


18.11.6 Troubleshooting:

18.12 H8/Hb Troubleshooting

18.12.1 Wired Controller Output:

18.12.2 Description:

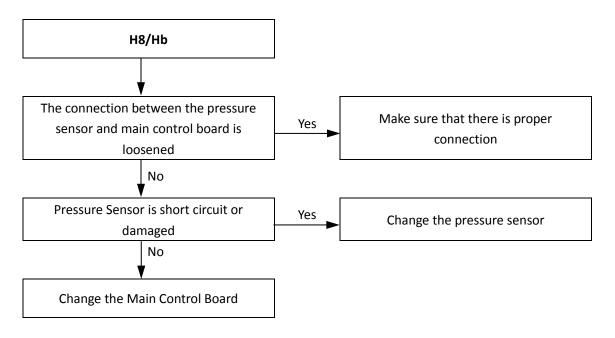
- H8 indicates high pressure sensor error
- Hb indicates low pressure sensor error
- High Temperature Hydro module stops
- Error code is shown on the main control board and wired controller

18.12.3 Trigger Condition:

• DC Voltage output by pressure sensors is less than 0.5 V or more than 4.5 V

18.12.4 Recover Condition:

• DC Voltage output by pressure sensors is more than 0.5 V or less than 4.5 V


18.12.5 Reset Method:

Auto Reset

18.12.6 Possible causes:

- Sensor is connected incorrectly or is damaged
- High Temperature Hydro Module main control board is broken

18.12.7 Troubleshooting:

18.13 E2 Troubleshooting

18.13.1 Wired Controller Output:

18.13.2 Description:

- Communication Error between high temperature hydro module and outdoor unit within 2 minutes
- High Temperature hydro module stops
- Error code is shown on the main control board and wired controller

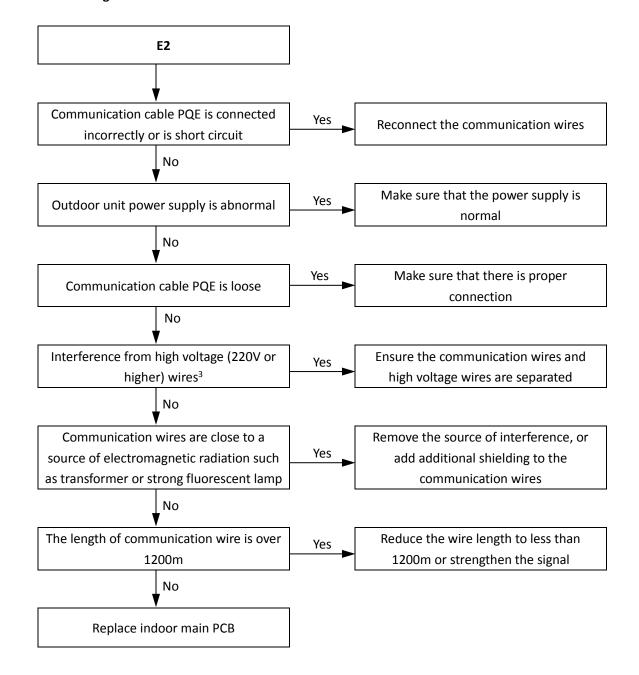
18.13.3 Trigger Condition:

• There is no communication between high temperature hydro module

18.13.4 Recover Condition:

• Once the communication between high temperature hydro module and outdoor unit is normal

18.13.5 Reset Method:


Auto reset

18.13.6 Possible Causes:

- The communication cable is not well connected between hydro box and outdoor unit
- The communication is effected by high voltage or other electromagnetic interference
- Communication cable length is too long
- Outdoor unit power input is abnormal
- Hydro box main board is broken
- Outdoor unit main board is broken

đ

18.14 H0 Troubleshooting

18.14.1 Wired Controller Output:

18.14.2 Description:

- Communication error between main control board and inverter module
- High Temperature Hydro Module stops
- Error code is shown on the main control board and wired controller

18.14.3 Trigger Condition:

• Main Control board chip cannot communicate with inverter module chip for more than 2 minutes and above

18.14.4 Recover Condition:

• Communication between Main Control Board and inverter module is recovered


18.14.5 Reset Method:

Auto Reset

18.14.6 Possible Causes:

- Communication cable between main board and inverter module is loosen
- High Temperature Hydro Module Main Board is damaged
- Inverter module is damaged

18.14.7 Troubleshooting:

18.15 EO (Only in Group Control) Troubleshooting 18.15.1 Wired Controller Output:

18.15.2 Description:

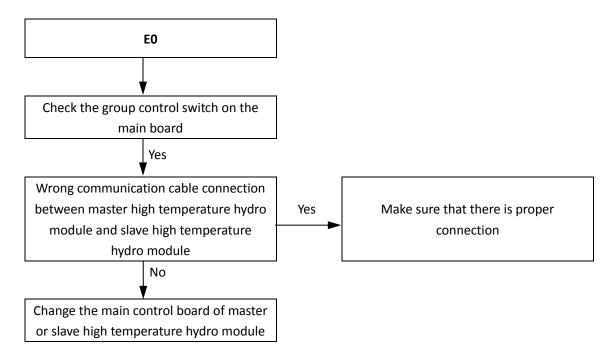
- Master hydro box and slave hydro box communication error
- Hydro box stops
- Error code is showed on main board and wired controller of master and slave hydro box

18.15.3 Trigger Condition:

• Slave High Temperature Hydro Module cannot receive signal from master high temperature hydro module for 1 minute.

18.15.4 Recover Condition:

• Slave High Temperature Hydro Module can receive the signal from master high temperature hydro module


18.15.5 Reset Method:

• Auto Reset

18.15.6 Possible Causes:

- Wrong communication cables connection between the master high temperature hydro module and slave high temperature hydro module.
- Switch is set incorrect
- D1 D2 E The wiring block is loosen
- Master or slave high temperature hydro module main control board is damaged

18.15.7 Troubleshooting:

Notes:

- 1. The master high temperature hydro module SW4 should be set as 11 and slave high temperature hydro module should be set as 10.
- 2. Communication cable D1 D2 E should be three cores shielded cable and cannot be open circuit or short circuit

18.16 Ed Troubleshooting

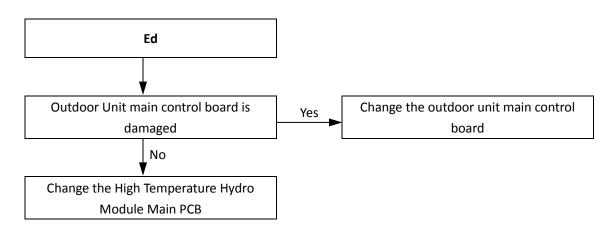
18.16.1 Wired Controller Output:

18.16.2 Description:

• Outdoor Unit Error

18.16.3 Trigger Condition:

- Outdoor Unit Error
- 18.16.4 Recover Condition:
 - Outdoor unit error disappears


18.16.5 Reset Method:

Auto Reset

18.16.6 Possible Causes:

- Outdoor unit error
- High Temperature Hydro Module Main Control Board is broken

18.16.7 Troubleshooting:

18.17 E5 Troubleshooting

18.17.1 Wired Controller Output:

18.17.2 Description:

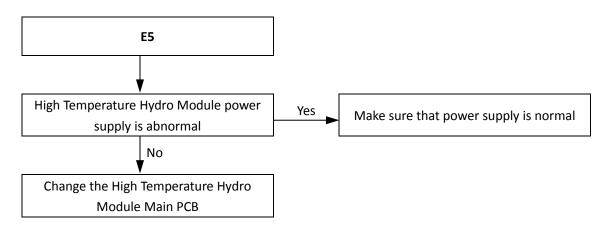
- Power Supply is abnormal
- High Temperature Hydro Module stops
- Error code is shown on main control board and wired controller

18.17.3 Trigger Condition:

• Power supply voltage< 170V or >270V

18.17.4 Recover Condition:

• Hydro box power supply \geq 170V and \leq 270V


18.17.5 Reset Method:

• Auto reset

18.17.6 Possible Causes"

- High Temperature Hydro Module power supply is abnormal
- High Temperature Hydro Module main control board is broken

18.17.7 Troubleshooting:

18.18 PP Troubleshooting

18.18.1 Wired Controller Output:

18.18.2 Description:

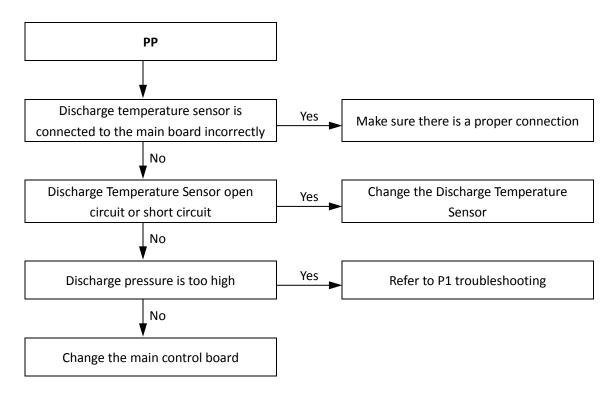
- This protection will occur when the discharge superheat for compressor is not sufficient
- High Temperature Hydro module stops
- Error code is shown on the main control board and wired controller

18.18.3 Trigger Condition:

• Discharge Superheat $\,\leqslant\,$ 6 $^\circ \! \mathbb{C}$ and lasts 90min

18.18.4 Recover Condition:

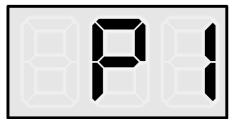
• Discharge superheat recovers to normal value


18.18.5 Reset Method:

• Auto reset

18.18.6 Possible Causes:

- Discharge temperature sensor is damaged or connected incorrectly
- Discharge pressure is too high
- High Temperature Hydro Module main control board is damaged


18.18.7 Troubleshooting:

18.19 P1 Troubleshooting

18.19.1 Wired Controller Output:

18.19.2 Description:

- High pressure protection
- High Temperature Hydro Module stops
- Error code is shown on main control board and wired controller

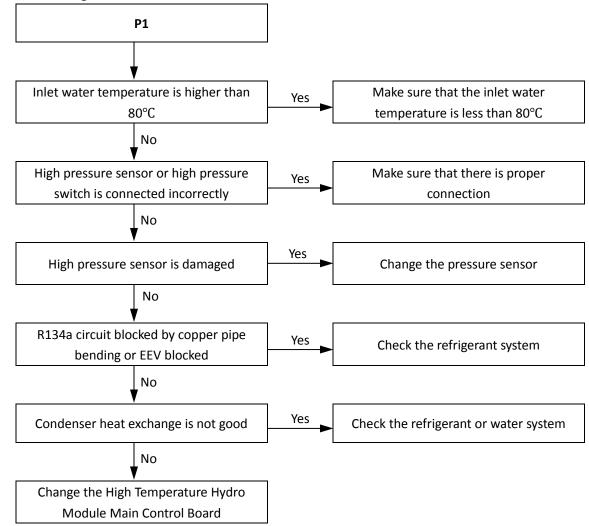
18.19.3 Trigger Condition:

• High pressure \geq 3.05MPa

18.19.4 Recover Condition:

• High pressure \leq 2.65MPa

18.19.5 Reset Method:


Auto Reset

18.19.6 Possible Causes:

- Inlet water temperature is more than 80 $^\circ\!\mathrm{C}$
- High pressure sensor or high pressure switch is connected incorrectly or is damaged
- R134a circuit is blocked
- Condenser heat exchange is not good
- Condenser plate heat exchanger is dirty and blocked
- High Temperature Hydro Module Main Control Board is broken

18.19.7 Troubleshooting:

Midea 18.20 P2/H5 Troubleshooting

18.20.1 Wired Controller Output:

18.20.2 Description:

- Low pressure protection
- High Temperature hydro module stops
- Error code is shown on the main control board and wired controller

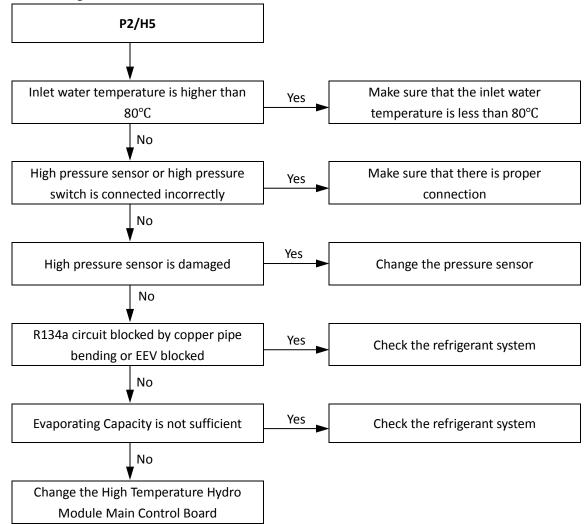
18.20.3 Trigger Condition:

- For P2 protection: suction pressure $\,\leq\,$ 0.1MPa
- For H5 protection: P2 occurs three times within 60min

18.20.4 Recover Condition:

• Suction pressure \geq 0.2MPa

18.20.5 Reset Method:


- For P2 protection: Auto reset
- For H5 protection: manual reset

18.20.6 Possible Causes:

- High Temperature Hydro Module is installed outside and the ambient temperature is lower than -5 $^\circ\!{\rm C}$
- R134a refrigerant circuit leakage
- Evaporating capacity is not sufficient
- High Temperature Hydro Module Main Control Board is damaged

18.20.7 Troubleshooting:

18.21 P3 Troubleshooting

18.21.1 Wired Controller Output:

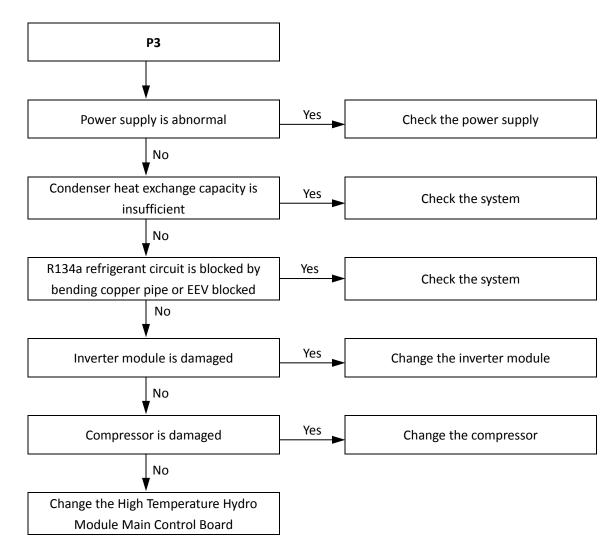
18.21.2 Description:

- Compressor current protection
- High Temperature Hydro Module stops
- Error code is shown on the Main Control Board and the wired controller

18.21.3 Trigger Condition:

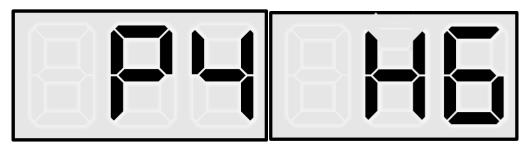
• Compressor current \geq 9.5 A.

18.21.4 Recover Condition:


• Compressor current ≤ 6.7 A.

18.21.5 Possible causes:

- Power supply is abnormal
- Condenser heat exchange capacity is insufficient
- R134a refrigerant circuit is blocked
- Inverter module is damaged
- Compressor is damaged
- Hydro module main control board is damaged



18.21.6 Troubleshooting:

Midea 18.22 P4/H6 Troubleshooting 18.22.1 Wired Controller Output:

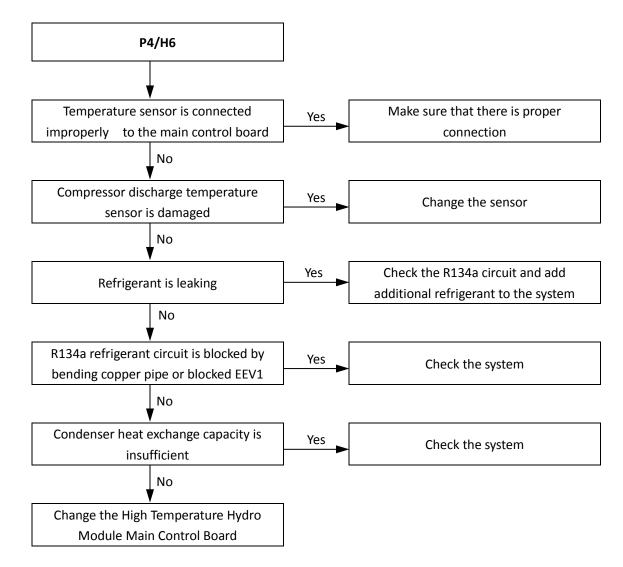
18.22.2 Description:

- High discharge temperature protection
- High Temperature Hydro module stops
- Error code is shown on main control board and wired controller

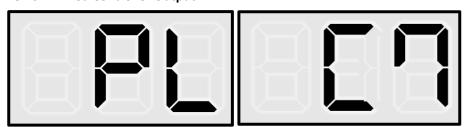
18.22.3 Trigger Condition:

- For P4 protection: Discharge temperature (T7C) $\geq 110^{\circ}$ C.
- For H6 protection: P4 protection occurs three times within 100min

18.22.4 Recover Condition:


• Discharge temperature (T7C) < 85 $^\circ C$

18.22.5 Possible Causes:


- Temperature sensor is connected improperly or damaged
- Insufficient refrigerant
- R134a refrigerant circuit blocked
- Condenser heat exchange capacity is insufficient
- High Temperature Hydro Module main control board is damaged

18.22.6 Troubleshooting:

Midea 18.23 PL/C7 Troubleshooting 18.23.1 Wired Controller Output:

18.23.2 Description:

- Inverter module high temperature protection
- High Temperature Hydro module stops
- Error code is shown on main control board and wired controller

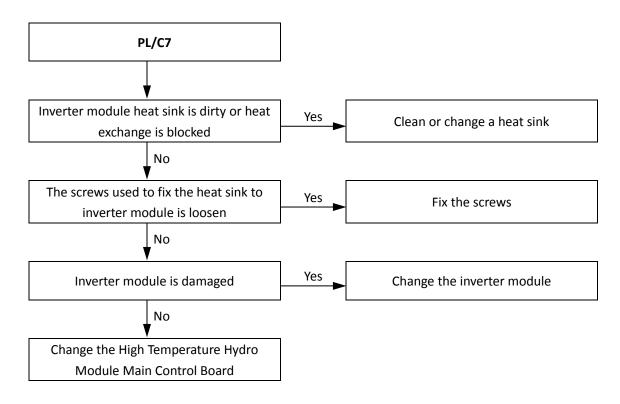
18.23.3 Trigger Condition:

- For PL protection: inverter module temperature (NTC) \geq 80 °C.
- For C7 protection: PL protection occurs three times within 100min

18.23.4 Recover Condition:

• Inverter module temperature (NTC) < 72 $^{\circ}$ C

18.23.5 Reset Method:


- For PL protection: auto reset
- For C7 protection: manual reset

18.23.6 Possible Causes:

- Fan failure.
- Heat sink is loose
- Inverter module heat sink is dirty or heat exchanger is blocked
- High Temperature Hydro Module main control board is damaged

18.23.7 Troubleshooting:

18.24 F1 Troubleshooting

18.24.1 Wired Controller Output:

18.24.2 Description:

- Compressor DC Bus voltage is too high or too low
- High Temperature Hydro module stops
- Error code is shown on main control board and wired controller

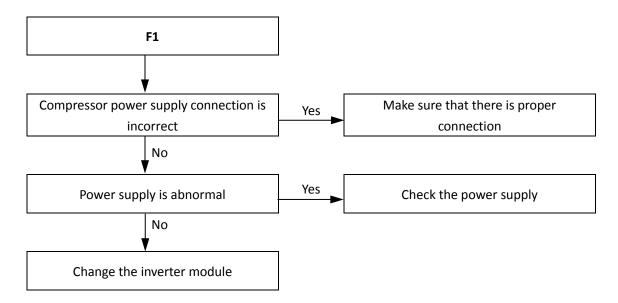
18.24.3 Trigger Condition:

• DC bus voltage < 350V or DC bus voltage > 700V continuously for 10 seconds.

18.24.4 Recover Condition:

• DC bus voltage goes back to normal

18.24.5 Reset Method:


• Restart automatically

18.24.6 Possible Causes:

- Loosened wiring of the compressor inverter module.
- Incorrect wiring of the reactor and DC bus wire.
- Abnormal power supply.
- Inverter module damaged

18.24.7 Troubleshooting:

18.25 H4 Troubleshooting

18.25.1 Wired Controller Output:

18.25.2 Description:

- Compressor inverter module protection
- High Temperature Hydro module stops
- Error code is shown on main control board and wired controller

18.25.3 Trigger Condition:

• Three times inverter module protection occurs for compressor

18.25.4 Recover Condition:

• Inverter module is normal

18.25.5 Reset Method:

Manual reset

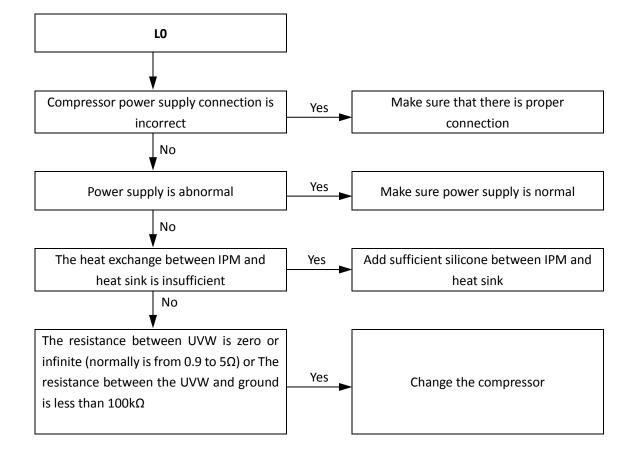
18.25.6 Possible Causes:

- Inverter module protection
- DC bus low or high voltage protection.
- MCE error.
- Zero speed protection
- Phase sequence error
- Compressor frequency has big difference than the target frequency
- High Temperature Hydro Module main control board is damaged

18.25.7 Troubleshooting:

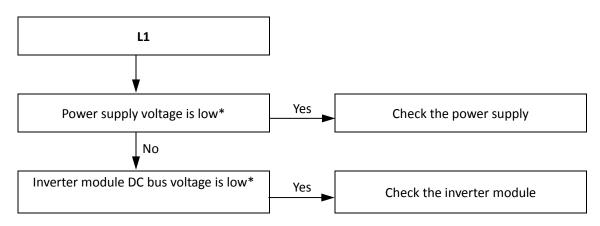
When H4 occurs, enter the check points lists by check button from 30~35, to check the last 6 error codes, the error codes are referred as below: L0, L1, L2, L4, L5, L7, L8, L9

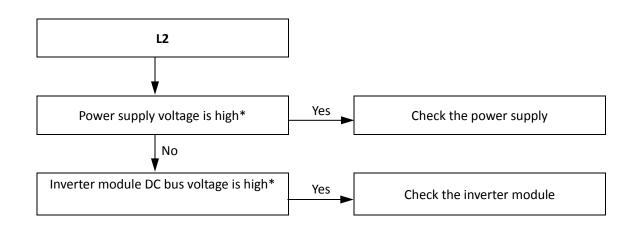
Specific error code	Content
LO	Inverter module protection
L1	DC bus low voltage protection
L2	DC bus high voltage protection
L4	MCE error
L5	Zero speed protection
L7	Phase sequence protection
L8	Compressor frequency changes and the difference is bigger than 15Hz
L9	Compressor frequency has big difference than the target frequency



L0, L1, L2, L4 errors can also be confirmed by LEDs on inverter module, when inverter module fails, LED2 is on and LED1 flashes

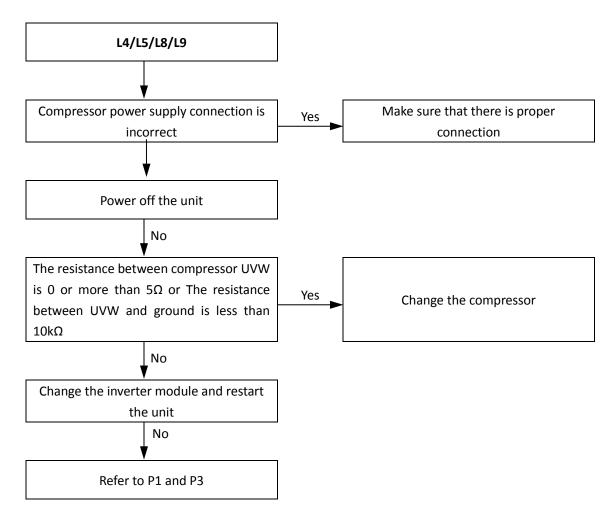
LED1 flashes situation	Error code
Flash 8 times then quit 1 second (repeat)	LO
Flash 9 times then quit 1 second (repeat)	L1
Flash 10 times then quit 1 second (repeat)	L2
Flash 11 times then quit 1 second (repeat)	L4

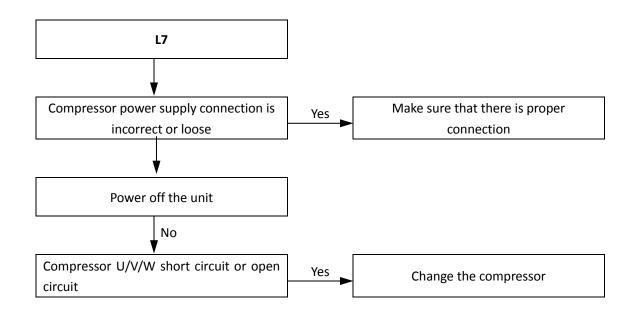



L1: DC Bus Low Voltage Protection

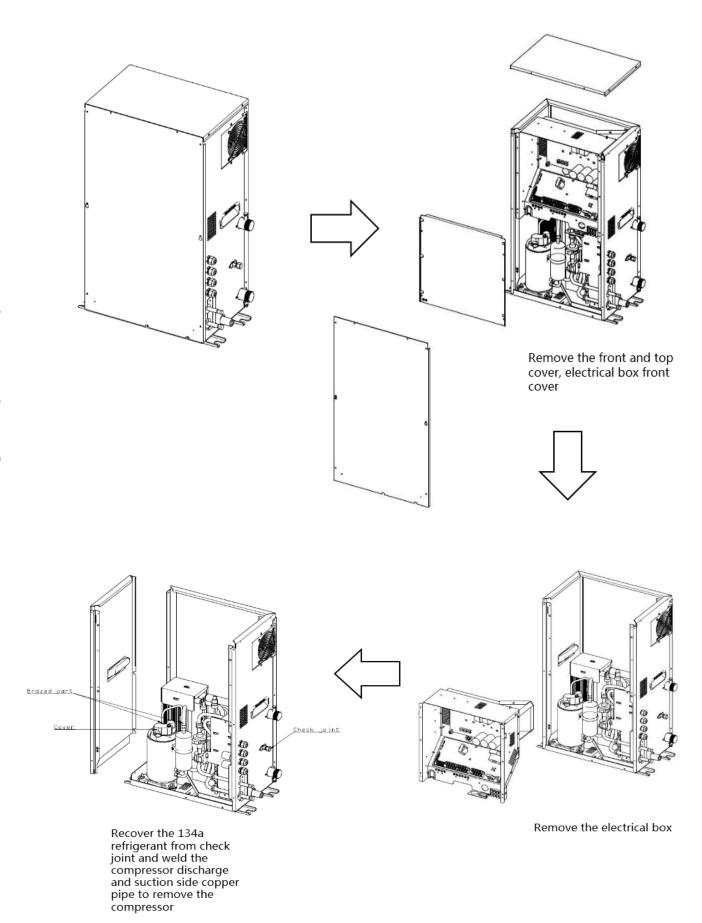
*Notes:

- 1. Power supply voltage is lower than 113AC
- 2. Inverter DC bus voltage is lower than 160V testing by CN52


L2: DC Bus High Voltage Protection


*Notes:

- 1. Power supply voltage is higher than 353AC
- 2. Inverter DC bus voltage is higher than 500V testing by CN52


L7

Service Manua

Midea

Compressor Change Process:

202003

19 Accessories

Installation Manual	1		
User Manual	1		
Connecting pipe assembly (Including safety valve)	1		Connected to the water- outlet pipe side
Water discharge hose	1		Connected to the outlet of the drainage pan
Wired controller	1		To control the unit
Water temperature sensor	1		For detecting water tank temperature
Y-shaped filter	1	H H	Connected to the water- inlet pipe side
Network Matching Wire	2		
Cable tie	6		Fixing the wire and magnetic ring
Magnetic ring	2	 ₹₿	

Ver. 2020-03

Commercial Air Conditioner Division Midea Group

Add.: Midea Headquarters Building, 6 Midea Avenue, Shunde, Foshan, Guangdong, China Postal code: 528311

Tel: +86-757-26338346; Fax: +86-757-22390205

cac.midea.com / global.midea.com

Note: Product specifications change from time to time as product improvements and developments are released and may vary from those in this document.