

Service manual R32 Multi Split

2AMXM40M4V1B9	2MXM68A2V1B(9)	3MXM40A2V1B(9)	
2AMXM50M4V1B9		3MXM52A2V1B(9)	5MXM90A2V1B(9)
	3MXM40N2V1B9	3MXM68A2V1B(9)	
2MXM40N2V1B9	3MXM40N2V1B8		ATXM20R
2MXM50N2V1B9	3MXM40N2V1B7	4MXM68N2V1B9	CTXM15R
	3MXM52N2V1B9	4MXM80N2V1B9	
2MXM40A2V1B(9)	3MXM52N2V1B8		CTXA15A
2MXM50A2V1B(9)	3MXM52N2V1B7	4MXM68A2V1B(9)	CTXA15B
	3MXM68N2V1B9	4MXM80A2V1B(9)	
2MXM68N2V1B	3AMXM52N2V1B9		CVXM20A
		5MXM90N2V1B9	

Disclaimer

The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V.. Daikin Europe N.V. has compiled the content of this publication to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Daikin Europe N.V..

Version log

Version code	Description	Date	
ESIE21-04	Document release	August 2021 October 2021	
ESIE21-04A	See below		

The following updates have been applied to the Service Manual:

- Troubleshooting: To retrieve the error via the outdoor unit added.
- Technical data Field settings: DIP switch settings added.
- Technical data Field settings: Jumper settings added.
- Technical data Field settings: To perform a wiring error check added.
- Technical data Field settings: To set cool mode lock added.

Version code	Description	Date
ESIE21-04B	See below	April 2022

The following updates have been applied to the Service Manual:

- Compressor: To perform an electrical check of the compressor updated for safety reasons.
- Outdoor unit models 2MXM40+50A2V1B added.
- Outdoor unit models 2MXM68A2V1B, 3MXM40~68A2V1B, 4MXM68+80A2V1B and 5MXM90A2V1B added.

Version code	Description	Date
ESIE21-04C	See below	October 2022

The following updates have been applied to the Service Manual:

- Error based troubleshooting U3-00 Check operation not executed or transmission error: Trigger / Effect / Reset table updated.
- Main PCB (2MXM68+3AMXM+3MXM+4MXM+5MXM) Check procedures: To perform a check of the inverter functions of the main PCB added.

Version code	Description	Date
ESIE21-04D	See below	January 2023

The following updates have been applied to the Service Manual:

- Indoor unit models CVXM-A9 added.
- Outdoor unit models 2MXM-A9, 3MXM-A9, 4MXM-A9 and 5MXM-A9 added.
- Troubleshooting: Error codes A0-00 and CH-00 added.
- Components: R32 leak detection sensor check and repair procedures added.
- Technical data Wiring diagram: Wiring diagrams for new models added.

Table of contents

1	Sate		cautions	
	1.1	Meanin	g of warnings and symbols	
	1.2	Danger	S	
	1.3	Warnin	gs	
	1.4	Caution	IS	1
	1.5	Notices		1
2	Gen	neral op	peration	1
3	Tro	ublesh	poting	1
	3.1	•	lay the error code on the user interface	
	3.2		eve the error via the outdoor unit	
	3.3		t the error code via remote controller	
	3.4		t the error code via outdoor unit	
	3.5		orm a test run	
	2.0	3.5.1	To perform a test run using the user interface	
	3.6		ased troubleshooting	
		3.6.1	A0-00 – R32 leakage detection	
		3.6.2 3.6.3	A1-00 – PCB abnormality	
		3.6.4	A6-00 – Indoor unit fan motor abnormality	
		3.6.5	AH-00 – Streamer unit abnormality	
		3.6.6	C4-00 – Heat exchanger temperature sensor problem.	
		3.6.7	C9-00 – Room thermistor abnormality	
		3.6.8	CC-00 – Humidity sensor abnormality	
		3.6.9	CH-00 – R32 leak detection sensor abnormality	
		3.6.10	E1-00 – Outdoor unit: PCB defect	
		3.6.11	E3-00 – Outdoor unit: Actuation of high pressure switch	
		3.6.12	E5-00 – Outdoor unit: Overheat of inverter compressor motor	
		3.6.13	E6-00 – Outdoor unit: Compressor startup defect	
		3.6.14	E7-00 – Outdoor unit: Malfunction of outdoor unit fan motor	
		3.6.15	E8-00 – Outdoor unit: Power input overvoltage	
		3.6.16	EA-00 – Outdoor unit: Cool/heat switchover problem	
		3.6.17	F3-00 – Outdoor unit: Malfunction of discharge pipe temperature	
		3.6.18	F6-00 – Outdoor unit: Abnormal high pressure in cooling	3
		3.6.19	F8-00 – System shutdown due to compressor internal temperature abnormality	
		3.6.20	H0-00 – Outdoor unit: Voltage/current sensor problem	
		3.6.21	H3-00 – Outdoor unit: Malfunction of high pressure switch	
		3.6.22	H6-00 – Outdoor unit: Malfunction of position detection sensor	
		3.6.23	H8-00 – Outdoor unit: Malfunction of compressor input system	
		3.6.24	H9-00 – Outdoor unit: Malfunction of outdoor air thermistor	
		3.6.25	J3-00 – Outdoor unit: Malfunction of discharge pipe thermistor	
		3.6.26	J6-00 – Outdoor unit: Malfunction of heat exchanger thermistor	
		3.6.27	J8-00 – Malfunction of refrigerant liquid thermistor	
		3.6.28	J9-00 – Malfunction of refrigerant gas thermistor	
		3.6.29	L1-00 – Outdoor unit: Main PCB abnormality	
		3.6.30	L3-00 – Outdoor unit: Electrical box temperature rise problem	
		3.6.31 3.6.32	· ·	
		3.6.32	L5-00 – Outdoor unit: Inverter instantaneous overcurrent	
		3.6.34	U0-00 – Outdoor unit: Mailunction of radiating fin temperature sensor	
		3.6.35	U2-00 – Outdoor unit: Snortage of refrigerant	
		3.6.36	U3-00 – Check operation not executed or transmission error	
		3.6.37	U4-00 – Indoor/outdoor unit communication problem	
		3.6.38	U5-00 – Communication abnormality between indoor unit main PCB and remote controller	
		3.6.39	U7-00 – Outdoor unit: Transmission malfunction between main microcomputer - inverter	
		5.5.55	microcomputer	
		3.6.40	UA-00 – Indoor unit, outdoor unit mismatching problem	
		3.6.41	UH-00 – Malfunction of system	
	3.7	Sympto	m based troubleshooting	
		3.7.1	Operation does not start	
		3.7.2	Operation sometimes stops	
		3.7.3	Some indoor units do not operate	
		3.7.4	Operation starts but the unit does not cool/heat	
		3.7.5	Operating noise and vibrations	

		3.7.6	Abnormal high pressure	52
		3.7.7	Abnormal low pressure	53
		3.7.8	Indoor fan starts operating but the compressor does not operate	54
		3.7.9	Operation starts and the unit stops immediately	55
		3.7.10	Operation stops, unit cannot start for a while	55
		3.7.11	Unit discharges white mist	
		3.7.12	Humidifying problem	
		3.7.13	Swing flap does not operate	
4	Com	ponent	ts	57
	4.1	4-way va	lve	57
		4.1.1	Checking procedures	57
		4.1.2	Repair procedures	60
	4.2	Compres	sor	63
		4.2.1	Checking procedures	63
		4.2.2	Repair procedures	69
	4.3	Compres	ssor thermal protector	75
		4.3.1	Checking procedures	75
		4.3.2	Repair procedures	
	4.4	Damper	motor	79
		4.4.1	Checking procedures	
		4.4.2	Repair procedures	
	4.5	Expansio	'n valve	
		4.5.1	Checking procedures	
		4.5.2	Repair procedures	
	4.6		nel motor	
		4.6.1	Checking procedures	
		4.6.2	Repair procedures	
	4.7		ssure switch	
	1.7	4.7.1	Checking procedures	
		4.7.2	Repair procedures	
	4.8		/ sensor	
	4.0	4.8.1	Checking procedures	
		4.8.2	Repair procedures	
	4.9		nit fan motor	
	4.5	4.9.1	Wall mounted indoor units	
		4.9.2	Floor standing indoor units	
	4.10		nit heat exchanger	
	4.10		Checking procedures	
		4.10.1	- '	
	4.44	4.10.2	Repair procedures	
	4.11		nit main PCB	
		4.11.1	Checking procedures	
	4.40	4.11.2	Repair procedures	
	4.12		nit power PCB	
		4.12.1	Checking procedures	
		4.12.2	Repair procedures	
	4.13		nt eye sensor	
		4.13.1	Checking procedures	
		4.13.2	Repair procedures	
	4.14	•	nt thermal sensor	
		4.14.1	Checking procedures	
		4.14.2	Repair procedures	
	4.15		B	
		4.15.1	2(A)MXM40+50 units	
		4.15.2	2MXM68+3(A)MXM+4MXM+5MXM units	
	4.16	Outdoor	unit fan motor	
		4.16.1	2(A)MXM40+50 units	172
		4.16.2	2MXM68+3(A)MXM+4MXM+5MXM units	
	4.17	Outdoor	unit heat exchanger	182
		4.17.1	Checking procedures	182
		4.17.2	Repair procedures	
	4.18		rk	
		4.18.1	Outdoor unit	
		4.18.2	Indoor unit	197
	4.19	R32 leak	detection sensor	211
		4.19.1	Checking procedures	211
		4.19.2	Repair procedures	213
	4.20			
		4.20.1	Checking procedures	
		4 20 2	Repair procedures	217

	4.21	Solenoid valve	218
		4.21.1 Checking procedures	218
		4.21.2 Repair procedures	221
	4.22	Streamer unit	224
		4.22.1 Checking procedures	224
		4.22.2 Repair procedures	224
	4.23	Swing flap motor	227
		4.23.1 Main swing flap motor	227
		4.23.2 Secondary swing flap motor	235
	4.24	Swing raster motor	
		4.24.1 Checking procedures	
		4.24.2 Repair procedures	
	4.25	Thermistors	
	25	4.25.1 Checking procedures	
		4.25.2 Repair procedures	
	4.26	Wifi control PCB	
	4.20	4.26.1 Checking procedures	
		4.26.2 Repair procedures	
		4.20.2 Repair procedures	200
5	Third	d party components	264
	5.1	Electrical circuit	
		5.1.1 Checking procedures	
		5.1.2 Repair procedures	266
	5.2	Refrigerant circuit	
		5.2.1 Checking procedures	
		5.2.2 Repair procedures	
	5.3	External factors	
	0.0	5.3.1 Checking procedures	
		SIST CITED IN SECOND CONTROL OF THE SECOND C	
6	Mair	intenance	279
	6.1	To clean the outdoor unit heat exchanger	279
	6.2	To clean the indoor unit heat exchanger	
	6.3	To clean the indoor unit heat exchanger in extreme condition	
	6.4	To clean the indoor unit and wireless remote control	
	6.5	To clean the front panel	281
	6.6	To clean the air filters	
	6.7	To clean the titanium apatite deodorising filter and the silver particle filter (Ag-	on filter)
	6.8	To replace the titanium apatite deodorising filter and the silver particle filter (A	g-ion filter) 286
7	Toch	hnical data	288
′	7.1		
	7.1	Detailed information setting mode	
		7.1.1 Detailed information setting mode: Indoor unit	
		7.1.2 Detailed information setting mode: Outdoor unit	
	7.0	7.1.3 Detailed information setting mode: Remote controller	
	7.2	Wiring diagram	
		7.2.1 Wiring diagram: Indoor unit	
		7.2.2 Wiring diagram: Outdoor unit	
	7.3	Piping diagram	
		7.3.1 Piping diagram: Indoor unit	
		7.3.2 Piping diagram: Outdoor unit	307
	7.4	Component overview	
		7.4.1 Component overview: Outdoor unit	
		7.4.2 Component overview: Wall mounted indoor unit	
		7.4.3 Component overview: Floor standing indoor unit	
	7.5	Field information report	
	7.6	Service tools	325
	7.7	Field settings	326
		7.7.1 Field settings: Indoor unit	326
		7.7.2 Field settings: Outdoor unit	329

1 Safety precautions

The precautions described in this document cover very important topics, follow them carefully.

All activities described in the service manual must be performed by an authorized person.

If you are NOT sure how to install, operate or service the unit, contact your dealer.

In accordance with the applicable legislation, it might be necessary to provide a logbook with the product containing at least:

information on maintenance, repair work, results of tests, stand-by periods, ...

Also, at least, following information must be provided at an accessible place at the product:

- Instructions for shutting down the system in case of an emergency
- Name and address of fire department, police and hospital
- Name, address and day and night telephone numbers for obtaining service

In Europe, EN378 provides the necessary guidance for this logbook.

1.1 Meaning of warnings and symbols

DANGER

Indicates a situation that results in death or serious injury.

DANGER: RISK OF ELECTROCUTION

Indicates a situation that could result in electrocution.

DANGER: RISK OF BURNING/SCALDING

Indicates a situation that could result in burning/scalding because of extreme hot or cold temperatures.

DANGER: RISK OF EXPLOSION

Indicates a situation that could result in explosion.

WARNING

Indicates a situation that could result in death or serious injury.

WARNING: FLAMMABLE MATERIAL

CAUTION

Indicates a situation that could result in minor or moderate injury.

NOTICE

Indicates a situation that could result in equipment or property damage.

INFORMATION

Indicates useful tips or additional information.

1.2 Dangers

DANGER: RISK OF BURNING/SCALDING

- Do NOT touch the refrigerant piping, water piping or internal parts during and immediately after operation. It could be too hot or too cold. Give it time to return to normal temperature. If you MUST touch it, wear protective gloves.
- Do NOT touch any accidental leaking refrigerant.

DANGER: RISK OF ELECTROCUTION

- Turn OFF all power supply before removing the switch box cover, connecting electrical wiring or touching electrical parts.
- Where applicable, stop the equipment's operation first and allow (refrigerant) pressure to equalize, before turning OFF the power.
- Disconnect the power supply for more than 10 minutes, and measure the voltage at the terminals of main circuit capacitors or electrical components before servicing. The voltage MUST be less than 50 V DC before you can touch electrical components. For the location of the terminals, see the wiring diagram. If the measured voltage is still higher than 50 V DC, discharge the capacitors in a safe manner by using a dedicated capacitor discharge pen to avoid possibility of
- Do NOT touch electrical components with wet hands.
- Do NOT leave the unit unattended when the service cover is removed.
- Protect electric components from getting wet while the service cover is opened.

1.3 Warnings

WARNING

Improper installation or attachment of equipment or accessories could result in electrical shock, short-circuit, leaks, fire or other damage to the equipment. ONLY use accessories, optional equipment and spare parts made or approved by Daikin unless otherwise specified.

WARNING

Do NOT apply any permanent inductive or capacitance loads to the circuit without ensuring that this will NOT exceed the permissible voltage and current permitted for the equipment in use.

If a fault exists that could compromise safety, Do NOT connect electrical supply to the circuit until it is satisfactorily dealt with. If the fault CANNOT be corrected immediately but it is necessary to continue operation, an adequate temporary solution MUST be used. This MUST be reported to the owner of the equipment so all parties are advised.

Initial safety checks MUST include that:

- capacitors are discharged: this MUST be done in a safe manner to avoid possibility of sparking,
- NO live electrical components and wiring are exposed while charging, recovering or purging the system.

WARNING

Make sure that the refrigerating piping and components are installed in a position where they are unlikely to be exposed to any corroding substance.

WARNING

Make sure installation, testing and applied materials comply with applicable legislation (on top of the instructions described in the Daikin documentation).

WARNING

Make sure the work site environment is clean and safe to work in. Beware of spilled fluids, like water, oil or other substances.

Protect bystanders from injury and property from possible damage cause by service works

WARNING

If any work is to be conducted on the refrigerating equipment or any associated parts which involves brazing, an appropriate dry powder or ${\rm CO_2}$ fire extinguisher MUST be present.

When charging the unit, an appropriate dry powder or ${\rm CO_2}$ fire extinguisher MUST be present.

WARNING

No person carrying out work in relation to a refrigerating system which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, MUST be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks. "No Smoking" signs MUST be displayed.

WARNING

Tear apart and throw away plastic packaging bags so that nobody, especially NOT children, can play with them. **Possible consequence:** suffocation.

WARNING

During tests, NEVER pressurise the product with a pressure higher than the maximum allowable pressure (as indicated on the nameplate of the unit).

Make sure the total refrigerant charge is in accordance with the room size in which the unit is installed: please consult the detailed instructions on charging and allowed room sizes in the installation manual.

WARNING

- NEVER mix different refrigerants or allow air to enter the refrigerant system.
- NEVER charge recovered refrigerant from another unit. Use recovered refrigerant only on the same unit where it was recovered from, or have it recycled at a certified facility.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

WARNING

ALWAYS recover the refrigerant. Do NOT release them directly into the environment. Use a vacuum pump to evacuate the installation.

WARNING

Removal of refrigerant MUST be according to the following:

When breaking into the refrigerant circuit to make repairs, be sure to remove the refrigerant from the system first. The refrigerant charge MUST be recovered into the correct recovery cylinders.

WARNING

Take sufficient precautions in case of refrigerant leakage. If refrigerant gas leaks, ventilate the area immediately. Possible risks:

- Excessive refrigerant concentrations in a closed room can lead to oxygen deficiency.
- Toxic gas might be produced if refrigerant gas comes into contact with fire.

WARNING

- Under no circumstances, potential sources of ignition SHALL be used in the searching for or detection of refrigerant leaks. A halide torch (or any other detector using a naked flame) MUST NOT be used.
- Ensure that the detector is NOT a potential source of ignition and is suitable for the detection of R32.
- If a leak is suspected, all naked flames MUST be removed or extinguished.
- Leak detection fluids are also suitable for use with most refrigerants but the use of detergents containing chlorine MUST be avoided as the chlorine may react with the refrigerant and corrode the copper pipe-work.
- If a leakage of refrigerant is found which requires brazing, all of the refrigerant MUST be recovered from the system, or isolated (by means of shut-off valves) in a part of the system remote from the leak.
- Only use the electronic leak tester for R32. The old flame leak tester CANNOT be used on a system with HFC refrigerant because there is no chlorine component in the refrigerant. In case of R32 (HFC) refrigerant, any flame in contact with (leaking) refrigerant is extremely dangerous.

- In order to prevent oxygen deficiency and R32 combustion, keep the room well-ventilated for a healthy work environment. Do NOT work in a confined space. If a refrigerant leak is detected in a confined room or an inadequately ventilated location, do NOT start the work until the area has been ventilated appropriately.
- If the work area is NOT located in the open air, make sure the work area is adequately ventilated before breaking into the system or conducting any brazing. The ventilation MUST continue to operate during the period that the work is carried out to prevent accumulation of refrigerant in the work area. The ventilation should safely disperse any released refrigerant and preferably ventilate to the open air.

WARNING

Ensure that no external live wiring is exposed while charging, recovering or purging the system. Sparks created when live wiring is short-circuited might ignite the refrigerant if it is leaked into the room while charging, recovering or purging the system.

WARNING

Ensure that the unit is properly earthed prior to conducting maintenance or service or charging the system with refrigerant. Do NOT earth the unit to a utility pipe, surge absorber, or telephone earth. Incomplete earthing may cause electrical shock.

WARNING

- ONLY use copper wires.
- Make sure the field wiring complies with the applicable legislation.
- All field wiring MUST be performed in accordance with the wiring diagram supplied with the product.
- NEVER squeeze bundled cables and make sure they do NOT come in contact with the piping and sharp edges. Make sure no external pressure is applied to the terminal connections.
- Make sure to install earth wiring. Do NOT earth the unit to a utility pipe, surge absorber, or telephone earth. Incomplete earth may cause electrical shock.
- Make sure to use a dedicated power circuit. NEVER use a power supply shared by another appliance.
- Make sure to install the required fuses or circuit breakers.
- Make sure to install an earth leakage protector. Failure to do so may cause electrical shock or fire.
- When installing the earth leakage protector, make sure it is compatible with the inverter (resistant to high frequency electric noise) to avoid unnecessary opening of the earth leakage protector.

WARNING

Make sure the markings on the unit remain visible and legible after inspection or repair work. Markings and signs that are illegible shall be corrected.

WARNING

- After finishing the electrical work, confirm that each electrical component and terminal inside the electrical components box is connected securely.
- Make sure all covers are closed before starting up the unit.

ESIE21-04D - 2023.02

- The area MUST be checked with an appropriate refrigerant detector prior to and during work, to ensure the technician is aware of potentially toxic or flammable atmospheres.
- Ensure that the leak detection equipment being used is suitable for use with all applicable refrigerants, i.e. non-sparking, adequately sealed or intrinsically safe.
- Prior to and during work, the area MUST be checked with an appropriate refrigerant detector capable of detecting R32 refrigerant, to ensure a work environment free of refrigerant.

WARNING

- Equipment MUST be labelled stating that it has been de-commissioned and emptied of refrigerant.
- The label MUST be dated and signed.
- For appliances containing flammable refrigerants, ensure that there are labels on the equipment stating the equipment contains flammable refrigerant.

WARNING

Before carrying out refrigerant recovery procedure, it is essential that the technician is completely familiar with the equipment and all its details. It is recommended good practice that all refrigerants are recovered safely. Prior to the task being carried out, an oil and refrigerant sample MUST be taken in case analysis is required prior to reuse of recovered refrigerant. It is essential that electrical power is available before the task is commenced.

- Become familiar with the equipment and its operation.
- Isolate system electrically.
- Ensure that mechanical handling equipment is available, if required, for handling refrigerant cylinders.
- Ensure that all personal protective equipment is available and is used correctly.
- Ensure that the recovery process is supervised at all times by a competent person.
- Ensure that recovery equipment and cylinders are conform to the appropriate
- If a vacuum is NOT possible, make a manifold so that refrigerant can be removed from various parts of the system.
- Make sure that cylinder is situated on the scales before recovery takes place.
- Start the recovery machine and operate in accordance with instructions.
- Do NOT overfill cylinders (no more than 60% volume liquid charge).
- Do NOT exceed the maximum working pressure of the cylinder, NOT even temporarily.
- When the cylinders have been filled correctly and the process completed, make sure that the cylinders and the equipment are removed from site promptly and all isolation valves on the equipment are closed.
- Recovered refrigerant MUST NOT be charged into another refrigerating system unless it has been cleaned and checked.

WARNING

All maintenance staff and others working in the local area MUST be instructed on the nature of work being carried out.

Provide adequate measures to prevent that the unit can be used as a shelter by small animals. Small animals that make contact with electrical parts can cause malfunctions, smoke or fire.

WARNING

Prior to start working on systems containing flammable refrigerant, safety checks are necessary to ensure that the risk of ignition is minimised. Therefore, some instructions should be followed.

Please refer to the service manual for more information.

WARNING

- In case refrigerant recovery is required, use the appropriate service ports.
- If applicable for your unit, use the appropriate recovery mode or field setting to smoothly recover the refrigerant.
- ONLY use leak free hoses, couplings and manifolds in good working condition.
- ONLY use recovery cylinders designated and labelled to recover R32. Note that thread connection to the cylinder is counter clock.
- Always use a calibrated scale in good condition prior and during the refrigerant recovery process to determine the weight of the recovered refrigerant into the external refrigerant cylinder.
- Read the operation instructions of the recovery unit prior to connecting the recovery unit. Verify the recovery unit is suited for R32 refrigerant, check that it is in good working condition, has been properly maintained and that any associated electrical components are sealed to prevent ignition in the event of a refrigerant release. Consult manufacturer if in doubt.
- Do NOT overfill the refrigerant cylinder, confirm with the supplier of the refrigerant cylinder about maximum filling ratio if NOT mentioned on the refrigerant cylinder itself. Generally the maximum filling amount should be limited to 60% of the maximum volume of the cylinder.
- Do NOT exceed the maximum working pressure of the refrigerant cylinder, NOT even temporarily.
- When the cylinders have been filled correctly, and the refrigerant recovery process is completed, make sure that the cylinders and the equipment are removed from site promptly and all stop valves on the equipment are (kept) closed.
- The recovered refrigerant MUST be returned to the refrigerant supplier in the correct recovery cylinder, and the relevant waste transfer note arranged. Do NOT mix refrigerants in recovery units and especially NOT in cylinders.
- Recovered refrigerant MUST NOT be charged into another refrigerant system unless it has been cleaned and checked

WARNING

If compressor is to be removed, ensure that the compressor has been evacuated to an acceptable level to make sure that flammable refrigerant does NOT remain within the lubricant. The evacuation process MUST be carried out prior to returning the compressor to the supplier. During the refrigerant recovery, confirm that the crankcase heater of the compressor body is energized to accelerate this process. When oil is drained from a system, it MUST be carried out safely.

WARNING

Make sure the ventilation machinery and outlets are operating adequately and are NOT obstructed.

1.4 Cautions

CAUTION

Wear adequate personal protective equipment (protective gloves, safety glasses,...) when installing, maintaining or servicing the system.

CAUTION

To avoid injury, do NOT touch the air inlet or aluminium fins of the unit.

CAUTION

- Do NOT place any objects or equipment on top of the unit.
- Do NOT sit, climb or stand on the unit.

1.5 Notices

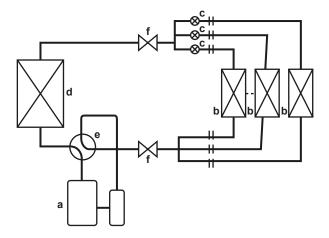
NOTICE

- Make sure water quality complies with EU directive 2020/2184.
- Check the system for leaks after each repair/modification of the water side.
- Check drainage system(s) after repairs.
- Be careful when tilting units as water may leak.

NOTICE

Make sure refrigerant piping installation complies with applicable legislation. In Europe, EN378 is the applicable standard.

NOTICE


Make sure the field piping and connections are NOT subjected to stress.

2 General operation

The Multi Split is typically used for cooling or heating in residential applications.

The medium which is used to transfer the heat from inside to outside or vice versa, is refrigerant R32.

- **a** Compressor
- **b** Indoor heat exchanger (from 2 to 5)
- c Expansion valve (from 2 to 5)
- **d** Outdoor heat exchanger
- e 4-way valve
- f Stop valves

In case of cooling, the compressor builds up pressure and hence the temperature of the refrigerant is increased. The hot refrigerant is carried to the outdoor heat exchanger which will cool down the hot refrigerant by the fan.

The temperature of the refrigerant is further decreased by expansion through the expansion valve(s). The cold refrigerant flows into the indoor unit(s) and is capable of taking up heat again. This is enabled by a fan that sucks indoor air over the heat exchanger(s).

This refrigerant is then transported to the compressor where temperature is built up again and the cycle restarts.

For heating, it's just the other way round.

Each indoor unit has its own dedicated expansion valve to control the amount of refrigerant flowing into their heat exchangers. This is defined by their own parameters (setpoint, air temperature, ...).

ESIE21-04D - 2023.02

3 Troubleshooting

3.1 To display the error code on the user interface

1 Hold Cancel for about 5 seconds.

Result: $\mathbf{\Omega}$ blinks in the temperature display section.

2 Press Cancel repeatedly until a continuous beep is heard.

Result: The code is now displayed on the display.

INFORMATION

- A short beep and 2 consecutive beeps indicate non-corresponding codes.
- To cancel the code display, hold Cancel for 5 seconds. The code will also disappear from the display if the button is NOT pressed within 1 minute.

3.2 To retrieve the error via the outdoor unit

INFORMATION

ONLY for 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units.

Symbol	LED is
\\\	On
•	Off
- (Flashing

Red LED ^(a)			Diagnosis			
1 2 3 4 5		5				
•	•	•	•	•	Normal.	
					Check the indoor unit.	
\	•	\rightarrow	\(\Delta\)	•	High-pressure protector worked or freeze-up in operating unit, or stand-by unit.	
\$	•	\(\phi\)	•	•	Overload relay worked or high discharge pipe temperature.	
•	\(\phi\)	\rightarrow	•	•	Faulty compressor start.	
•	\$	•	\$	•	Input over-current.	
\$	\$	•	•	•	Thermistor or CT abnormality.	
\(\phi\)	\(\Delta\)	•	\$	•	High temperature switch-box.	
•	•	•	\$	•	High temperature at inverter circuit heat sink.	
•	•	\$	•	•	Output over-current.	
•	•	\(\phi\)	\(\phi\)	•	Refrigerant shortage.	
\$	•	•	\(\Phi\)	•	Low voltage to main circuit or over voltage to main circuit.	

 $^{^{\}mbox{\scriptsize (a)}}$ The number of LEDs displayed depends on the number of rooms.

Green LED-A	Diagnosis
*	Normal.
	 Check the indoor unit.
‡	Turn the power OFF and back ON, and check the LED within approximately 3 minutes. If the LED is ON again, the outdoor unit PCB is faulty.
•	Power supply fault.

3.3 To reset the error code via remote controller

Prerequisite: Problem is solved.

1 Press the ON/OFF button of the remote controller to reset the error.

To clear the error codes A0-00 and CH-00

1 On the home screen, (strongly) press Mode and simultaneously.

Result: 5¢ is displayed on the remote controller.

2 Press Mode to enter the setting.

Result: 🗯 is displayed on the remote controller.

- **3** Press (b) for more than 2 seconds.
- 4 Power OFF and ON the unit.

Result: Error code has been cleared.

ESIE21-04D - 2023.02

3.4 To reset the error code via outdoor unit

Prerequisite: Problem is solved.

1 Perform a power reset to reset the error code.

3.5 To perform a test run

2MXM40+50, 2AMXM40+50 units

Prerequisite: Power supply MUST be in the specified range.

Prerequisite: Test run operation may be done in cooling or heating mode.

Prerequisite: Test run should be done in accordance with the operation manual of the indoor unit to make sure that all functions and parts are working properly.

- In cooling mode, select the lowest programmable temperature. In heating mode, select the highest programmable temperature.
- 2 Measure the temperature at the indoor unit inlet and outlet after running the unit for about 20 minutes. The difference should be more than 8°C (cooling) or 15°C (heating).
- 3 First check operation of each unit individually, then check simultaneous operation of all indoor units. Check both heating and cooling operation.
- When test run is finished, set the temperature to a normal level. In cooling mode: 26~28°C, in heating mode: 20~24°C.

INFORMATION

- Test run can be disabled if necessary.
- After the unit is turned OFF, it cannot be started again for 3 minutes.
- During cooling operation, frost may form on the gas stop valve or other parts. This is normal.

INFORMATION

- Even if the unit is turned OFF, it consumes electricity.
- When the power turns back on after a power break, the previously selected mode will be resumed.

2MXM68, 3MXM, 3AMXM, 4MXM, 5MXM units

Prerequisite: Power supply MUST be in the specified range.

Prerequisite: Test run operation may be done in cooling or heating mode.

Prerequisite: Test run should be done in accordance with the operation manual of the indoor unit to make sure that all functions and parts are working properly.

- 1 In cooling mode, select the lowest programmable temperature. In heating mode, select the highest programmable temperature.
- 2 Measure the temperature at the indoor unit inlet and outlet after running the unit for about 20 minutes. The difference should be more than 8°C (cooling) or 20°C (heating).
- **3** First check operation of each unit individually, then check simultaneous operation of all indoor units. Check both heating and cooling operation.
- When test run is finished, set the temperature to a normal level. In cooling mode: 26~28°C, in heating mode: 20~24°C.

INFORMATION

- Test run can be disabled if necessary.
- After the unit is turned OFF, it cannot be started again for 3 minutes.
- When the test run is started in the heat mode right after turning the safety breaker on, in some cases no air will be output for about 15 minutes in order to protect the unit.
- Operate only air conditioner during test run. Do NOT operate the Hybrid for Multi or the DHW generator during test run.
- During cooling operation, frost may form on the gas stop valve or other parts.
 This is normal

INFORMATION

- Even if the unit is turned OFF, it consumes electricity.
- When the power turns back on after a power break, the previously selected mode will be resumed.

3.5.1 To perform a test run using the user interface

Floor standing units

- **1** Press (b) to switch the system on.
- 2 Press the middle of free and Mode simultaneously.
- 3 Press twice to choose 7 and confirm selection by pressing Mode.

Result: 7 on the display indicates that the test run is selected. Test run operation will stop automatically after about 30 minutes.

4 To stop operation sooner, press the ON/OFF button.

Wall mounted units

- **1** Press to switch the system on.
- 2 Press and Mode simultaneously.
- 3 Press Temp, select Tand press Mode.

Result: Test run operation will stop automatically after about 30 minutes.

4 To stop operation sooner, press .

3.6 Error based troubleshooting

INFORMATION

Depending on which room (remote controller) raises the error, check the components of the refrigerant circuit of the specific room.

ESIE21-04D - 2023.02

3.6.1 A0-00 – R32 leakage detection

Trigger	Effect	Reset	
Detection of R32 refrigerant gas leakage.	Outdoor unit stops operating. Indoor fan starts in fan ONLY. Blinking LED indoor unit.	After 320 seconds of NO gas detection, auto reset: A0 error disappears. Unit starts working again.	
Detection of R32 refrigerant gas leakage 4 times within 1 hour.	Outdoor unit stops operating. Indoor fan starts in fan ONLY.	Manual reset, see "3.3 To reset the error code via remote controller" [▶ 17].	
Detection of R32 refrigerant gas leakage continuously for 10 minutes.	Blinking LED indoor unit. Abnormality notice tone ^(a) .		

⁽a) To stop the abnormality notice tone (continuous beep) in case of refrigerant leakage detection, press remote controller "cancel" button for 5 seconds.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

- Stop the outdoor unit operation for at least 30 minutes.
- 2 Using a leak tester, check the faulty indoor unit for refrigerant leak. If refrigerant leak is found, repair the leak.
- If NO refrigerant leak was found, perform as described below.
- Perform a check of the R32 leak detection sensor of the faulty indoor unit. See "4.19 R32 leak detection sensor" [▶ 211].

Possible cause: Faulty R32 leak detection sensor.

5 Check if any external (foreign) vapor substance influenced the functioning of the R32 leak detection sensor. Repair as needed.

Possible cause: External (foreign) vapor substance reacted with R32 leak detection sensor.

Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.2 A1-00 – PCB abnormality

Trigger	Effect	Reset
The system CANNOT set the internal settings.	Unit will stop operating.	Power reset via outdoor unit.

ESIE21-04D - 2023.02

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

- 1 Check for improper combination of the indoor unit and the outdoor unit. See the combination table in the Databook for more information.
- **2** Perform a check of the power supply, connections, wiring,... between the outdoor unit and the indoor unit. See "5.1 Electrical circuit" [▶ 264].

Possible cause: Faulty wiring between the outdoor unit and the indoor unit.

3 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.
- **4** Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.3 A5-00 – Outdoor unit: High pressure peak cut / freeze protection problem

Trigger	Effect	Reset
During cooling operation, indoor heat exchanger temperature is below 0°C (freeze-up protection control).	Unit will stop operating.	Automatic reset when temperature is within range.
During heating operation, indoor heat exchanger temperature is above 65°C (heating peak-cut control).		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check for objects near the indoor unit that may block the airflow. See "5.3 External factors" [▶ 277].

Possible cause: Airflow of the indoor unit is blocked.

2 Clean the air filter of the indoor unit(s). See "6 Maintenance" [▶ 279].

Possible cause: Faulty or dirty air filter.

3 Clean the indoor unit heat exchanger. See "6 Maintenance" [▶ 279].

Possible cause: Dirty indoor unit heat exchanger.

4 Perform a check of the indoor unit heat exchanger thermistor. See "4.25 Thermistors" [> 244].

Possible cause: Faulty indoor unit heat exchanger thermistor.

5 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.4 A6-00 – Indoor unit fan motor abnormality

Trigger	Effect	Reset
The rotation speed of the fan motor is NOT detected while the output voltage to the fan is at its maximum.		Power reset via the outdoor unit.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

2 Perform a check of the indoor unit fan motor. See "4.9 Indoor unit fan motor" [▶ 104].

Possible cause: Faulty indoor unit fan motor.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.5 AH-00 – Streamer unit abnormality

Trigger	Effect	Reset
Streamer unit starts electric discharge when operation starts after approximately 90 to 180 seconds.	Unit will NOT stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the streamer unit. See "4.22 Streamer unit" [▶ 224].

Possible cause: Faulty streamer unit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.6 C4-00 – Heat exchanger temperature sensor problem

Trigger	Effect	Reset
Refrigerant liquid	Unit will stop operating.	Power reset.
thermistor detects an		
open or short circuit		
during compressor		
operation.		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the indoor unit heat exchanger thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty indoor unit heat exchanger thermistor.

2 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.7 C9-00 – Room thermistor abnormality

Trigger	Effect	Reset
Resistance value is out of	Unit will stop operating.	Automatic reset when
range. Temperature		resistance is within range.
measured <-43.6°C or		
>90°C.		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the indoor unit air (room) thermistor. See "4.25 Thermistors" [> 244].

Possible cause: Faulty indoor unit air (room) thermistor.

2 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.8 CC-00 – Humidity sensor abnormality

Trigger	Effect	Reset
 Disconnected sensor 	Unit will stop operating.	Manual reset via user
Broken sensor		interface.
 Communication error 		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the humidity sensor. See "4.8 Humidity sensor" [▶ 100]. Possible cause: Faulty humidity sensor.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.9 CH-00 – R32 leak detection sensor abnormality

Trigger	Effect	Reset
The R32 sensor NOT connected to indoor unit main PCB.	Indoor unit will stop operating.	Manual reset, see "3.3 To reset the error code via remote controller" [> 17].
R32 sensor PCB failure		
The R32 sensor detected operation of 10 years or more.		
The R32 sensor detected operation of 9.5 years or more.	Indoor unit continues operating. Blinking LED at indoor unit.	Not possible to reset.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check wiring (insertion and continuity) on connector S903 on the indoor unit display PCB and connectors CN1-2 on the PCB of the R32 leak detection sensor. See "7.2 Wiring diagram" [▶ 289].

Possible cause: Faulty or damaged wiring between indoor unit display PCB and R32 leak detection sensor.

2 Check the operation time of the R32 leak detection sensor of the faulty indoor unit. If operation time is 10 years, replace the R32 leak detection sensor. See "4.19 R32 leak detection sensor" [▶ 211]. If operation time approaches 10 years, order a new R32 leak detection sensor and replace at the next maintenance interval.

Possible cause: R32 leak detection sensor operation time reached or approaches maximum value (10 years).

3 Perform a check of the R32 leak detection sensor of the faulty indoor unit. See "4.19 R32 leak detection sensor" [▶ 211].

Possible cause: Faulty R32 leak detection sensor.

4 Check if any external (foreign) vapor substance influenced the functioning of the R32 leak detection sensor. Repair as needed.

Possible cause: External (foreign) vapor substance reacted with R32 leak detection sensor.

5 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.10 E1-00 – Outdoor unit: PCB defect

Trigger	Effect	Reset
Main PCB detects that EEPROM is abnormal.	Unit will stop operating.	Manual reset via user interface.
		Power reset.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [> 152].

Possible cause: Faulty main PCB.

2 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [▶ 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

3 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

Perform a check of the compressor. See "4.2 Compressor" [> 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

5 Wait until the rectifier voltage is below 10 V DC.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

6 Check that the thermal interface grease is applied properly on the (PCB or refrigerant piping) contact surface of the heat sink. Adjust if needed.

Possible cause: Thermal interface grease NOT applied properly on the heat sink.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.11 E3-00 – Outdoor unit: Actuation of high pressure switch

Trigger	Effect	Reset
Discharge pressure too	Unit will stop operating.	Automatic reset when
high.		discharge pressure drops
		below reset value of
		pressure switch.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

2 Perform a check of the high pressure switch. See "4.7 High pressure switch" [▶ 97].

Possible cause: Faulty high pressure switch.

3 Perform a check of the main PCB. See "4.15 Main PCB" [152].

Possible cause: Faulty main PCB.

4 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [> 266].

Possible cause: Refrigerant overcharge.

5 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

- **6** Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].
 - Possible cause: Clogged refrigerant circuit.
- **7** Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.12 E5-00 – Outdoor unit: Overheat of inverter compressor motor

Trigger	Effect	Reset
Compressor overload is detected.	operating.	Automatic reset if the unit runs without warning for 60 seconds.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

2 Perform a check of the discharge pipe thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty discharge pipe thermistor or connector fault.

3 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

4 Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

5 Perform a check of the expansion valve. See "4.5 Expansion valve" [▶ 83].

Possible cause: Faulty expansion valve.

6 Perform a check of the 4-way valve. See "4.1 4-way valve" [▶ 57].

Possible cause: Faulty 4-way valve.

7 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

8 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Refrigerant shortage.

Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [> 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

10 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Clogged refrigerant circuit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.13 E6-00 – Outdoor unit: Compressor startup defect

Trigger	Effect	Reset
The motor rotor does NOT rotate when the compressor is energized.	Unit will NOT stop operating.	Automatic reset after a continuous run for 10 minutes.
	Unit will stop operating	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

Perform check of the discharge thermistor. See а pipe "4.25 Thermistors" [▶ 244].

Possible cause: Faulty discharge pipe thermistor or connector fault.

2 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

- **3** Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].
 - Possible cause: Clogged refrigerant circuit.
- 4 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [> 266].

Possible cause: Refrigerant overcharge or shortage.

5 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

- **6** Perform a check of the compressor. See "4.2 Compressor" [▶ 63].
 - Possible cause: Faulty compressor or miswiring of the compressor power supply cable.
- **7** Perform a check of the main PCB. See "4.15 Main PCB" [> 152].

Possible cause: Faulty main PCB.

8 Perform a check of the 4-way valve. See "4.1 4-way valve" [▶ 57].

Possible cause: Faulty 4-way valve.

9 Perform a check of the expansion valve. See "4.5 Expansion valve" [▶ 83].

Possible cause: Faulty expansion valve.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.14 E7-00 – Outdoor unit: Malfunction of outdoor unit fan motor

Trigger	Effect	Reset
Fan does NOT start 15~30 seconds after ON signal.	Unit will stop operating.	Manual reset via user interface.
It can occur that the error code is triggered when the fan motor is running caused by a faulty rotating sensor signal.		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

2 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.15 E8-00 – Outdoor unit: Power input overvoltage

Trigger	Effect	Reset
Compressor running current exceeds standard value for 2.5 seconds.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check the outdoor temperature. See "5.3 External factors" [▶ 277].

Possible cause: Outdoor temperature is out of operation range.

2 Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

3 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

4 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.16 EA-00 – Outdoor unit: Cool/heat switchover problem

Trigger	Effect	Reset
Room thermistor is NOT functioning within operation range.	Unit will NOT stop operating.	Automatic reset after a continuous operation for some time.
	If the error occurs too soon: unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the 4-way valve. See "4.1 4-way valve" [▶ 57].

Possible cause: Faulty 4-way valve.

2 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

3 Perform a check of the indoor unit air (room) thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty indoor unit air (room) thermistor.

Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

5 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

6 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Clogged refrigerant circuit.

7 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [> 266].

Possible cause: Refrigerant overcharge or shortage.

8 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

9 Check for improper combination of hybrid unit and outdoor unit. See the combination table in the Databook for more information.

Possible cause: Wrong combination of hybrid unit and outdoor unit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.17 F3-00 – Outdoor unit: Malfunction of discharge pipe temperature

Trigger	Effect	Reset
Discharge pipe thermistor detects a too high temperature.	Unit will NOT stop operating.	Automatic reset when temperature drops normal level.
	If the error re-occurs too soon: unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

2 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Refrigerant overcharge or shortage.

3 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

4 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Clogged refrigerant circuit.

5 Perform a check of the 4-way valve. See "4.1 4-way valve" [▶ 57].

Possible cause: Faulty 4-way valve.

6 Perform a check of the expansion valve. See "4.5 Expansion valve" [▶ 83].

Possible cause: Faulty expansion valve.

7 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

Perform check of all refrigerant side thermistors. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty refrigerant side thermistor(s).

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.18 F6-00 – Outdoor unit: Abnormal high pressure in cooling

Trigger	Effect	Reset
Outdoor heat exchanger thermistor measures a	Unit will NOT stop operating.	Automatic reset when temperature drops.
too high temperature.		' '

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Clean the outdoor heat exchanger. See "6 Maintenance" [▶ 279].

Possible cause: Dirty outdoor heat exchanger.

2 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

3 Perform check of the heat exchanger thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty heat exchanger thermistor.

4 Perform a check of the expansion valve. See "4.5 Expansion valve" [▶ 83].

Possible cause: Faulty expansion valve.

5 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

6 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [> 266].

Possible cause: Refrigerant overcharge.

7 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

8 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Clogged refrigerant circuit.

Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [> 172].

Possible cause: Faulty outdoor unit fan motor.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.19 F8-00 – System shutdown due to compressor internal temperature abnormality

Trigger	Effect	Reset
Temperature discharge pipe thermistor exceeds the determined limit.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

2 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Refrigerant overcharge.

3 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

- 4 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].
 Possible cause: Clogged refrigerant circuit.
- **5** Perform a check of the discharge pipe thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty discharge pipe thermistor or connector fault.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.20 H0-00 – Outdoor unit: Voltage/current sensor problem

Trigger	Effect	Reset
Compressor voltage (DC) is out of range before start-up.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

2 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

3 Wait until the rectifier voltage is below 10 V DC.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

4 Check that the thermal interface grease is applied properly on the (PCB or refrigerant piping) contact surface of the heat sink. Adjust if needed.

Possible cause: Thermal interface grease NOT applied properly on the heat sink.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.21 H3-00 – Outdoor unit: Malfunction of high pressure switch

Trigger	Effect	Reset
High pressure switch is activated when compressor is off.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the high pressure switch. See "4.7 High pressure switch" [▶ 97].

Possible cause: Faulty high pressure switch.

2 Perform a check of the main PCB. See "4.15 Main PCB" [152].

Possible cause: Faulty main PCB.

3 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.22 H6-00 – Outdoor unit: Malfunction of position detection sensor

Trigger	Effect	Reset
Compressor fails to start within 15 seconds after the compressor run	Unit will NOT stop operating.	Automatic reset after a continuous operation of 10 minutes.
command signal is sent.	If the error re-occurs within 8 minutes: unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

2 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

3 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

4 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Clogged refrigerant circuit.

5 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Refrigerant overcharge or shortage.

6 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

7 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.23 H8-00 – Outdoor unit: Malfunction of compressor input system

Trigger	Effect	Reset
DC voltage or current sensor abnormality based on the compressor	Unit will NOT stop operating.	Automatic reset when compressor runs normally for 60 minutes.
running frequency and the input current.	If the error re-occurs too soon: unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [> 152].

Possible cause: Faulty main PCB.

2 Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

3 Perform a check of the reactor. See "4.20 Reactor" [▶ 214].

Possible cause: Faulty reactor.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.24 H9-00 – Outdoor unit: Malfunction of outdoor air thermistor

Trigger	Effect	Reset
Outdoor air thermistor input is out of range.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the outdoor air thermistor. See "4.25 Thermistors" [> 244].

Possible cause: Faulty ambient air thermistor.

2 Perform a check of the main PCB. See "4.15 Main PCB" [> 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.25 J3-00 – Outdoor unit: Malfunction of discharge pipe thermistor

Trigger	Effect	Reset
Discharge pipe thermistor input is out of range.		Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the discharge pipe thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty discharge pipe thermistor or connector fault.

2 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.26 J6-00 – Outdoor unit: Malfunction of heat exchanger thermistor

Trigger	Effect	Reset
	Unit will stop operating.	Manual reset via user
thermistor input is out of		interface.
range.		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the heat exchanger thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty heat exchanger thermistor.

2 Perform a check of the main PCB. See "4.15 Main PCB" [> 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.27 J8-00 – Malfunction of refrigerant liquid thermistor

Trigger	Effect	Reset
Refrigerant liquid	Unit will stop operating.	Automatic reset.
thermistor detects an abnormal value (open or		
short circuit)		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

Perform check of the refrigerant liquid thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty refrigerant liquid thermistor.

2 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.28 J9-00 – Malfunction of refrigerant gas thermistor

Trigger	Effect	Reset
Refrigerant gas thermistor	Unit will stop operating.	Manual reset via user
input is out of range.		interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

Perform check the refrigerant gas thermistor. See "4.25 Thermistors" [▶ 244].

Possible cause: Faulty refrigerant gas thermistor or connector fault.

2 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

38

3.6.29 L1-00 – Outdoor unit: Main PCB abnormality

Trigger	Effect	Reset
Outdoor unit main PCB detects current/voltage	Unit will stop operating.	Manual reset via user interface.
errors.		Power reset.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

2 Perform a check of the compressor. See "4.2 Compressor" [> 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

3 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

4 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [▶ 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.30 L3-00 – Outdoor unit: Electrical box temperature rise problem

Trigger	Effect	Reset
Switch box temperature is	Unit will stop operating.	Manual reset via remote
too high.		controller.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

2 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

3 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.
- **4** Clean the outdoor heat exchanger. See "6 Maintenance" [▶ 279].

Possible cause: Dirty outdoor heat exchanger.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.31 L4-00 – Outdoor unit: Malfunction of inverter radiating fin temperature rise

Trigger	Effect	Reset
Radiating fin thermistor measures a too high temperature.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

2 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.
- **3** Perform a check of the main PCB. See "4.15 Main PCB" [> 152].

Possible cause: Faulty main PCB.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

4 Wait until the rectifier voltage is below 10 V DC.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

5 Check that the thermal interface grease is applied properly on the (PCB or refrigerant piping) contact surface of the heat sink. Adjust if needed.

Possible cause: Thermal interface grease NOT applied properly on the heat sink

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.32 L5-00 – Outdoor unit: Inverter instantaneous overcurrent

Trigger	Effect	Reset
An output overcurrent is detected by checking the current that flows in the inverter DC section.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

- 2 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266].
 Possible cause: Clogged refrigerant circuit.
- 3 Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Refrigerant overcharge or shortage.

4 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

5 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

6 Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

7 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

8 Wait until the rectifier voltage is below 10 V DC.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Check that the thermal interface grease is applied properly on the (PCB or refrigerant piping) contact surface of the heat sink. Adjust if needed.

Possible cause: Thermal interface grease NOT applied properly on the heat

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.33 P4-00 – Outdoor unit: Malfunction of radiating fin temperature sensor

Trigger	Effect	Reset
	Unit will stop operating.	Manual reset via user
input is out of range.		interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.34 U0-00 – Outdoor unit: Shortage of refrigerant

Trigger	Effect	Reset
Refrigerant shortage	Unit will stop operating.	Automatic reset.
detected.		Power reset via outdoor unit.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

check of **1** Perform all refrigerant side thermistors. See "4.25 Thermistors" [> 244].

Possible cause: Faulty refrigerant side thermistor(s).

2 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

42

- 3 Check if the refrigerant circuit is clogged. See "5.2 Refrigerant circuit" [▶ 266]. Possible cause: Clogged refrigerant circuit.
- **4** Check if the refrigerant circuit is correctly charged. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Refrigerant shortage.

5 Check for the presence of non-condensables and/or humidity in the refrigerant circuit. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Non-condensables and/or humidity in the refrigerant circuit.

6 Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

7 Perform a check of the expansion valve. See "4.5 Expansion valve" [▶ 83].
Possible cause: Faulty expansion valve.

8 Check for leaks in the refrigerant circuit. Look for oil traces on the unit(s). Check the brazing points on the field piping. Perform a pressure test, see "5.2 Refrigerant circuit" [> 266].

Possible cause: Leak in the refrigerant circuit.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.35 U2-00 – Outdoor unit: Defect of power supply voltage

Trigger	Effect	Reset
There is no zero-cross detected in approximately 10 seconds (indoor unit PCB).	Unit will stop operating.	Power reset.
Abnormal voltage drop is detected by the DC voltage detection circuit.	Unit will stop operating.	Automatic restart after compressor stand-by of 3 minutes.
Abnormal voltage rise is detected by the overvoltage detection circuit.	Unit will stop operating.	Automatic restart after compressor stand-by of 3 minutes.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [> 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.
- **2** Perform a check of the compressor. See "4.2 Compressor" [▶ 63].

Possible cause: Faulty compressor or miswiring of the compressor power supply cable.

3 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

4 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

5 Wait until the compressor restarts.

Possible cause:

- Momentary drop of voltage,
- Momentary power failure.
- 6 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

7 Perform a check of the indoor unit power PCB. See "4.12 Indoor unit power PCB" [▶ 131].

Possible cause: Faulty indoor unit power PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.36 U3-00 – Check operation not executed or transmission error

Trigger	Effect	Reset
Failed wiring error check operation. See installation manual for more information about the wiring error check operation.	Unit will NOT start operating.	Shortly push SW3 (wiring error check switch).
Wiring issue between indoor unit and outdoor unit.		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check the voltage at the primary side of the safety breaker.

Possible cause: Incorrect voltage at primary side of safety breaker.

44

2 Check that the outdoor temperature is >5°C. The wiring error check function does NOT work if outside temperature is ≤5°C.

Possible cause: Outdoor temperature ≤5°C.

3 Check that all stop valves of the refrigerant circuit are open. See "5.2 Refrigerant circuit" [▶ 266].

Possible cause: Closed stop valve in the refrigerant circuit.

4 Check that the piping and wiring connections of the system are correctly installed. See "7.3 Piping diagram" [▶ 304] and "7.2 Wiring diagram" [▶ 289].

Possible cause: Piping and/or wiring mismatch.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.37 U4-00 – Indoor/outdoor unit communication problem

Trigger	Effect	Reset
Communication failure between outdoor and indoor unit.	Unit will stop operating.	Power reset via outdoor unit.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check if the power supply is compliant with the regulations. See "5.1 Electrical circuit" [▶ 264].

Possible cause:

- Faulty or disturbance of the power supply (power supply MUST be within range of nominal operating voltage ±4%),
- Power drop,
- Short circuit.
- 2 Perform a check of the power supply, connections, wiring,... between the outdoor unit and the indoor unit. See "5.1 Electrical circuit" [▶ 264].

Possible cause: Faulty wiring between the outdoor unit and the indoor unit.

3 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

4 Perform a check of the outdoor unit fan motor. See "4.16 Outdoor unit fan motor" [▶ 172].

Possible cause: Faulty outdoor unit fan motor.

5 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

6 Perform a check of the indoor unit power PCB. See "4.12 Indoor unit power PCB" [▶ 131].

Possible cause: Faulty indoor unit power PCB.

ONLY for 2MXM40+50, 2AMXM40+50, 3MXM40+52 and 3AMXM52 outdoor units: Check that "standby electricity saving mode" is OFF. See installation

Possible cause: "Standby electricity saving mode" is ON, while an indoor unit that is NOT compatible with this mode is connected. Compatible indoor units: FTXM, FTXP, FTXJ and FVXM.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

8 Wait until the rectifier voltage is below 10 V DC.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Check that the thermal interface grease is applied properly on the (PCB or refrigerant piping) contact surface of the heat sink. Adjust if needed.

Possible cause: Thermal interface grease NOT applied properly on the heat sink.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.38 U5-00 – Communication abnormality between indoor unit main PCB and remote controller

Trigger	Effect	Reset
Transmission abnormality	Unit will stop operating.	Auto reset.
between indoor unit main		
PCB and remote		
controller.		

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Check for improper combination of the indoor unit and the remote controller. See Business Portal for more information.

Possible cause: Improper combination of indoor unit and remote controller.

2 Perform a check of the remote controller. See documentation of the specific remote controller for more information.

Possible cause: Faulty remote controller.

3 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

46

3.6.39 U7-00 – Outdoor unit: Transmission malfunction between main microcomputer - inverter microcomputer

Trigger	Effect	Reset
Communication abnormality between main and inverter microcomputer.	Unit will stop operating.	Manual reset via user interface.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

1 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.40 UA-00 – Indoor unit, outdoor unit mismatching problem

Trigger	Effect	Reset
Signal transmission between outdoor and indoor unit abnormality. Improper combination of outdoor and indoor unit.	Unit will stop operating.	Power reset via outdoor unit.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

- 1 Check for improper combination of the indoor unit and the outdoor unit. See the combination table in the Databook for more information.
- **2** Perform a check of the power supply, connections, wiring,... between the outdoor unit and the indoor unit. See "5.1 Electrical circuit" [▶ 264].

Possible cause: Faulty wiring between the outdoor unit and the indoor unit.

3 Perform a check of the main PCB. See "4.15 Main PCB" [▶ 152].

Possible cause: Faulty main PCB.

4 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

5 Perform a check of the indoor unit power PCB. See "4.12 Indoor unit power PCB" [▶ 131].

Possible cause: Faulty indoor unit power PCB.

ONLY for 2MXM40+50, 2AMXM40+50, 3MXM40+52 and 3AMXM52 outdoor units: Check that "standby electricity saving mode" is OFF. See installation manual.

Possible cause: "Standby electricity saving mode" is ON, while an indoor unit that is NOT compatible with this mode is connected. Compatible indoor units: FTXM, FTXP, FTXJ and FVXM.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.6.41 UH-00 – Malfunction of system

Trigger	Effect	Reset
In case of connection with multi indoor units, when error UA, U0 or A5 occurs in other indoor unit.	Unit will stop operating.	Auto reset.

To solve the error code

INFORMATION

It is recommended to perform the checks in the listed order.

- Check all other indoor units for the following error codes. If found, see "3.6 Error based troubleshooting" [▶ 19] to solve the specific error.
 - A5-00 Outdoor unit: High pressure peak cut / freeze protection problem
 - U0-00 Outdoor unit: Shortage of refrigerant
 - UA-00 Indoor unit, outdoor unit mismatching problem

Possible cause: Error on other indoor unit.

2 Perform a check of the indoor unit main PCB. See "4.11 Indoor unit main PCB" [▶ 121].

Possible cause: Faulty indoor unit main PCB.

INFORMATION

If all procedures listed above have been performed and the problem is still present, contact the helpdesk.

3.7 Symptom based troubleshooting

3.7.1 Operation does not start

Check	Detail
When the operation lamp is off, there is	• Is the power supply breaker ON?
a power failure.	Do other electrical appliances work?
Check the power supply.	• Is the rated voltage (± 10%) supplied?
	• Check the insulation of the electric system.
Check the type of the indoor unit.	Is the indoor unit type compatible with the outdoor unit?
Check the transmission between indoor and outdoor.	Connection wires.
Check the outdoor temperature.	 Heating operation cannot be used when the outdoor temperature is 18°C WB or higher.
	 Cooling operation cannot be used when the outdoor temperature is below -10°C DB.
When the operation lamp blinks, there may be an error code, activating the protection device.	See "3.6 Error based troubleshooting" [▶ 19].
Diagnose with remote controller indication.	
Check the remote controller addresses.	Are the address settings for the remote controller and indoor unit correct?
Check the operation circuit.	Is the thermal fuse blown.
	• Are wire size and wire connections OK?.
Check fan motor.	Is the magnetic switch defective?
	Is the overcurrent relay defective?
Check compressor.	• Is the contact defective?
	• Is the protection thermostat defective?
	• Is the compressor itself defective?
Check remote controller.	Are the batteries LOW?
	Are there incorrect settings?

3.7.2 Operation sometimes stops

Check	Detail
When the operation lamp is off, there is	• A power failure of 2 to 10 cycles stops
a power failure.	air conditioner operation.
Check the power supply.	

Check	Detail
Check the outdoor temperature.	 Heating operation cannot be used when the outdoor temperature is 18°C WB or higher.
	■ Cooling operation cannot be used when the outdoor temperature is below –10°C DB.
When the operation lamp blinks, there may be an error code, activating the protection device.	See "3.6 Error based troubleshooting" [▶ 19].
Diagnose with remote controller indication.	

3.7.3 Some indoor units do not operate

Check	Detail
Check the type of the indoor units.	Is the indoor unit type compatible with the outdoor unit?
Check if the operation modes of the indoor units have conflict.	 Heating mode CANNOT be together with FAN* or Dry or Cooling mode. And vice versa.
	 Other combinations of modes CAN be together. (e.g. Cooling and FAN, Cooling and Dry).

3.7.4 Operation starts but the unit does not cool/heat

Check	Detail
Check the electrical power supply.	Is the rated voltage (± 10%) supplied?
Check for piping and wiring errors in the connection between the indoor units and outdoor unit.	Refrigerant piping is too long; is the length within specified range?Field piping is defective; is there a refrigerant leakage?
	 Is there capacity loss over the condensor, saturation pressure or sound because of air mixed in to the circuit?
	Incorrect size of connection wiring.
	 Is there a cross wiring? (e.g. Indoor unit A piping is with indoor unit C wiring).
When the operation lamp blinks, there may be a thermistor detection error code, activating the protection device.	Check the resistance of all thermistors.
	Check the connection of all thermistors.
	• Is there a malfunction in the room temperature thermistor or outdoor temperature thermistor?

Check	Detail
Check for faulty operation of the electronic expansion valve.	Set the unit to cooling operation, and check the temperature of the liquid pipe to see if the electronic expansion valve works.
Diagnose by service port pressure and operating current.	Check for refrigerant shortage.
Check if the set temperature is appropriate.	thermostat "off" can be activated, set the appropriate temperature.
Check the type of the indoor and outdoor units.	Is the indoor unit type compatible with the outdoor unit?
Check the air filter.	Is the air filter clean?
Check the installation conditions (specified in the installation manual).	 Does the installed model has sufficient capacity? Is there a short circuit air flow caused by insufficient installation space?
Check the outdoor temperature.	 Heating operation cannot be used when the outdoor temperature is 18°C WB or higher.
	 Cooling operation cannot be used when the outdoor temperature is below –10°C DB.

3.7.5 Operating noise and vibrations

Check	Detail
Check the installation conditions (specified in the installation manual).	Use general vibration prevention where needed.
	• If the mounting wall is too thin, you must use cushion material or rubber, or change the installation place.
	• Refrigerant piping is too short; is the length within specified range?
	• Due to bad installation or general conditions there may be deformation of the unit.
	 Are all the screws installed and tightened properly?
	 Is all piping secured, fixed and supported by inserting a cushion material where needed?
	• Install piping weights or correct by hand if any piping is in contact with other parts.
	• Is the fan in contact with other parts? If so separate the fan from the other parts.

Check	Detail
Check refrigerant charge.	 Is the unit filled with the specified refrigerant volume?
	• Is there a flushing noise, due to refrigerant shortage?
	• Is there air in the system?
Check the expansion valve.	If a passing sound is heard from the pressure reducing valve, apply sound insulation sheets of putty to reduce the valve noise.

3.7.6 Abnormal high pressure

In cooling mode

Check item	Detail
Does the outdoor unit fan run normally?	Visual inspection
Is the outdoor unit heat exchanger clogged?	Visual inspection
Is there clogging before or after the expansion valve (capillary)?	• Check if there is a temperature difference before and after expansion valve (capillary).
	 Check if the main valve unit of expansion valve operates (by noise, vibration).
Is the High Pressure Switch normal?	Check continuity by using a tester.
Is the outdoor unit installed under such conditions that short circuit easily occurs?	Visual inspection
Is the piping length ≤5 m?	Visual inspection
Does air enter the refrigerant system?	Conduct refrigerant collection and vacuum drying, and then add proper amount refrigerant.
Is the refrigerant overcharged?	Conduct refrigerant collection and vacuum drying, and then add proper amount refrigerant.

In heating mode

Check item	Detail
Does the indoor unit fan run normally?	Visual inspection
Is the indoor unit heat exchanger clogged?	Visual inspection
Is the indoor unit installed under such conditions that short circuit easily occurs?	Visual inspection

Check item	Detail
Is there clogging before or after the expansion valve (capillary)?	• Check if there is a temperature difference before and after expansion valve (capillary).
	 Check if the main valve unit of expansion valve operates (by noise, vibration).
Is the High Presure Switch normal?	Check continuity by using a tester.
Is the minimum piping length respected?	Visual inspection
Does air enter the refrigerant system?	Conduct refrigerant collection and vacuum drying, and then add proper amount refrigerant.
Is the refrigerant overcharged?	Conduct refrigerant collection and vacuum drying, and then add proper amount refrigerant.

3.7.7 Abnormal low pressure

Abnormally low pressure level is mostly caused by the evaporator side. The following contents are provided based on field checking of service engineer. Further, the number is listed in the order of degree of influence.

In cooling mode

Check item	Detail
Does the indoor unit fan run normally?	Visual inspection
Is the indoor unit heat exchanger clogged?	Visual inspection
Is the indoor unit installed under such conditions that short circuit easily occurs?	Visual inspection
Is there clogging before or after the expansion valve (capillary)?	 Check if there is a temperature difference before and after expansion valve (capillary). Check if the main valve unit of
	expansion valve operates (by noise, vibration).
Is the check valve (if applicable) clogged?	Check if there is a temperature difference before and after check valve. If YES, the check valve is clogged.
Is there a shortage of refrigerant?	Conduct refrigerant collection and vacuum drying, and then add proper amount refrigerant.

In heating mode

Check item	Detail
Does the outdoor unit fan run normally?	Visual inspection
mormany:	

Check item	Detail
Is the outdoor unit heat exchanger clogged?	Visual inspection
Is there clogging before or after the expansion valve (capillary)?	• Check if there is a temperature difference before and after expansion valve (capillary).
	 Check if the main valve unit of expansion valve operates (by noise, vibration).
Is the check valve (if applicable) clogged?	Check if there is a temperature difference before and after check valve. If YES, the check valve is clogged.
Is the outdoor unit installed under such conditions that short circuit easily occurs?	Visual inspection
Is there a shortage of refrigerant?	Conduct refrigerant collection and vacuum drying, and then add proper amount refrigerant.

3.7.8 Indoor fan starts operating but the compressor does not operate

Check	Detail
Check the power supply.	• Is the rated voltage (± 10%) supplied?
	Check the insulation of the electric system.
Check the thermistor.	Connection with PCB.
	Output.
Check PCB's HAP LED's (if applicable).	• if green led on the control PCB is not blinking, then the microprocessor is not working.
	• if the green led on the main PCB is not blinking, then the microprocessor is not working.
	• if first green LED on the service monitor PCB is not blinking, then the microprocessor is not working.
Check the magnetic switch.	
Check the power transistor.	
Check the compressor.	Defective contact.
	Defective compressor.
	Defective protection thermostat.
Check the outdoor temperature.	• Heating operation cannot be used when the outdoor temperature is 18°C WB or higher.
	 Cooling operation cannot be used when the outdoor temperature is below –10°C DB.

3.7.9 Operation starts and the unit stops immediately

Check	Detail
Check the power supply.	• Is the capacity of the safety breaker as specified?
	• If the earth leakage breaker is too sensitive, then increase the set value of the earth leakage current of the breaker or replace the breaker.
	Is the circuit exclusive?
	• Is the rated voltage (± 10%) supplied?
	• Is there an incorrect size of connection wiring?
Check the refrigerant charge.	Overcharge.
	Air in the system.
	Water in the system.
Check the fan motor.	Check the magnetic switch.
	Check the overcurrent relay.
Check the four way valve coil.	Is there a short circuit?
	• Is the four way valve coil broken?
Check the outdoor PCB.	Is there a short circuit?
	• Is the outdoor PCB broken?
Check the heat exchanger.	Soiled heat exchanger, obstruction.
Check the airflow.	Soiled air filter, obstruction, installation space.

3.7.10 Operation stops, unit cannot start for a while

Check	Detail
Check if standby function is activated.	Compressor delay timer is counting.
	Wait for minimum 3 minutes.
Check the power supply.	• Low voltage?
	• Is the size of the power cable sufficient?
Check the refrigerant charge.	Incorrect charge.
	Air in the system.
	Water in the system.
	Obstruction in the system.
Check compressor.	Overcurrent relay.
	Protection thermostat.

3.7.11 Unit discharges white mist

Check	Detail
Check installation conditions.	Humid site.
	Dirty site.
	Oil mist.
Check installation conditions.	Dirty heat exchanger.
Air filter.	Dirty air filter.
Fan motor.	Defective fan motor.

3.7.12 Humidifying problem

Check	Detail
Check the installation conditions.	Insufficient heat insulation of duct.
	Ceiling too high for the floor size.
	 Short circuit air flow caused by insufficient installation space.
Check the installation.	• Is the proper humidification hose, specified by Daikin, used?
	Breakage or blockage of the humidification hose.
	• Is the length of the humidification hose correct (within specified length)?
	• Is setting correct for the humidification hose length?
Check the outdoor temperature and humidity.	In case of extremely low outdoor temperature or extremely low humidity, the air outlet must be set at the height of 1,8m.
Check the temperature setting.	Is the set temperature too high?
Check the ventilation timing.	Is the room ventilated too often?
Check the air filter.	Is the air filter clogged?

3.7.13 Swing flap does not operate

Symptom	Check	Detail
Swing flap does not operate	Check swing flap motor	Some functions can force the swing flap into a fixed position, although swing mode is selected on the remote controller. This is not a unit error, but a control function to prevent draft to the customer.
	Check indoor unit PCB	Connector connection

4 Components

CAUTION

When replacing a component ALWAYS make sure the correct spare part for your unit is installed.

4.1 4-way valve

4.1.1 Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the 4-way valve

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

1 Remove the required plate work, see "4.18 Plate work" [▶ 185].

DANGER: RISK OF BURNING/SCALDING

The coil gets hot while energized. Wait for it to cool down.

- **2** Verify that the screw is firmly fixing the coil to the valve body.
- **3** Check if any damage or burst is present.

Is the 4-way valve coil firmly fixed and not visually damaged?	Action
Yes	Perform an electrical check of the 4-way valve, see "4.1.1 Checking procedures" [> 57].
No	Fix or replace the 4-way valve coil, see "4.1.2 Repair procedures" [> 60].

To perform an electrical check of the 4-way valve

- 1 First perform a mechanical check of the 4-way valve, see "4.1.1 Checking procedures" [▶ 57].
- 2 Unplug the 4-way valve connector from the appropriate PCB.
- **3** Measure the resistance of the 4-way valve coil between the pins of the 4-way valve connector.

Result: The measured value must be 560 $\Omega \pm 5\%$.

Is the measured value correct?	Action
Yes	Continue with the next step.
No	Replace the 4-way valve coil, see "4.1.2 Repair procedures" [▶ 60].

When outdoor temperature is mild and unit can switch between heating and cooling

INFORMATION

This procedure is ONLY possible when the outdoor temperature is within the temperature range for both Heating and Cooling operation mode. See the databook on Business Portal for the temperature range of the operation modes.

- Connect the 4-way valve connector to the appropriate PCB.
- Turn ON the power using the respective circuit breaker.
- Activate **Heating** operation via the user interface. 3
- With the 4-way valve connector connected to the PCB, measure the voltage on the 4-way valve connection of the PCB.

Result: The measured voltage MUST be 12 V DC.

INFORMATION

Actual energize voltage is ±310 V DC.12 V DC is used to keep the coil energized.

- De-activate **Heating** and activate **Cooling** operation via the user interface.
- Measure the voltage on the 4-way valve connection on the PCB.

Result: The measured voltage MUST be 0 V DC.

Are the measured voltages correct?	Action
Yes	Perform a position check of the 4-way valve, see "4.1.1 Checking procedures" [> 57].
No	Perform a check the main PCB, see "4.15 Main PCB" [▶ 152].

When outdoor temperature does not allow the unit to run in cooling or heating mode

INFORMATION

Follow this procedure when the outdoor temperature is outside the temperature range for one of the operation modes (Heating or Cooling). The unit CANNOT operate in the mode for which the outdoor temperature is outside its temperature range. See the databook on Business Portal for the temperature range of the operation modes.

- **1** Connect the 4-way valve connector to the appropriate PCB.
- 2 Turn ON the power using the respective circuit breaker.
- With the unit operating, connect the service monitoring tool to the unit and check whether the unit is operating in **Heating** or **Cooling** mode.
- With the 4-way valve connector connected to the PCB, measure the voltage on the 4-way valve connection of the PCB. The measured voltage MUST be:
 - 12 V DC when operating in Heating mode
 - 0 V DC when operating in Cooling mode

INFORMATION

Actual energize voltage is ±310 V DC.12 V DC is used to keep the coil energized.

Is the measured voltage correct?	Action
Yes	Perform a position check of the 4-way valve, see "4.1.1 Checking procedures" [> 57].
No	Perform a check the main PCB, see "4.15 Main PCB" [▶ 152].

To perform a position check of the 4-way valve

1 First perform an electrical check of the 4-way valve, see "4.1.1 Checking procedures" [▶ 57].

When outdoor temperature is mild and unit can switch between heating and cooling

INFORMATION

This procedure is ONLY possible when the outdoor temperature is within the temperature range for both **Heating** and **Cooling** operation mode. See the databook on Business Portal for the temperature range of the operation modes.

1 Activate **Heating** operation via the user interface.

INFORMATION

It is recommended to connect the service monitoring tool to the unit and verify the operation mode of the 4-way valve.

2 Check with a contact thermometer (or by touching) if the flow through the 4-way valve corresponds with the flow shown in the flow diagram. (See "7.3 Piping diagram" [▶ 304]).

Is the flow correct?	Action
Yes	Skip the next step of this procedure.
No	Perform the next step of this procedure.

3 Connect a manifold to one of the service ports of the refrigerant circuit and check the pressure (suction, discharge). Compare with normal operation conditions of the unit.

Refrigerant pressure correct?	Action
Yes	Replace the body of the 4-way valve, see "4.1.2 Repair procedures" [> 60].
No	Leaks may be found in the refrigerant circuit. Perform a pressure test of the refrigerant circuit, see "5.2.1 Checking procedures" [> 266].

- **4** De-activate **Heating** and activate **Cooling** operation via the user interface.
- 5 Check with a contact thermometer (or by touching) if the flow through the 4-way valve corresponds with the flow shown in the flow diagram. (See "7.3 Piping diagram" [▶ 304]).

Is the flow correct?	Action
Yes	4-way valve is OK. Return to the
	troubleshooting of the specific error
	and continue with the next procedure.

Is the flow correct?	Action
No	Replace the body of the 4-way valve,
	see "4.1.2 Repair procedures" [▶ 60].

When outdoor temperature does not allow the unit to run in cooling or heating mode

INFORMATION

Follow this procedure when the outdoor temperature is outside the temperature range for one of the operation modes (Heating or Cooling). The unit CANNOT operate in the mode for which the outdoor temperature is outside its temperature range. See the databook on Business Portal for the temperature range of the operation modes.

- 1 With the unit operating, connect the service monitoring tool to the unit and check whether the unit is operating in **Heating** or **Cooling** mode.
- 2 Check with a contact thermometer (or by touching) if the flow through the 4way valve corresponds with the flow shown in the flow diagram of the specific operation mode. (See "7.3 Piping diagram" [▶ 304]).

Is the flow correct?	Action
Yes	4-way valve is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
No	Perform the next step of this procedure.

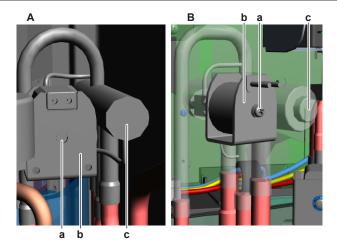
3 Connect a manifold to one of the service ports of the refrigerant circuit and check the pressure (suction, discharge). Compare with normal operation conditions of the unit.

Refrigerant pressure correct?	Action
Yes	Replace the body of the 4-way valve, see "4.1.2 Repair procedures" [> 60].
No	Leaks may be found in the refrigerant circuit. Perform a pressure test of the refrigerant circuit, see "5.2.1 Checking procedures" [> 266].

4.1.2 Repair procedures

To remove the 4-way valve coil

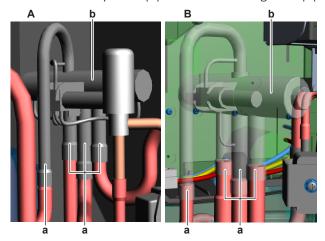
Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Prerequisite: If needed, remove any parts to create more space for the removal of the 4-way valve coil.

Remove the screw and remove the 4-way valve coil from the 4-way valve body.



- **A** 2MXM40+50 + 2AMXM40+50 units
- **B** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- a Screv
- **b** 4-way valve coil
- c 4-way valve body
- **2** Cut all tie straps that fix the 4-way valve coil harness.
- **3** Unplug the 4-way valve connector from the appropriate PCB.
- **4** To install the 4-way valve coil, see "4.1.2 Repair procedures" [▶ 60].

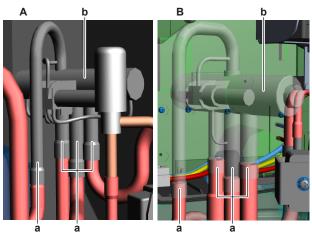
To remove the 4-way valve body

Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

- 1 Remove the 4-way valve coil from the 4-way valve body, see "4.1.2 Repair procedures" [> 60].
- 2 Remove and keep the putty (if installed) and the insulation (if installed) for reuse.
- **3** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **4** Wrap a wet rag around the components near the 4-way valve pipes. Heat the brazing points of the 4-way valve pipes using an oxygen acetylene torch and remove the 4-way valve pipes from the refrigerant pipes using pliers.

- **A** 2MXM40+50 + 2AMXM40+50 units
- **B** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- a 4-way valve pipe
- **b** 4-way valve
- **5** Stop the nitrogen supply when the piping has cooled down.

Remove the 4-way valve.


INFORMATION

It is ALSO possible to cut the component pipe(s) using a pipe cutter. Make sure to remove the remaining component pipe end(s) from the refrigerant pipes by heating the brazing point(s) of the component pipe(s) using an oxygen acetylene torch.

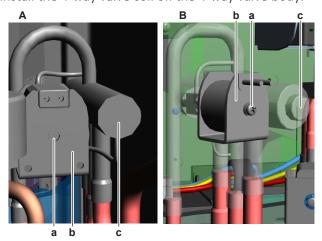
- Install plugs or caps on the open pipe ends of the refrigerant piping to avoid dirt or impurities from entering the piping.
- To install the 4-way valve body, see "4.1.2 Repair procedures" [▶ 60].

To install the 4-way valve body

- Remove the plugs or caps from the refrigerant piping and make sure they are clean.
- Remove the 4-way valve coil from the spare part 4-way valve body.
- 3 Install the 4-way valve body in the correct location and correctly oriented. Insert the pipe ends in the pipe expansions.
- Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **5** Wrap a wet rag around the 4-way valve body and any other components near the 4-way valve and solder the 4-way valve pipes to the refrigerant pipes.

- **A** 2MXM40+50 + 2AMXM40+50 units
- 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- a 4-way valve pipe
- 4-way valve

CAUTION


Overheating the valve will damage or destroy it.

- **6** After soldering is done, stop the nitrogen supply after the component has cooled-down.
- Install the putty (if available) and the insulation (if available) in their original 7 location.
- 8 Install the 4-way valve coil on the 4-way valve body, see "4.1.2 Repair procedures" [▶ 60].
- Perform a pressure test, see "5.2.1 Checking procedures" [▶ 266].
- refrigerant to the refrigerant circuit, "5.2.2 Repair procedures" [> 272].

To install the 4-way valve coil

1 Install the 4-way valve coil on the 4-way valve body.

- **A** 2MXM40+50 + 2AMXM40+50 units
- **B** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- **a** Screw
- **b** 4-way valve coil
- **c** 4-way valve body
- 2 Install and tighten the screw to fix the 4-way valve coil.
- **3** Route the 4-way valve coil harness towards the appropriate PCB.
- **4** Connect the 4-way valve connector to the appropriate PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

5 Fix the 4-way valve coil harness using new tie straps.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.2 Compressor

4.2.1 Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform an auditive check of the compressor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

1 Open the compressor insulation.

- Turn ON the power using the respective circuit breaker.
- 3 Start the unit operation via the user interface.
- Wait for or create condition to operate the compressor.
- Listen to the compressor when it tries to operate. Judge if a mechanical lock is present.

INFORMATION

If you have a multimeter with data logging functionality, record the current in 1 of the U-V-W wires at compressor start-up. If mechanical lock is present, logged current will drastically increase to a peak value and the unit will trigger an error.

INFORMATION

If a mechanical lock is present, also check and eliminate the root cause. Mechanical lock is most likely caused by lack of lubrication (which might be related to overheat or wet operation), failing crankcase heater (if available), impurities in the refrigerant,

A mechanical lock is present on the compressor?	Action
Yes	Replace the compressor, see "4.2.2 Repair procedures" [> 69].
No	Perform an mechanical check of the compressor, see "4.2.1 Checking procedures" [> 63].

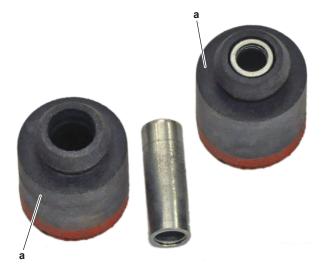
To perform a mechanical check of the compressor

Prerequisite: First perform an auditive check of the compressor, see "4.2.1 Checking procedures" [▶ 63].

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

1 Before proceeding:



DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- **2** Visually check:
 - For oil drops around the compressor. Locate and fix as needed.
 - Pipes for signs of damage. Replace pipes as needed.
- **3** Check that the compressor bolts are correctly fixed. Fix as needed.
- Check that the compressor wire terminals cover is correctly installed and fixed. Correct as needed.
- **5** Check the compressor dampers for any damage.

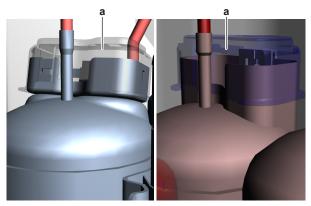
a Damper

INFORMATION

The compressor dampers may look different.

Compressor dampers are in a good condition?	Action
Yes	Perform an electrical check of the compressor, see "4.2.1 Checking procedures" [> 63].
No	Replace the compressor and/or damaged dampers, see "4.2.2 Repair procedures" [> 69].

To perform an electrical check of the compressor

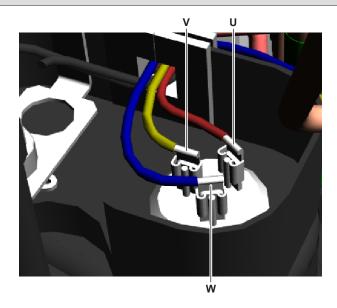

1 First perform a mechanical check of the compressor, see "4.2.1 Checking procedures" [▶ 63].

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

2 Remove the cover of the compressor wire terminals.

a Compressor wire terminals cover



Disconnect the Faston connectors from the compressor wire terminals U, V and W.

INFORMATION

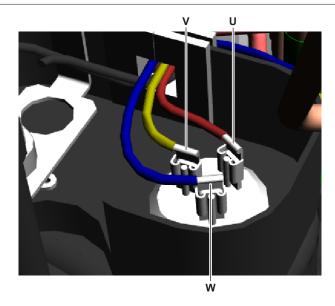
Note the position of the Faston connectors on the compressor wire terminals to allow correct connection during installation.

- **U** Wire terminal U
- Wire terminal V
- Wire terminal W

CAUTION

Before measuring the compressor motor windings resistance, measure the resistance of the multimeter probes by holding the probes against each other. If the measured resistance is NOT 0 $^{\prime}\Omega$, this value MUST be subtracted from the measured winding resistance.

Measure the resistance between the compressor motor windings U-V, V-W


Result: All measurements MUST be approximately the same.

Unit	Compressor	Winding resistance value (at temperature of 20°C)
2MXM40, 2AMXM40	M1C	1.89 Ω ± 5%
3MXM40, 3MXM52	M1C	1.114 Ω ± 5%
2MXM50, 2AMXM50, 2MXM68, 3MXM68, 3AMXM52, 4MXM, 5MXM	M1C	0.274 Ω ± 5%

Compressor motor winding measurements are correct?	Action
Yes	Continue with the next step.
No	Replace the compressor, see "4.2.2 Repair procedures" [▶ 69].

- Measure the continuity of the U, V and W wires between the compressor and the PCB. If no continuity, correct as needed, see "7.2 Wiring diagram" [> 289].
- Connect the Faston connectors to the compressor wire terminals U, V and W

- **U** Wire terminal U
- **V** Wire terminal V
- **W** Wire terminal W
- 7 Install the compressor wire terminals cover.
- **8** Install the compressor insulation.
- **9** Turn ON the power using the respective circuit breaker.
- **10** Start the unit operation via the user interface.

CAUTION

NEVER operate the compressor with the compressor wire terminals cover removed.

- **11** Wait for or create condition to operate the compressor.
- **12** Once the compressor operates, measure the U-V-W inverter voltages. ALWAYS measure at the PCB side.

Result: All measurements MUST be the same.

Inverter voltage measurements are correct?	Action
Yes	Continue with the next step.
No	Perform a check of the appropriate PCB, see "4 Components" [▶ 57].

13 While compressor is operating, measure the current in each phase U, V and W. ALWAYS measure at the PCB side.

Result: All measurements MUST be the same.

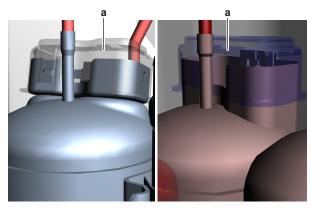
Compressor motor winding current measurements are correct?	Action
Yes	Perform an insulation check of the compressor, see "4.2.1 Checking procedures" [> 63].
No	Preventively replace the compressor, see "4.2.2 Repair procedures" [> 69].

To perform an insulation check of the compressor

Prerequisite: First perform an electrical check of the compressor, see "4.2.1 Checking procedures" [> 63].

Prerequisite: Stop the unit operation via the user interface.

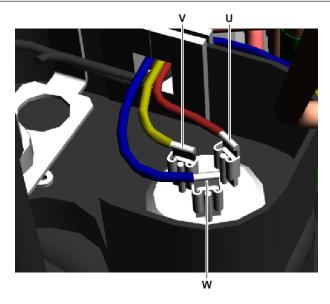
Prerequisite: Turn OFF the respective circuit breaker.


1 Before proceeding:

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Remove the cover of the compressor wire terminals.



- a Compressor wire terminals cover
- Disconnect the Faston connectors from the compressor wire terminals U, V and W.

INFORMATION

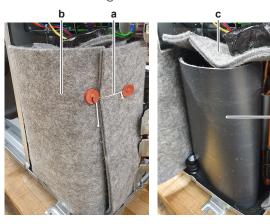
Note the position of the Faston connectors on the compressor wire terminals to allow correct connection during installation.

- Wire terminal U
- Wire terminal V
- Wire terminal W
- Set the Megger voltage to 500 V DC or 1000 V DC.

- **5** Measure the insulation resistance between the following terminals. The measured insulation resistance MUST be >3 $M\Omega$.
 - U-ground,
 - V-ground,
 - W-ground.

Compressor insulation measurements are correct?	Action
Yes	Compressor is OK. Return to troubleshooting of the specific error and continue with the next procedure.
No	Replace the compressor, see "4.2.2 Repair procedures" [▶ 69].

4.2.2 Repair procedures


To remove the compressor insulation

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Detach all the strings.

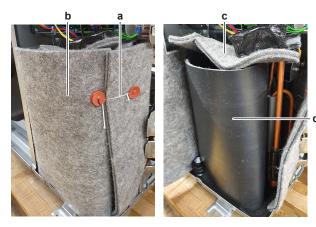
- **a** String
- **b** Body jacket (outer)
- : Top insulation
- **d** Secondary (inner) body jacket
- 2 Open the body jacket.
- **3** Remove the top insulation from the compressor.

INFORMATION

Some units have multiple parts of top insulation. Remove ALL top insulation.

- **4** Open the secondary body jacket from the compressor.
- **5** Remove the body jackets from the compressor.
- **6** To install the compressor insulation, see "4.2.2 Repair procedures" [▶ 69].

To install the compressor insulation


- 1 Install the secondary (inner) body jacket on the compressor.
- 2 Install the top insulation on the compressor.

INFORMATION

Some units have multiple parts of top insulation. Install ALL top insulation.

- String
- Body jacket (outer)
- Top insulation
- **d** Secondary (inner) body jacket
- **3** Install the (outer) body jacket around the compressor.
- **4** Properly fit the top insulation in the body jacket.
- Attach all strings to secure the body jacket.

To remove the compressor

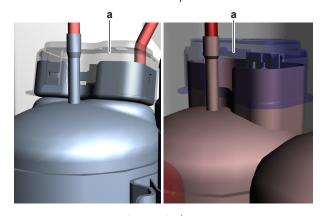
Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Prerequisite: Remove the compressor insulation.

Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

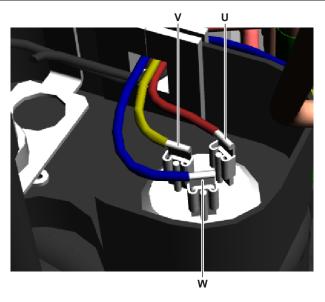

If needed, remove any parts to create more space for the removal of the compressor.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Remove the cover of the compressor wire terminals.

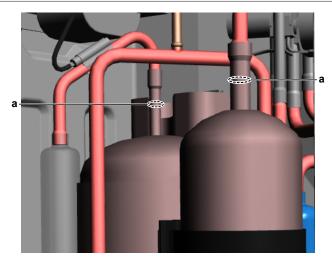
a Compressor wire terminals cover



3 Disconnect the Faston connectors from the compressor wire terminals U, V and W

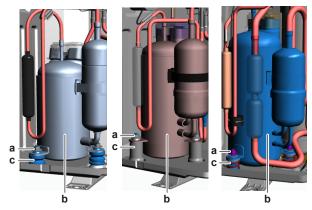
INFORMATION

Note the position of the Faston connectors on the compressor wire terminals to allow correct connection during installation.


- U Wire terminal U
- V Wire terminal V
- W Wire terminal W
- **4** If applicable, remove the screw and disconnect the ground wire from the compressor.
- 5 Remove the compressor thermal protector, see "To remove the compressor thermal protector" [▶ 76].
- **6** Remove the following thermistors from their holder:
 - Suction thermistor
 - Discharge pipe thermistor
 - Compressor body thermistor (if applicable)
- **7** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **8** Wrap a wet rag around the components near the compressor pipes. Heat the brazing points of the compressor pipes using an oxygen acetylene torch and remove the refrigerant pipes from the compressor pipes using pliers.

INFORMATION

Image shows a 2MXM50 unit compressor. Compressors of other units may look slightly different, but the refrigerant pipes are installed in the same location.


- a Compressor pipe
- **9** Stop the nitrogen supply when the piping has cooled down.

INFORMATION

It is ALSO possible to cut the component pipe(s) using a pipe cutter. Make sure to remove the remaining component pipe end(s) from the refrigerant pipes by heating the brazing point(s) of the component pipe(s) using an oxygen acetylene torch.

10 Remove the nuts and bolts and remove the compressor from the unit.

- a Nut
- Compressor
- Damper
- **11** Remove the 3 dampers and springs (if applicable) from the compressor.

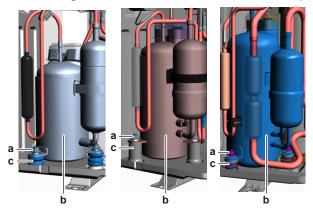
INFORMATION

The compressor dampers may look different.

- **12** Remove the bushings and keep them for re-use.
- 13 Install plugs or caps on the open pipe ends of the refrigerant piping to avoid dirt or impurities from entering the piping.
- **14** To install the compressor, see "4.2.2 Repair procedures" [> 69].

To install the compressor

- **1** Check the state of the dampers. Replace if worn.
- Install the 3 dampers and springs (if applicable) in the correct location on the unit.


- **3** Remove the plugs or caps from the refrigerant piping and make sure they are clean.
- 4 Remove the caps from the compressor pipes (of the new compressor).

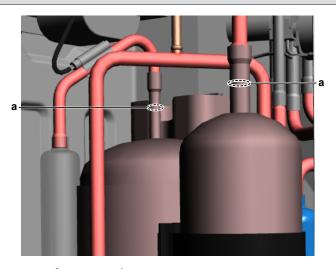
CAUTION

The oil in the compressor is hygroscopic. Therefore remove the caps from the compressor pipes as late as possible.

- Install the compressor on the correct location on the dampers. Properly insert the refrigerant pipes in the pipe expansions of the compressor pipes.
- 6 Install and tighten the bolts and nuts to fix the compressor to the dampers.

- a Nut
- **b** Compressor
- **c** Damper

INFORMATION

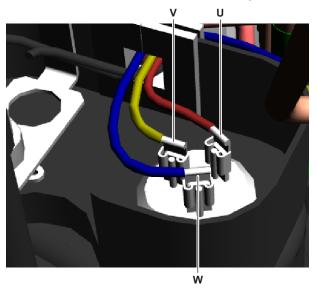

The compressor dampers may look different.

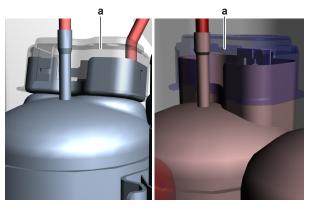
- **7** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **8** Wrap a wet rag around the compressor pipes and any other components near the compressor and solder the compressor pipes to the refrigerant pipes.

INFORMATION

Image shows a 2MXM50 unit compressor. Compressors of other units may look slightly different, but the refrigerant pipes are installed in the same location.

a Compressor pipe




CAUTION

Overheating the compressor pipes (and the oil inside the compressor pipes) will damage or destroy the compressor.

- After soldering is done, stop the nitrogen supply after the component has cooled-down.
- 10 Install the compressor thermal protector, see "To install the compressor thermal protector" [▶ 78].
- 11 Connect the Faston connectors to the compressor wire terminals U, V and W

- Wire terminal U
- Wire terminal V
- Wire terminal W
- **12** Install the cover of the compressor wire terminals.

- a Compressor wire terminals cover
- 13 If applicable, connect the ground wire to the compressor. Install and tighten the screw to fix the ground wire.
- **14** Install the following thermistors in their holder:
 - Suction thermistor
 - Discharge pipe thermistor
 - Compressor body thermistor (if applicable)
- **15** Install the compressor insulation, see "4.2.2 Repair procedures" [▶ 69].
- **16** Perform a pressure test, see "5.2.1 Checking procedures" [▶ 266].
- **17** Add refrigerant to the refrigerant circuit, Repair procedures" [> 272].

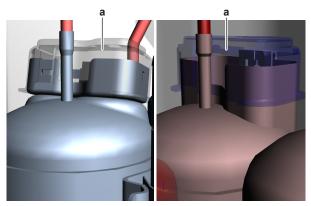
74

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.3 Compressor thermal protector

4.3.1 Checking procedures

To perform a mechanical check of the compressor thermal protector


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.


Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Prerequisite: Remove the compressor insulation.

1 Remove the cover of the compressor wire terminals.

- a Compressor wire terminals cover
- **2** Remove the compressor thermal protection with bracket from the compressor.

- a Compressor thermal protector
- b Faston connector
- **c** Bracket

3 If in doubt, measure the temperature of the compressor thermal protection.

Result: The temperature MUST be below 85°C.

Disconnect the Faston connectors from the compressor thermal protection.

INFORMATION

Make sure that the wiring between the compressor thermal protector and the connector on the PCB is properly connected and NOT damaged (check continuity), see "7.2 Wiring diagram" [> 289].

5 Using a hot air gun, carefully heat the compressor thermal protection to slightly above A (compressor thermal protection trips at B). See table below for correct temperatures.

Units	A	В
2MXM40+50 + 2AMXM40+50	123°C	117~123°C
2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM	133°C	127~133°C

6 Measure the resistance on the compressor thermal protector.

Result: The contact MUST be open (measured resistance = OL).

- 7 Let the compressor thermal protection cool down below 85°C (reset temperature is 85~105°C).
- **8** Again measure the resistance on the compressor thermal protector.

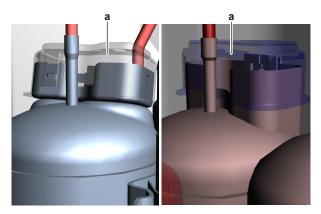
Result: The contact MUST be closed (measured resistance = 0Ω).

Does the compressor thermal protector contact open and close at the correct temperature?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Replace the compressor thermal protector, see "4.3.2 Repair procedures" [> 76].

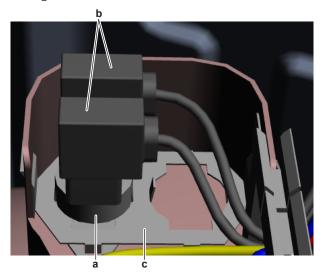
4.3.2 Repair procedures

To remove the compressor thermal protector

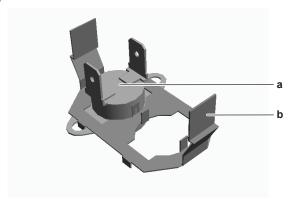
Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

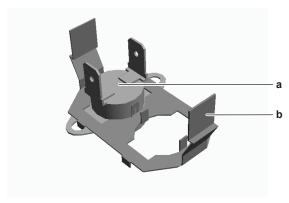

Prerequisite: Remove the compressor insulation.

1 Remove the cover of the compressor wire terminals.

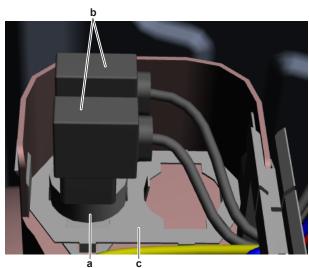


- a Compressor wire terminals cover
- 2 Remove the compressor thermal protector with bracket from the compressor housing.

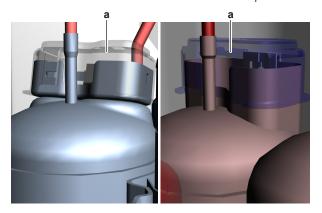
- a Compressor thermal protector
- **b** Faston connector
- **c** Bracket
- **3** Disconnect the Faston connectors from the compressor thermal protector.
- **4** Separate the compressor thermal protector and the compressor thermal protector bracket.



- **a** Compressor thermal protector
- **b** Compressor thermal protector bracket
- 5 To install the compressor thermal protector, see "4.2.2 Repair procedures" [▶ 69].



To install the compressor thermal protector


1 Install the compressor thermal protector on the compressor thermal protector bracket.

- **a** Compressor thermal protector
- **b** Compressor thermal protector bracket
- **2** Connect the Faston connectors to the compressor thermal protector.

- Compressor thermal protector
- Faston connector
- c Bracket
- Install the compressor thermal protector in the compressor housing.
- Install the wire terminals cover on the compressor.

- **a** Compressor wire terminals cover
- Install the compressor insulation.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.4 Damper motor

4.4.1 Checking procedures

To perform an electrical check of the damper motor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the damper motor connector S400 from the indoor unit main PCB.
- **2** Measure the resistance between the following pins of the damper motor connector.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
1-2	139.5~160.5
1-13	
1-14	
1-15	
2-13	279~321
2-14	
2-15	
13-14	
13-15	
14-15	

Damper motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

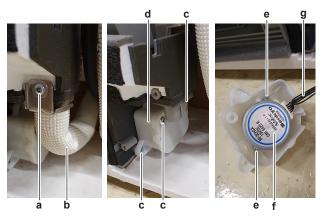
- **3** Remove the damper motor, see "4.4.2 Repair procedures" [▶ 80].
- **4** Measure the resistance between the following pins of the connector on the damper motor.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
1-2	139.5~160.5
1-3	
1-4	
1-5	
2-3	279~321
2-4	
2-5	
3-4	
3-5	
4-5	

Damper motor resistance measurements are correct?	Action
Yes	Replace the damper motor wiring harness, see "4.4.2 Repair procedures" [> 80].
No	Replace the damper motor, see "4.4.2 Repair procedures" [> 80].

4.4.2 Repair procedures

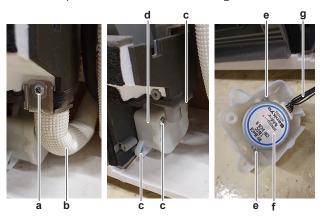

To remove the damper motor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- Put a small drain pan (or container) under the drain hose.
- Remove the screw from the fixation bracket and pull the drain hose downwards to remove it from the indoor unit.

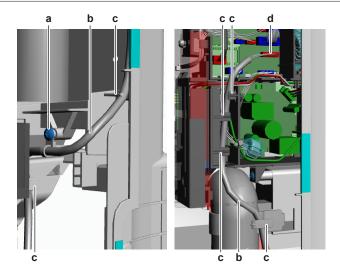

- a Screw (drain hose)
- Drain hose
- c Screw (damper motor cover)
- **d** Damper motor cover
- Screw (damper motor)
- Damper motor
- **g** Damper motor wiring harness

- **3** Remove the 3 screws and remove the damper motor cover from the indoor unit.
- 4 Remove the 2 screws to remove the damper motor from the cover.
- **5** Disconnect the damper motor wiring harness from the damper motor.
- **6** To install the damper motor, see "4.4.2 Repair procedures" [▶ 80].

To install the damper motor

- 1 Connect the damper motor wiring harness to the damper motor.
- 2 Install the damper motor in the correct location on the damper motor cover. Fix the damper moto to the cover using the 2 screws.

- a Screw (drain hose)
- **b** Drain hose
- **c** Screw (damper motor cover)
- **d** Damper motor cover
- e Screw (damper motor)
- f Damper motor
- g Damper motor wiring harness
- 3 Install the damper motor cover in the correct location on the indoor unit. Make sure that the damper motor shaft is correctly inserted in the gear.
- 4 Install and tighten the 3 screw to fix damper motor covers.
- **5** Connect the drain hose to the indoor unit.
- 6 Install the drain hose fixation bracket. Install and tighten the screw.


Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

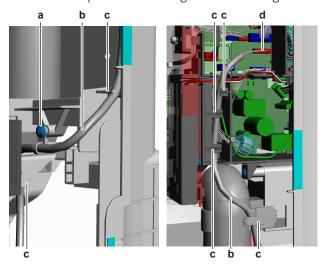
To remove the damper motor wiring harness

Prerequisite: Remove the damper motor, see "4.4.2 Repair procedures" [> 80].

1 Remove the screw to disconnect the tie strap.

- a Screw (tie strap)
- **b** Damper motor wiring harness
- **c** Harness retainer
- **d** Damper motor connector on indoor unit main PCB
- 2 Route the damper motor wiring harness out of the harness retainers.
- **3** Disconnect the damper motor wiring harness from the indoor unit main PCB.
- To install the damper motor wiring harness, see "4.4.2 Repair procedures" [▶ 80].

To install the damper motor wiring harness


1 Connect the damper motor wiring harness to the indoor unit main PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

Route the damper motor wiring harness through the harness retainers.

- **a** Screw (tie strap)
- Damper motor wiring harness
- **c** Harness retainer
- **d** Damper motor connector on indoor unit main PCB
- **3** Install a new tie strap to fix the wiring harness. Install and tighten the screw.
- Install the damper motor, see "4.4.2 Repair procedures" [▶ 80].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.5 Expansion valve

4.5.1 Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the expansion valve

Prerequisite: Power OFF the unit for 3 minutes. Then turn ON the unit and listen to the expansion valve assembly. If the expansion valve does NOT make a latching sound, continue with the electrical check of the expansion valve, see "4.5.1 Checking procedures" [> 83].

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

- 1 Remove the expansion valve insulation (if applicable) and visually check:
 - For oil drops around the expansion valve. Locate and fix as necessary.
 - Pipes for signs of damage. Replace pipes as needed.
 - Coil wires for signs of damage. Replace expansion valve coil as needed. See
 "4.5.2 Repair procedures" [> 88].
- 2 Remove the expansion valve coil from the expansion valve body, see "4.5.2 Repair procedures" [▶ 88].
- 3 Slide the expansion valve magnet over the expansion valve body and gently rotate the magnet clockwise/counterclockwise to manually close/open the expansion valve. Listen to check if the valve is closing/opening and manually close the valve when check is done.

INFORMATION

After the check, remove the magnet from the expansion valve body and install the expansion valve coil on the expansion valve body. Make sure that the expansion valve coil is correctly installed on the expansion valve body.

INFORMATION

It is highly recommended to perform a power reset after checking the valve using a magnet.

Does the expansion valve open?	Action
1.00	Perform an electrical check of the expansion valve, see "4.5.1 Checking procedures" [> 83].

Does the expansion valve open?	Action
	Replace the expansion valve body, see "4.5.2 Repair procedures" [> 88].

To perform an electrical check of the expansion valve

- 1 First perform a mechanical check of the expansion valve, see "4.5.1 Checking procedures" [▶83].
- 2 Disconnect the electrical connector of the expansion valve coil from the appropriate PCB and measure the resistance of all windings (between the pins of each phase (wire) and the common wire) using a multi meter. All measurements MUST be approximately the same.

2MXM + 2AMXM units

Name	Symbol	Location (PCB)	Connector	Winding resistance
Main expansion valve (Room A)	Y1E	Main	S20	46±4 Ω
Main expansion valve (Room B)	Y2E	Main	S21	46±4 Ω

3MXM + 3AMXM units

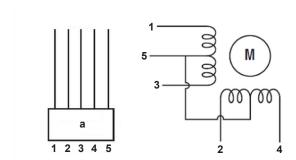
Name	Symbol	Location (PCB)	Connector	Winding resistance
Main expansion valve (Room A)	Y1E	Main	S20	46±4 Ω
Main expansion valve (Room B)	Y2E	Main	S21	46±4 Ω
Main expansion valve (Room C)	Y3E	Main	S22	46±4 Ω

4MXM units

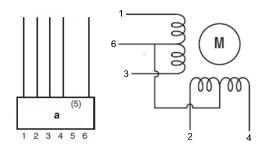
Name	Symbol	Location (PCB)	Connector	Winding resistance
Main expansion valve (Room A)	Y1E	Main	S20	46±4 Ω
Main expansion valve (Room B)	Y2E	Main	S21	46±4 Ω
Main expansion valve (Room C)	Y3E	Main	S22	46±4 Ω

Name	Symbol	Location (PCB)	Connector	Winding resistance
Main expansion valve (Room D)	Y4E	Main	S23	46±4 Ω

5MXM units


Name	Symbol	Location (PCB)	Connector	Winding resistance
Main expansion valve (Room A)	Y1E	Main	S20	46±4 Ω
Main expansion valve (Room B)	Y2E	Main	S21	46±4 Ω
Main expansion valve (Room C)	Y3E	Main	S22	46±4 Ω
Main expansion valve (Room D)	Y4E	Main	S23	46±4 Ω
Main expansion valve (Room E)	Y5E	Main	S24	46±4 Ω

INFORMATION


Below are shown examples of the resistance measurements in which the common wire is connected to pin 5 or to pin 6 of the expansion valve coil connector. Connections may differ according to the type of expansion valve.

- Connector pin 1-5,
- Connector pin 2-5,
- Connector pin 3-5,
- Connector pin 4-5.

- **a** Connector
- Connector pin 1-6,
- Connector pin 2-6,
- Connector pin 3-6,
- Connector pin 4-6.

- a Connector
- **3** Check the insulation resistance of the coil by measuring the resistance between the pins of each phase (1, 2, 3, 4) and GND on the unit.

Result: None of the measurements should be short-circuit.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

Is the measured resistance correct?	Action
Yes	Perform an operation check of the expansion valve, see "4.5.1 Checking procedures" [> 83].
No	Replace the expansion valve coil, "4.5.2 Repair procedures" [> 88].

To perform an operation check of the expansion valve

Prerequisite: First perform an electrical check of the expansion valve, see "4.5.1 Checking procedures" [> 83].

Turn ON the power of the unit.

INFORMATION

When power is switched ON, PCB checks all expansion valve coil windings by current check. If winding is short or open, expansion valve error is triggered.

Start the unit operation via the user interface.

INFORMATION

Depending on which expansion valve (room) you want to check, operate the appropriate unit(s).

- **3** With the unit operating, connect the service monitoring tool to the unit.
- When the expansion valve is closed according to the service monitoring tool, check the inlet and outlet of the valve with a contact thermometer or use an expansion valve stethoscope to see if refrigerant flows through the expansion valve. Check that the valve is NOT bleeding.

Result: There MUST be NO flow through the expansion valve.

5 When the expansion valve is open according to the service monitoring tool, check the inlet and outlet of the valve with a contact thermometer or use an expansion valve stethoscope to see if refrigerant flows through the expansion valve.

Result: Refrigerant MUST flow through the expansion valve.

6 Wait for the PCB to command the expansion valve to open (when closed) or to close (when open) (pulse output to expansion valve visible on service monitoring tool).

INFORMATION

If the PCB does NOT command the expansion valve to open or close (when it is supposed to), perform a check of the appropriate thermistors and pressure sensors (as their measurements control the operation of the expansion valve(s)).

- 7 While in opening or closing sequence each expansion valve winding (Φ1, 2, 3, 4) is supplied with 12 V DC from the PCB. You will need a good multimeter, where its range is set to about 20 V DC, and during opening or closing sequence you may be able to measure the supply voltage for a short time. If you set the multimeter range to Auto, then most likely you may NOT read a value between switching ranges. The best way to check is to feel the movement of the valve by touching, rather than trying to measure the driving voltage.
- **8** When the expansion valve was commanded to close, check the inlet and outlet of the valve with a contact thermometer or use an expansion valve stethoscope to see if refrigerant flows through the expansion valve. Check that the valve is NOT bleeding.

Result: There MUST be NO flow through the expansion valve.

9 When the expansion valve was commanded to open, check the inlet and outlet of the valve with a contact thermometer or use an expansion valve stethoscope to see if refrigerant flows through the expansion valve.

Result: Refrigerant MUST flow through the expansion valve.

Is the flow through the expansion valve correct?	Action
Yes	Component is OK. Return to the troubleshooting of the specific error and continue with the next step.
No	Replace the expansion valve, see "4.5.2 Repair procedures" [▶ 88].

Problem solved?

After all checking procedures listed above have been performed:

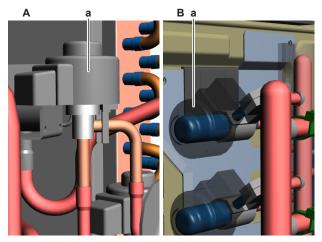
Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.5.2 Repair procedures

To remove the expansion valve coil

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

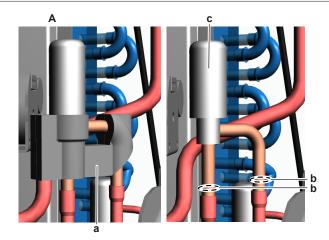

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- If needed, remove any parts or insulation to create more space for the
- Pull up the expansion valve coil to remove it from the expansion valve body.

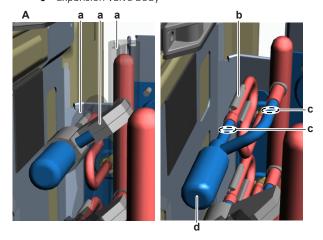
INFORMATION

It may be needed to turn the expansion valve coil 1/8 turn counter clockwise to unlock it. Make sure to note the correct orientation (position) of the expansion valve coil before removal.

- 2MXM40+50 + 2AMXM40+50 units
- 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- Expansion valve coil
- **3** Cut all tie straps that fix the expansion valve coil harness.
- **4** Disconnect the expansion valve coil connector from the main PCB.
- Remove the expansion valve coil (and harness) from the unit.
- To install the expansion valve coil, see "4.5.2 Repair procedures" [> 88].


To remove the expansion valve body

Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].


Prerequisite: If needed, remove any parts or insulation to create more space for the removal.

- 1 Remove the expansion valve coil, see "4.5.2 Repair procedures" [▶ 88].
- 2 Remove the putty (if applicable). Keep for re-use
- 3 ONLY for 2MXM68, 3MXM, 3AMXM, 4MXM and 5MXM units: Remove the refrigerant liquid thermistor from its holder.

- **A** 2MXM40+50 + 2AMXM40+50 units
- a Putty (if applicable)
- **b** Expansion valve pipe
- c Expansion valve body

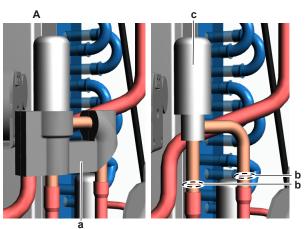
- A 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- **a** Putty
- **b** Refrigerant liquid thermistor
- **c** Expansion valve pipe
- d Expansion valve body
- **4** Using a valve magnet, open the expansion valve.
- **5** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **6** Wrap a wet rag around the components near the expansion valve pipes. Heat the brazing points of the expansion valve pipes using an oxygen acetylene torch and remove the expansion valve pipes from the refrigerant pipes using pliers.
- **7** Stop the nitrogen supply when the piping has cooled down.
- **8** Remove the expansion valve body.

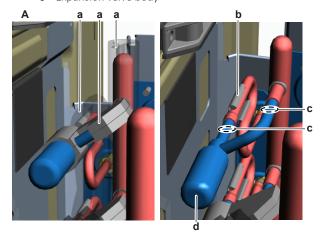
INFORMATION

It is ALSO possible to cut the component pipe(s) using a pipe cutter. Make sure to remove the remaining component pipe end(s) from the refrigerant pipes by heating the brazing point(s) of the component pipe(s) using an oxygen acetylene torch.

- **9** Install plugs or caps on the open pipe ends of the refrigerant piping to avoid dirt or impurities from entering the piping.
- **10** To install the expansion valve body, see "4.5.2 Repair procedures" [▶ 88].

To install the expansion valve body


- Remove the plugs or caps from the refrigerant piping and make sure they are clean.
- Remove the expansion valve coil from the spare part expansion valve body. 2
- Install the expansion valve body in the correct location and correctly oriented. Insert the pipe ends in the pipe expansions.
- Open the expansion valve using a valve magnet.
- Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **6** Wrap a wet rag around the expansion valve body and any other components near the expansion valve and solder the expansion valve pipes to the refrigerant pipes.


CAUTION

Overheating the valve will damage or destroy it.

After soldering is done, stop the nitrogen supply after the component has cooled-down.

- 2MXM40+50 + 2AMXM40+50 units
- Putty (if applicable)
- Expansion valve pipe
- c Expansion valve body

- 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- Refrigerant liquid thermistor
- Expansion valve pipe
- **d** Expansion valve body

- **8** ONLY for 2MXM68, 3MXM, 3AMXM, 4MXM and 5MXM units: Reinstall the refrigerant liquid thermistor in its holder.
- **9** Reinstall the putty (if applicable).
- **10** To install the expansion valve coil, see "4.5.2 Repair procedures" [> 88].
- **11** Perform a pressure test, see "5.2.1 Checking procedures" [▶ 266].
- **12** Add refrigerant to the refrigerant circuit, see "5.2.2 Repair procedures" [> 272].

To install the expansion valve coil with clip

1 Install the expansion valve coil on the expansion valve body.

INFORMATION

The expansion valve coil is equipped with a pipe retention clip. Install the pipe retention clip over the pipe to lock the expansion valve coil.

- a Expansion valve coil
- Pipe retention clip
- **c** Pipe
- **2** Route the expansion valve coil harness towards the appropriate PCB.
- **3** Connect the expansion valve coil connector to the appropriate PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

- **4** Fix the expansion valve coil harness using new tie straps.
- **5** Install the insulation cap on the expansion valve coil (if applicable).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.5.1 Checking procedures" [> 83] of the expansion valve and continue with the next procedure.

To install the expansion valve coil

1 Install the expansion valve coil on the expansion valve body.

INFORMATION

Turn the expansion valve coil 1/8 turn clockwise to lock it on the expansion valve

INFORMATION

The correct alignment of the expansion valve coil is ensured by dimples.

- a Expansion valve coil
- Pipe
- **2** Route the expansion valve coil harness towards the appropriate PCB.
- **3** Connect the expansion valve coil connector to the appropriate PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

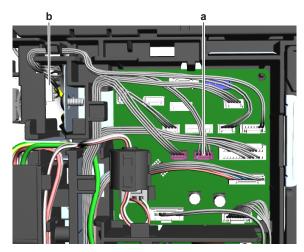
- Fix the expansion valve coil harness using new tie straps.
- Install the insulation cap on the expansion valve coil (if applicable).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.5.1 Checking procedures" [> 83] of the expansion valve and continue with the next procedure.

4.6 Front panel motor

4.6.1 Checking procedures

To perform an electrical check of the front panel motor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 In the switch box, disconnect the front panel motor wiring harness from the indoor unit main PCB and from the switch box.

- a Connector on indoor unit main PCB
- **b** Connector on switch box
- 2 Measure the continuity of all wires of the wiring harness.

Is the wiring harness OK?	Action
Yes	Continue with the next step.
No	Replace the front panel motor wiring harness, see "4.6.2 Repair procedures" [> 94].

3 On the front grille (removed from the indoor unit), measure the resistance between the following pins of the front panel motor connector.

Result: The measurements MUST be as shown in the table below.

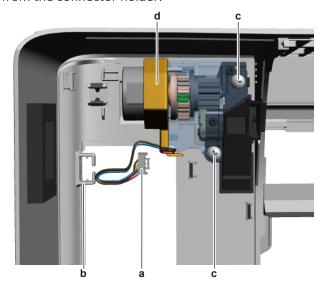
Pins	Measured resistance (Ω)
1-2	204.6~235.4
1-3	
1-4	
1-5	
2-3	378.4~501.6
2-4	
2-5	
3-4	
3-5	
4-5	

Front panel motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure
No	Replace the front panel motor, see "4.6.2 Repair procedures" [> 94].

4.6.2 Repair procedures

INFORMATION

To replace the motor, the complete gearcase assembly MUST be replaced.

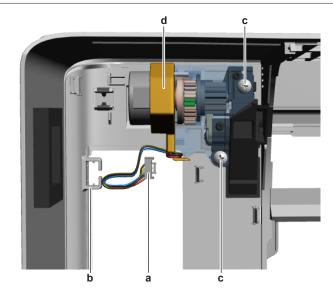

To remove the front panel motor gearcase assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 On the front grille (removed from the indoor unit), remove the connector from the connector holder.



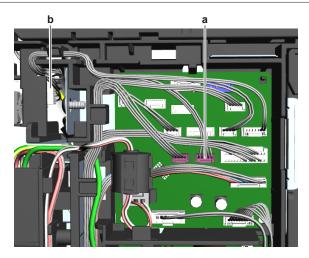
- Connector
- **b** Connector holder
- **c** Screw (front panel motor gearcase assy)
- **d** Front panel motor gearcase assy
- 2 Remove the 2 screws and remove the front panel motor gearcase assembly from the front grille and lever.
- 3 To install the front panel motor gearcase assembly, see "4.6.2 Repair procedures" [> 94].

To install the front panel motor gearcase assembly

Install the front panel motor gearcase assembly in the correct location on the front grille and on the lever.

- a Connector
- **b** Connector holder
- c Screw (front panel motor gearcase assy)
- **d** Front panel motor gearcase assy
- 2 Install the 2 screws to fix the front panel motor and gears assembly. Do NOT yet tighten the screws.
- **3** Make sure the lever is correctly connected (using soft tools) at the front side of the front grille.
- **4** Tighten the 2 screws to fix the front panel motor and gears assembly.
- **5** Place the connector in the connector holder.
- 6 Install front grille and assemble the indoor unit, see "4.18 Plate work" [▶ 185].

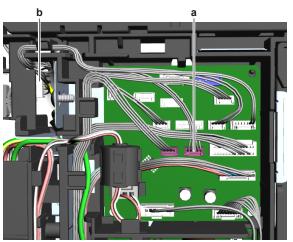
Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.


To remove the front panel motor wiring harness

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- 2 Disconnect the front panel motor wiring harness from the indoor unit main PCB and from the switch box.



- Connector on indoor unit main PCB
- Connector on switch box
- **3** Route the wiring harness out of the harness retainer (top of the switch box) and remove the front panel motor wiring harness.
- To install the front panel motor wiring harness, see "4.6.2 Repair procedures" [▶ 94].

To install the front panel motor wiring harness

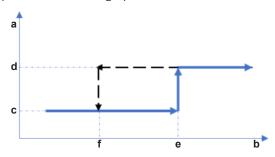
1 Connect the front panel motor wiring harness to the switch box.

- a Connector on indoor unit main PCB
- Connector on switch box
- **2** Route the wiring harness through the harness retainer (top of the switch box).
- Connect the other end of the front panel motor wiring harness to the indoor unit main PCB.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.7 High pressure switch

4.7.1 Checking procedures


To perform an electrical check of the high pressure switch

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

- 1 Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].
- **2** Fill the refrigerant circuit with nitrogen until pressurized just below operating pressure of the high pressure switch.

- a High pressure switch protection control
- **b** Pressure
- c High pressure switch closed
- **d** High pressure switch open
- e High pressure switch operating pressure
- f High pressure switch reset pressure

High pressure switch	Operating pressure (MPa)	Reset pressure (MPa)
S1PH	4.03~4.15	3.05~3.35

3 Disconnect the Faston connectors from the high pressure switch.

INFORMATION

Measure the continuity of all wiring between the high pressure switch and the appropriate PCB. If NO continuity is measured, repair as needed, see "7.2 Wiring diagram" [> 289].

4 Measure the resistance between the Faston connections of the high pressure switch.

Result: The switch MUST be closed.

- **5** Fill the refrigerant circuit with nitrogen until pressurized just above operating pressure of the high pressure switch.
- **6** Measure the resistance between the Faston connections of the high pressure switch.

Result: The switch MUST be open.

INFORMATION

If the high pressure switch was triggered open, it will stay open until the refrigerant pressure drops below the reset pressure of the high pressure switch.

7 Lower the pressure of the nitrogen in the refrigerant circuit just above reset pressure of the high pressure switch.

Measure the resistance between the Faston connections of the high pressure switch.

Result: The switch MUST be open.

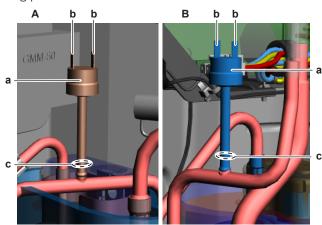
- **9** Lower the pressure of the nitrogen in the refrigerant circuit just below reset pressure of the high pressure switch.
- 10 Measure the resistance between the Faston connections of the high pressure

Result: The switch MUST be closed.

High pressure switch connector measurements are correct?	Then
Yes	High pressure switch is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
No	Replace the high pressure switch, see "4.7.2 Repair procedures" [▶ 98].

4.7.2 Repair procedures

To remove the high pressure switch


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

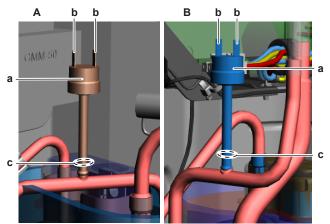
Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

- 1 If needed, remove any parts to create more space for the removal of the high pressure switch.
- **2** Disconnect the Faston connectors from the high pressure switch.
- 3 Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- 4 Wrap a wet rag around the components near the high pressure switch. Heat the brazing point of the high pressure switch pipe using an oxygen acetylene torch and remove the high pressure switch pipe from the refrigerant pipe using pliers.

- 2MXM50 + 2AMXM50 units
- 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- High pressure switch
- Faston connector
- c High pressure switch pipe

- 5 Stop the nitrogen supply when the piping has cooled down.
- **6** Remove the high pressure switch.


INFORMATION

It is ALSO possible to cut the component pipe(s) using a pipe cutter. Make sure to remove the remaining component pipe end(s) from the refrigerant pipes by heating the brazing point(s) of the component pipe(s) using an oxygen acetylene torch.

- 7 Install a plug or cap on the refrigerant piping to avoid dirt or impurities from entering the piping.
- **8** To install the high pressure switch, see "4.7.2 Repair procedures" [▶ 98].

To install the high pressure switch

- 1 Remove the plug or cap from the refrigerant piping and make sure it is clean.
- 2 Install the high pressure switch in the correct location.
- **3** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **4** Wrap a wet rag around the high pressure switch and any other components near the high pressure switch and solder the high pressure switch pipe to the refrigerant pipe.

- A 2MXM50 + 2AMXM50 units
- **B** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- a High pressure switch
- **b** Faston connector
- c High pressure switch pipe

CAUTION

Overheating the pressure switch will damage or destroy it.

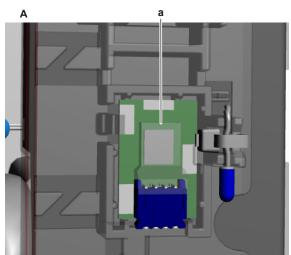
- **5** After soldering is done, stop the nitrogen supply after the component has cooled-down.
- **6** Connect the Faston connectors to the high pressure switch.
- **7** Perform a pressure test, see "5.2.1 Checking procedures" [▶ 266].
- **8** Add refrigerant to the refrigerant circuit, see "5.2.2 Repair procedures" [> 272].

Is the problem solved?	Action
Yes	No further actions required.

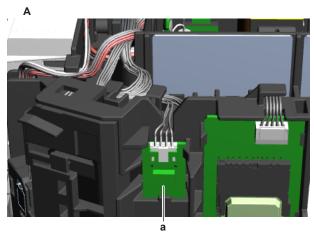
Is the problem solved?	Action
No	Return to the troubleshooting of the specific error and continue with the
	next procedure.

4.8 Humidity sensor

4.8.1 Checking procedures


To perform a power check of the humidity sensor

Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- Turn ON the power of the unit.
- Measure the power supply voltage between the pins 1-4 on the humidity sensor connector CN.

Result: The measured voltage MUST be 5 V DC.

- Floor standing indoor units
- Humidity sensor (PCB)

- **A** Wall mounted indoor units CTXA15A + CTXA15B
- a Humidity sensor (PCB)

Is the measured power supply voltage correct?	Action
Yes	Skip the next step
No	Continue with the next step.

4 Measure the output voltage between between the pins 1-4 on the connector S600 on the indoor unit main PCB.

Result: The measured voltage MUST be 5 V DC.

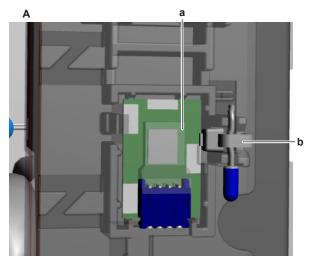
Is the output voltage on the indoor unit main PCB correct?	Action
Yes	Replace the humidity sensor wiring harness, see "4.8.2 Repair procedures" [> 101].
No	Perform a check of the indoor unit main PCB, see "4.11.1 Checking procedures" [> 121].

5 As there are no further check procedures for this component, perform a check of the indoor unit main PCB to check if the humidity sensor needs to be replaced. See "4.11.1 Checking procedures" [▶ 121].

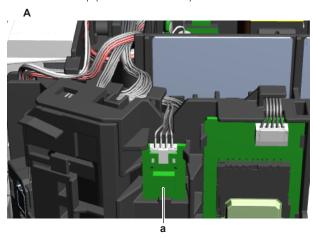
After complete check of the indoor unit main PCB, is the problem solved?	Action
Yes	No further actions required.
No	Replace the humidity sensor, see "4.8.2 Repair procedures" [▶ 101].

4.8.2 Repair procedures

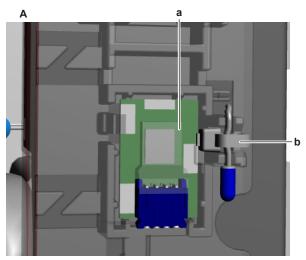
To remove the humidity sensor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

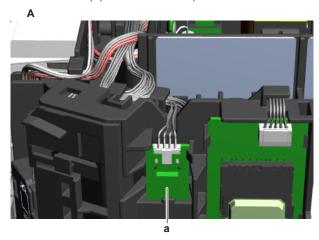

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the connector from the humidity sensor PCB.
- **2** For floor standing units ONLY: Cut the tie strap that fixes the thermistor.
- **3** Carefully click the complete humidity sensor PCB assembly out of the indoor unit.


- Floor standing indoor units
- Humidity sensor PCB assembly
- Tie strap (thermistor fixation)

- Wall mounted indoor units CTXA15A + CTXA15B
- a Humidity sensor PCB assembly
- To install the humidity sensor PCB assembly, see "4.8.2 Repair procedures" [▶ 101].

To install the humidity sensor


1 Click the humidity sensor PCB assembly on the indoor unit.

- A Floor standing indoor units
- Humidity sensor PCB assembly

b Tie strap (thermistor fixation)

- **A** Wall mounted indoor units CTXA15A + CTXA15B
- a Humidity sensor PCB assembly
- **2** For floor standing units ONLY: Install the thermistor on the correct location and fix it to the bracket using a new tie strap.
- **3** Connect the harness to the humicity sensor PCB assembly.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To remove the humidity sensor wiring harness

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

- 1 Disconnect the wiring harness from the humidity sensor (PCB).
- **2** Disconnect the wiring harness connector from the indoor unit main PCB.
- **3** Cut all tie straps (if any) that fix the wiring harness.
- **4** Route the wiring harness out of the harness retainers and remove the humidity sensor wiring harness.
- 5 To install the humidity sensor wiring harness, see "4.8.2 Repair procedures" [▶ 101].

To install the humidity sensor wiring harness

1 Connect the wiring harness connector to the indoor unit main PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

- **2** Route the wiring harness through the appropriate harness retainers towards the humidity sensor (PCB).
- **3** Connect the wiring harness to the humidity sensor (PCB).
- **4** Fix the wiring harness using new tie straps (if needed).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.9 Indoor unit fan motor

4.9.1 Wall mounted indoor units

Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the DC fan motor assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Check the fan for damage, deformations and cracks. Replace the fan as needed.
- 2 Check that the fan is correctly installed on the DC fan motor. Correct as needed.
- 3 Manually rotate the fan and check the friction of the DC fan motor shaft bearing.

Is the DC fan motor shaft friction normal?	Action
Yes	Perform an electrical check of the DC fan motor assembly, see "Checking procedures" [> 104].
No	Replace the DC fan motor assembly, see "Repair procedures" [> 105].

To perform an electrical check of the DC fan motor assembly

Prerequisite: First perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [> 104].

- 1 Remove the cover from the switch box; see "4.18 Plate work" [▶ 185].
- **2** Disconnect the DC fan motor connector from the appropriate PCB.
- Measure the resistance between the pins 1-2, 1-3, and 2-3 of the DC fan motor connector.

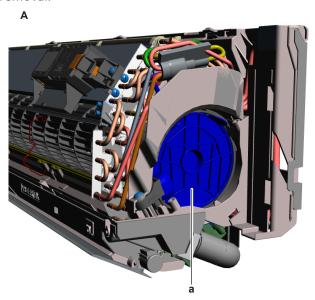
Result: All measurements MUST be approximately the same.

DC fan motor measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the
	next procedure.

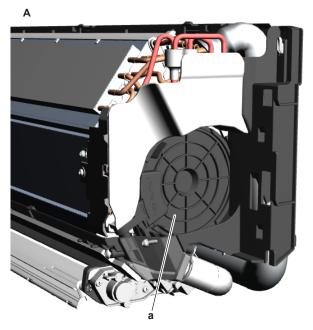
DC fan motor measurements are correct?	Action
No	Replace the DC fan motor, see "Repair procedures" [> 105].

Repair procedures

To remove the DC fan motor assembly


Prerequisite: Stop the unit operation via the user interface.

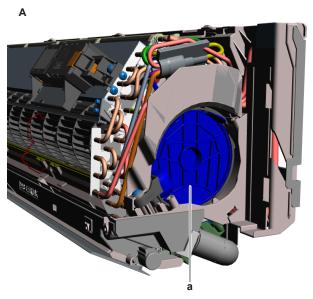
Prerequisite: Turn OFF the respective circuit breaker.

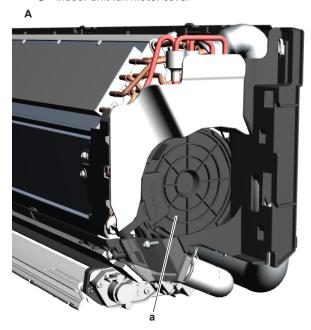

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Remove the switch box, see "4.18 Plate work" [▶ 185].

2 Click the indoor unit fan motor cover out of the indoor unit. If needed, remove the screw (if installed) on the right hand side of the fan motor cover for easier removal.

- A ATXM20R + CTXM15R units
- a Indoor unit fan motor cover


A CTXA15A + CTXA15B units


- a Indoor unit fan motor cover
- Remove the rubber from the indoor unit. 3
- Remove the indoor unit fan motor from the indoor unit.
- To install the indoor unit fan motor, see "Repair procedures" [> 105].

To install the DC fan motor assembly

- 1 Install the indoor unit fan motor in its correct location on the fan.
- Install the rubber in front of the fan motor.
- Click the indoor unit fan motor cover on the indoor unit. If removed, install and tighten the screw on the right hand side of the fan motor cover.

- A ATXM20R + CTXM15R units
- Indoor unit fan motor cover

- A CTXA15A + CTXA15B units
- a Indoor unit fan motor cover
- Install the switch box, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action
Yes	No further actions required.

106

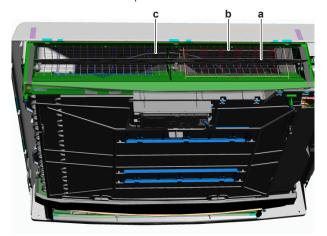
Is the problem solved?	Action
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.9.2 Floor standing indoor units

Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.


To perform a mechanical check of the turbo fan assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- **1** Remove the swing flap (by clicking it out).
- 2 Remove the air outlet protection net to create access to the turbo fan.

- a Swing flap
- **b** Air outlet protection net
- c Turbo fan
- **3** Slowly rotate the turbo fan using a long-length tool.
- **4** If the turbo fan touches the bellmounth, check if the fan motor is correctly mounted on its base, see "Repair procedures" [▶ 109].
- **5** Check the state of the turbo fan assembly for damage, deformations and cracks.

Is the turbo fan assembly damaged?	Action
Yes	Replace the turbo fan assembly, see "Repair procedures" [> 109].
No	Perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [> 107].

To perform a mechanical check of the DC fan motor assembly

Prerequisite: First perform a mechanical check of the propeller fan blade assembly, see "Checking procedures" [▶ 107].

- Slowly rotate the turbo fan using a long-length tool. Check that it rotates smoothly.
- **2** Check the friction of the DC fan motor shaft bearing.

Is the DC fan motor shaft friction normal?	Action
Yes	Perform an electrical check of the DC fan motor assembly, see "Checking procedures" [> 107].
No	Replace the DC fan motor assembly, see "Repair procedures" [▶ 109].

To perform an electrical check of the DC fan motor assembly

- First perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [> 107].
- Turn ON the power of the unit.
- **3** Activate **Cooling** or **Heating** operation via the user interface.
- **4** Check the functioning of the turbo fan.

Turbo fan	Action
Rotates continuously (without interruption)	DC fan motor assembly is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
Does not rotate or rotates for a short time	Continue with the next step.

- Turn OFF the unit via the user interface.
- Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- Check that the DC fan motor connector is properly connected to the indoor unit main PCB.
- Unplug the DC fan motor connector and measure the resistance between the pins 1-2, 1-3, and 2-3 of the DC fan motor connector.

Result: All measurements MUST be 84.9 $^{\sim}$ 97.7 Ω .

- Set the Megger voltage to 500 V DC or 1000 V DC.
- 10 Measure the insulation resistance for the motor terminals. Measurements between each phase and fan motor body (e.g. axle) MUST be >1000 M Ω .

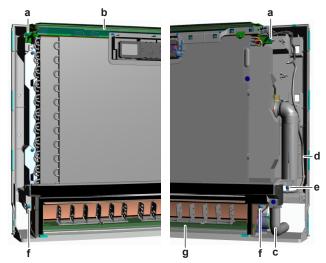
Are the measured resistance values correct?	Action
Yes	Perform a check of the indoor unit main PCB, see "4.11.1 Checking procedures" [> 121].
No	Replace the DC fan motor, see "Repair procedures" [> 109].

Problem solved?

After all checking procedures listed above have been performed:

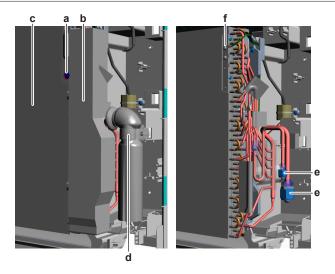
Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

Repair procedures

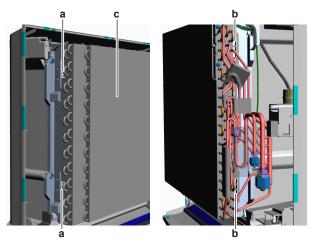

To remove the turbo fan assembly

Prerequisite: First perform pump down operation. Close the refrigerant circuit stop valves when done.

Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- 2 Remove the switch box, see "4.18 Plate work" [> 185].
- **3** Remove the 2 screws and remove the upper air outlet assembly.

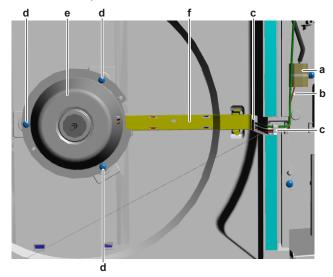


- a Screw (upper air outlet assy)
- **b** Upper air outlet assy
- c Drain hose
- **d** Damper motor wiring harness
- e Screw (tie strap)
- **f** Screw (lower air outlet assy)
- **g** Lower air outlet assy
- 4 Put a small drain pan (or container) under the drain hose.
- **5** Remove the screw from the fixation bracket and pull the drain hose downwards to remove it from the indoor unit.
- **6** Route the damper motor wiring harness out of the harness retainers and remove the screw to disconnect the tie strap from the unit.
- **7** Remove the 2 screws and remove the lower air outlet assembly.
- **8** Remove the screw and remove the plate from the indoor unit heat exchanger.

- a Screw (plate)
- Plate
- Indoor unit heat exchanger
- **d** Piping fixture
- e Flared joint
- f Screw (ground wire)
- Release the 2 hooks and remove the piping fixture.
- 10 Release the flared joint of the (refrigerant) liquid pipe and the gas pipe. Disconnect the liquid and gas pipes from the refrigerant field piping. Plug the refrigerant field pipes to prevent dirt from entering the pipes.
- 11 Remove the screw and disconnect the ground wire from the indoor unit heat exchanger.
- **12** Unfasten the 2 hooks on the left side of the indoor heat exchanger.

- Hook (left side) а
- Hook (right side)
- Indoor unit heat exchanger
- 13 Unfasten the 2 hooks on the right side of the indoor heat exchanger and remove the indoor unit heat exchanger.
- 14 Remove the 4 screws and remove the bellmouth from the indoor unit.

- a Screw (bellmouth)
- **b** Bellmouth
- c Nut (turbo fan assy)
- d Turbo fan assy
- **15** Remove the nut that fixes the turbo fan assembly.
- **16** Pull and remove the turbo fan assembly from the DC fan motor assembly.

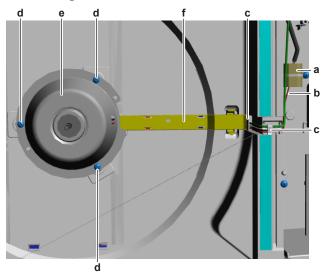

INFORMATION

Use a pulley remover if the propeller cannot be removed manually.

17 To install the turbo fan assembly, see "Repair procedures" [▶ 109].

To remove the DC fan motor assembly

- 1 Remove the turbo fan assembly from the DC fan motor assembly, see "Repair procedures" [▶ 109].
- **2** Cut the tie strap and unlock the ferrite core.


- a Ferrite core
- **b** DC fan motor wiring harness
- **c** Hook
- **d** Screw (fan motor cover)
- e Fan motor cover
- f Wiring harness retainer
- **3** Route the DC fan motor wiring harness out of the hooks.

- Remove the 3 screws and remove the fan motor cover.
- Unfasten the hooks and remove the wiring harness retainer.
- Route the DC fan motor wiring harness out of the hooks (behind the harness retainer).
- Remove the DC fan motor assembly from the indoor unit.
- To install the DC fan motor assembly, see "Repair procedures" [> 109].

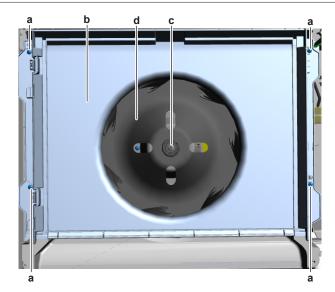
To install the DC fan motor assembly

- 1 Install the DC fan motor assembly on the fan motor cover.
- Install the fan motor cover with DC fan motor assembly on the correct location.
- Install and tighten the 3 screws to fix the fan motor cover.

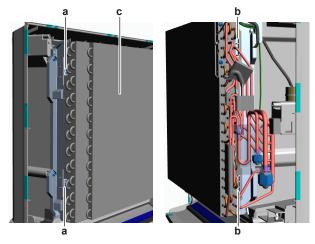
- a Ferrite core
- **b** DC fan motor wiring harness
- Hook
- Screw (fan motor cover)
- Fan motor cover
- Wiring harness retainer
- Route the DC fan motor wiring harness through the hooks and install the harness retainer. Make sure the wiring harness is also routed through the hooks located behind the harness retainer.
- **5** Lock the ferrite core on the DC fan motor wiring harness.
- Install a new tie strap to fix the ferrite core to the indoor unit.
- Install the turbo fan assembly, see "Repair procedures" [▶ 109].

To install the turbo fan assembly

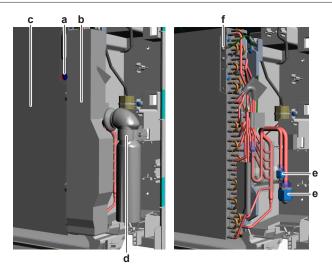
Install the turbo fan assembly on the DC fan motor assembly.



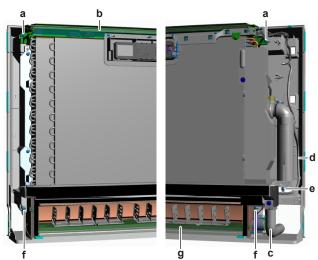
CAUTION


Do NOT install a damaged turbo fan assembly.

2 Install and tighten the nut to fix the turbo fan assembly.



- a Screw (bellmouth)
- **b** Bellmouth
- c Nut (turbo fan assy)
- d Turbo fan assy
- **3** Install the bellmouth in the correct location on the indoor unit. Install and tighten the 4 screws to fix the bellmouth.
- **4** Slowly rotate the turbo fan and check that it does NOT touch the bellmouth. Repair as needed.
- 5 Install the indoor unit heat exchanger on the 2 hooks on the right side.



- **a** Hook (left side)
- **b** Hook (right side)
- c Indoor unit heat exchanger
- **6** Route the fan motor ground wire in front of the indoor unit heat exchanger.
- **7** Carefully move the indoor unit heat exchanger to the correct position and install it on the 2 hooks on the left side.
- **8** Connect the ground wire to the indoor unit heat exchanger using the screw.

- a Screw (plate)
- Plate b
- Indoor unit heat exchanger
- Piping fixture
- e Flared joint
- **f** Screw (ground wire)
- 9 Make sure that the refrigerant field piping connections are clean and not damaged. Remove the caps and properly connect the field piping to the liquid and gas pipes of the indoor unit. Tighten the flared joints.
- 10 Correctly install the insulation on the liquid and gas pipes. Install the piping fixture.
- 11 Install the plate in the correct location on the indoor unit heat exchanger. Install and tighten the screw to fix the plate.
- 12 Install the lower air outlet assembly in the correct location. Install and tighten the 2 screws.

- a Screw (upper air outlet assy)
- Upper air outlet assy
- c Drain hose
- Damper motor wiring harness
- e Screw (tie strap)
- **f** Screw (lower air outlet assy)
- **g** Lower air outlet assy
- 13 Route the damper motor wiring harness through the appropriate harness retainers.
- **14** Install the screw to connect the tie strap to the unit.

114

- **15** Connect the drain hose to the lower air outlet assembly.
- 16 Install the drain hose fixation bracket. Install and tighten the screw.
- 17 Install the upper air outlet assembly in the correct location. Install and tighten the 2 screws.
- **18** Install the switch box, see "4.18 Plate work" [▶ 185].
- **19** Perform a pressure test on the piping of the indoor unit and vacuüm. Open the stop valves when done.
- **20** Add refrigerant to the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [> 107] of the indoor unit fan motor and continue with the next procedure.

4.10 Indoor unit heat exchanger

4.10.1 Checking procedures

To perform a mechanical check of the indoor unit heat exchanger

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Visually check:
 - For any signs of damage or corrosion. Replace the heat exchanger as needed, see "4.10.2 Repair procedures" [▶ 116].
 - For bended hair fins. Straighten as needed.
- **2** Check the heat exchanger for leaks. Use and electronic leak tester or soap test method.

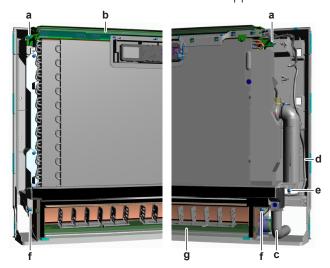
CAUTION

Do NOT use soap containing Chlorine or Sulfide as this may result in corrosion of the copper piping.

Any leaks found?	Action
Yes	Replace the indoor unit heat exchanger, see "4.10.2 Repair procedures" [> 116].
No	Heat exchanger is OK. Return to the troubleshooting of the specific error and continue with the next step.

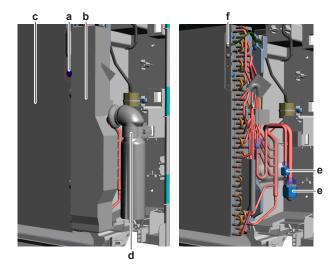
4.10.2 Repair procedures

To remove the indoor unit heat exchanger

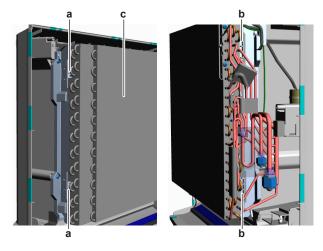

Floor standing indoor units

Prerequisite: First perform pump down operation. Close the refrigerant circuit stop valves when done.

Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

- Remove the required plate work, see "4.18 Plate work" [> 185].
- Remove the switch box, see "4.18 Plate work" [▶ 185].
- Remove the 2 screws and remove the upper air outlet assembly.



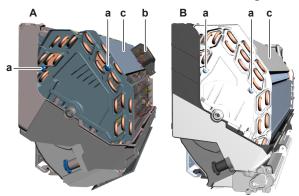
- a Screw (upper air outlet assy)
- **b** Upper air outlet assy
- **c** Drain hose
- **d** Damper motor wiring harness
- Screw (tie strap)
- Screw (lower air outlet assy)
- Lower air outlet assy
- **4** Put a small drain pan (or container) under the drain hose.
- Remove the screw from the fixation bracket and pull the drain hose downwards to remove it from the indoor unit.
- 6 Route the damper motor wiring harness out of the harness retainers and remove the screw to disconnect the tie strap from the unit.
- Remove the 2 screws and remove the lower air outlet assembly.
- Remove the screw and remove the plate from the indoor unit heat exchanger.

- a Screw (plate)
- **b** Plate
- c Indoor unit heat exchanger
- **d** Piping fixture
- e Flared joint
- f Screw (ground wire)
- **9** Release the 2 hooks and remove the piping fixture.
- 10 Release the flared joint of the (refrigerant) liquid pipe and the gas pipe. Disconnect the liquid and gas pipes from the refrigerant field piping. Plug the refrigerant field pipes to prevent dirt from entering the pipes.
- **11** Remove the screw and disconnect the ground wire from the indoor unit heat exchanger.
- **12** Unfasten the 2 hooks on the left side of the indoor heat exchanger.

- a Hook (left side)
- **b** Hook (right side)
- c Indoor unit heat exchanger
- **13** Unfasten the 2 hooks on the right side of the indoor heat exchanger and remove the indoor unit heat exchanger.
- **14** To install the indoor unit heat exchanger, see "4.10.2 Repair procedures" [▶ 116].

Wall mounted indoor units

Prerequisite: First perform pump down operation. Close the refrigerant circuit stop valves when done.

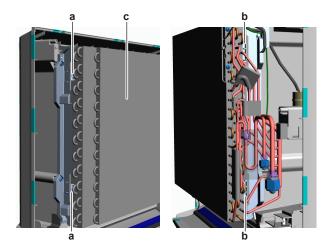

Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

Prerequisite: Stop the unit operation via the user interface.

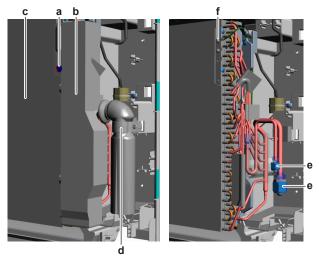
Prerequisite: Turn OFF the respective circuit breaker.

- Remove the required plate work, see "4.18 Plate work" [> 185].
- **2** Disconnect the wiring from the wiring terminals.
- **3** Remove the insulation from the liquid and gas pipes.
- Release the flared joint of the (refrigerant) liquid pipe and the gas pipe. Disconnect the liquid and gas pipes from the refrigerant field piping. Plug the refrigerant field pipes to prevent dirt from entering the pipes.
- 5 Loosen and remove the screw between the unit and the installation plate (mounting plate) and remove the unit from the wall.
- 6 Remove the switch box, see "4.18 Plate work" [▶ 185].
- 7 For ATXM20R and CTXM15R units ONLY: Remove the screw and remove the streamer unit assembly from the indoor unit.
- **8** Remove the indoor unit fan motor, see "Repair procedures" [▶ 105].
- Remove the screws that fix the heat exchanger to the side plate.

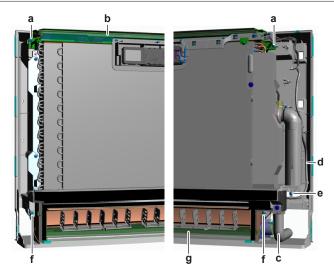
- **A** ATXM20R + CTXM15R units
- CTXA15A + CTXA15B units
- **a** Screw
- **b** Streamer unit assembly
- c Indoor unit heat exchanger
- **10** Lift and remove the indoor unit heat exchanger from the unit.
- 11 To install the indoor unit heat exchanger, see "4.10.2 Repair procedures" [> 116].


To install the indoor unit heat exchanger

Floor standing indoor units

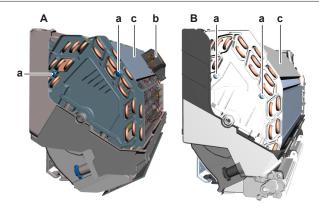

1 Install the indoor unit heat exchanger on the 2 hooks on the right side.

118



- a Hook (left side)
- **b** Hook (right side)
- c Indoor unit heat exchanger
- 2 Route the fan motor ground wire in front of the indoor unit heat exchanger.
- **3** Carefully move the indoor unit heat exchanger to the correct position and install it on the 2 hooks on the left side.
- **4** Connect the ground wire to the indoor unit heat exchanger using the screw.

- a Screw (plate)
- **b** Plate
- c Indoor unit heat exchanger
- d Piping fixture
- e Flared joint
- f Screw (ground wire)
- **5** Make sure that the refrigerant field piping connections are clean and not damaged. Remove the caps and properly connect the field piping to the liquid and gas pipes of the indoor unit. Tighten the flared joints.
- **6** Correctly install the insulation on the liquid and gas pipes. Install the piping fixture.
- 7 Install the plate in the correct location on the indoor unit heat exchanger. Install and tighten the screw to fix the plate.
- Install the lower air outlet assembly in the correct location. Install and tighten the 2 screws.


- a Screw (upper air outlet assy)
- Upper air outlet assy
- Drain hose
- **d** Damper motor wiring harness
- **e** Screw (tie strap)
- **f** Screw (lower air outlet assy)
- g Lower air outlet assy
- **9** Route the damper motor wiring harness through the appropriate harness retainers.
- **10** Install the screw to connect the tie strap to the unit.
- 11 Connect the drain hose to the lower air outlet assembly.
- **12** Install the drain hose fixation bracket. Install and tighten the screw.
- 13 Install the upper air outlet assembly in the correct location. Install and tighten the 2 screws.
- 14 Install the switch box, see "4.18 Plate work" [> 185].
- 15 Perform a pressure test on the piping of the indoor unit and vacuüm. Open the stop valves when done.
- **16** Add refrigerant to the refrigerant circuit, "5.2.2 Repair procedures" [> 272].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

Wall mounted indoor units

- Install the indoor unit heat exchanger in the correct location on the indoor
- Install and tighten the screws to fix the heat exchanger to the side plate.

- A ATXM20R + CTXM15R units
- **B** CTXA15A + CTXA15B units
- a Screw
- **b** Streamer unit assembly
- c Indoor unit heat exchanger
- 3 Install the indoor unit fan motor, see "Repair procedures" [▶ 105].
- **4** For ATXM20R and CTXM15R units ONLY: Install the streamer unit assembly in the correct location. Install and tighten the screw to fix the streamer unit assembly.
- 5 Install the switch box, see "4.18 Plate work" [▶ 185].
- 6 Install the indoor unit in the correct location on the wall. Install and tighten the screw to fix the indoor unit to the installation plate (mounting plate).
- 7 Make sure that the refrigerant field piping connections are clean and not damaged. Remove the caps and properly connect the field piping to the liquid and gas pipes of the indoor unit. Tighten the flared joints.
- 8 Correctly install the insulation on the liquid and gas pipes.
- **9** Connect the wiring to the wiring terminals of the indoor unit.
- **10** Perform a pressure test on the piping of the indoor unit and vacuüm. Open the stop valves when done.
- **11** Add refrigerant to the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.11 Indoor unit main PCB

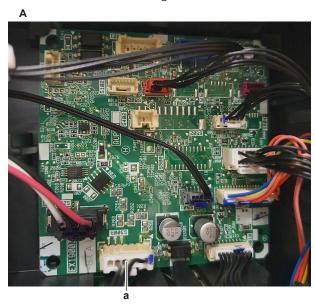
4.11.1 Checking procedures

INFORMATION

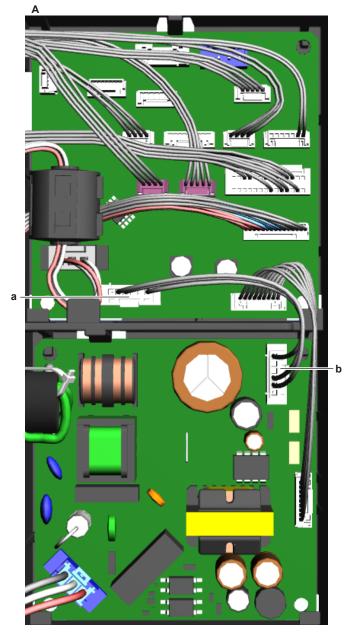
It is recommended to perform the checks in the listed order.

To perform a power check of the indoor unit main PCB

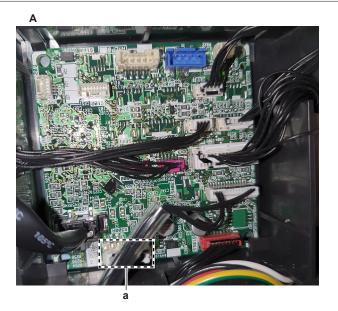
Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].


- Turn ON the power of the unit.
- Measure the voltage between the pins 1-4 of the connector S300A on the indoor unit main PCB.

Result: The measured voltage MUST be 324 V DC.



- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- Connector S300A

- Wall mounted indoor unit CTXA15A + CTXA15B
- Connector S300A
- **b** Connector S102

- A Floor standing indoor unit
- Connector S300A

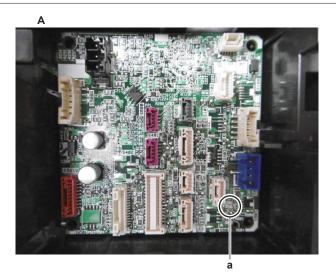
Is the measured voltage on the indoor unit main PCB correct?	Action
Yes	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit main PCB and continue with the next procedure.
No	Continue with the next step.

Measure the output voltage between the pins 1-4 of the connector S102 on the indoor unit power PCB.

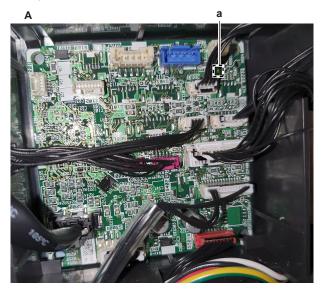
Result: The measured voltage MUST be 324 V DC.

Output voltage on indoor unit power PCB correct?	Action
Yes	Correct the wiring between the indoor unit main PCB and indoor unit power PCB, see "5.1.2 Repair procedures" [> 266].
No	Perform a check of the indoor unit power PCB, see "4.12.1 Checking procedures" [> 131].

To check the HAP LED of the indoor unit main PCB


INFORMATION

NO HAP LED available on the main PCB of the indoor units ATXM20R and CTXM15R.


Prerequisite: First perform a power check of the indoor unit main PCB, see "4.11.1 Checking procedures" [▶ 121].

1 Locate the HAP LED on the indoor unit main PCB.

- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- a HAP LED

- A Floor standing indoor unit
- a HAP LED

INFORMATION

Make sure the correct software is available on the PCB. If NOT, update using the updater tool.

Does the HAP LED blink in regular intervals (1 second ON/1 second OFF)?	Action
Yes	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit main PCB and continue with the next procedure.
No	Replace the indoor unit main PCB, see "4.11.2 Repair procedures" [▶ 126].

To check if the correct spare part is installed

Prerequisite: First perform all earlier checks of the indoor unit main PCB, see "4.11.1 Checking procedures" [▶ 121].

1 Visit your local spare parts webbank.

Enter the model name of your unit and check if the installed spare part number corresponds with the spare part number indicated in the webbank.

Is the correct spare part for the indoor unit main PCB installed?	Action
Yes	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit main PCB and continue with the next procedure.
No	Replace the indoor unit main PCB, see "4.11.2 Repair procedures" [▶ 126].

To check the wiring of the indoor unit main PCB

Prerequisite: First perform all earlier checks of the indoor unit main PCB, see "4.11.1 Checking procedures" [▶ 121].

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Check that all wires are properly connected and that all connectors are fully plugged-in.
- **2** Check that no connectors or wires are damaged.
- Check that the wiring corresponds with the wiring diagram, see "7.2 Wiring diagram" [> 289].

INFORMATION

Correct the wiring as needed.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit main PCB and continue with the next procedure.

Problem solved?

After all checking procedures listed above have been performed:

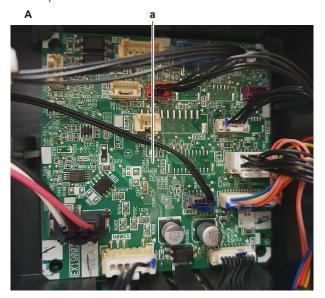
Is the problem solved?	Action
Yes	No further actions required.
	Return to the troubleshooting of the specific error and continue with the next procedure.

4.11.2 Repair procedures

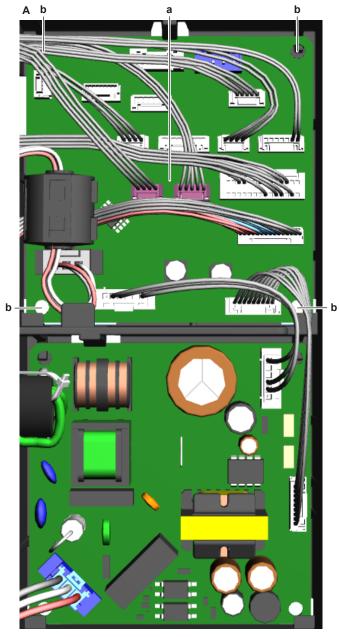
To remove the indoor unit main PCB

Prerequisite: Stop the unit operation via the user interface.

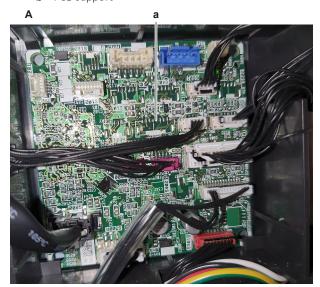
Prerequisite: Turn OFF the respective circuit breaker.


Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Disconnect all connectors from the indoor unit main PCB.

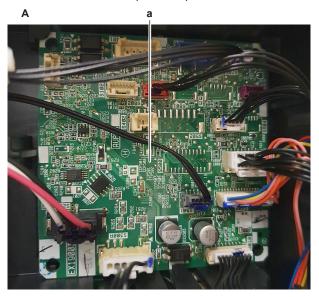


126

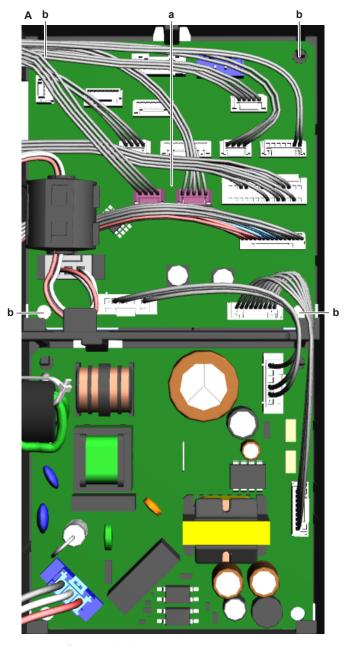

- 2 Carefully pull the indoor unit main PCB from the PCB supports.
- **3** Carefully click the indoor unit main PCB out of the PCB retainers.

- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Indoor unit main PCB

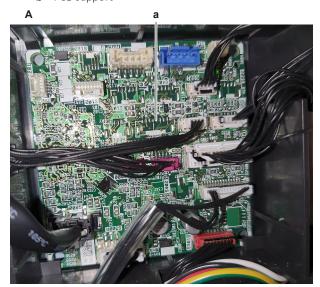
- Wall mounted indoor unit CTXA15A + CTXA15B
- Indoor unit main PCB PCB support



- A Floor standing indoor unit
- a Indoor unit main PCB
- 4 Remove the indoor unit main PCB from the indoor unit.
- 5 To install the indoor unit main PCB, see "4.11.2 Repair procedures" [▶ 126].


To install the indoor unit main PCB

- 1 Install the indoor unit main PCB in the correct location on the PCB supports.
- 2 Install the indoor unit main PCB in the correct location in the switch box. Make sure the PCB is correctly fixed by the PCB retainers.



- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Indoor unit main PCB

- Wall mounted indoor unit CTXA15A + CTXA15B
- Indoor unit main PCB PCB support

- A Floor standing indoor unit
- a Indoor unit main PCB
- **3** Connect all connectors to the indoor unit main PCB.

INFORMATION

Use the wiring diagram and connection diagram for correct installation of the connectors, see "7.2 Wiring diagram" [> 289].

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit main PCB and continue with the next procedure.

4.12 Indoor unit power PCB

4.12.1 Checking procedures

INFORMATION

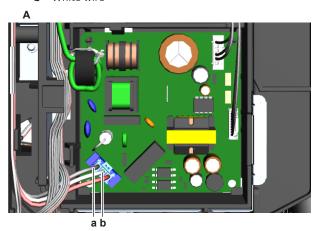
It is recommended to perform the checks in the listed order.

To perform a power check of the indoor unit power PCB

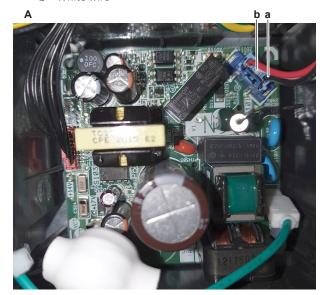
Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].


- 1 Turn ON the power of the unit.
- 2 Measure the voltage between the black and white wires of connector S101 on the indoor unit power PCB.

Result: The measured voltage MUST be 230 V AC.



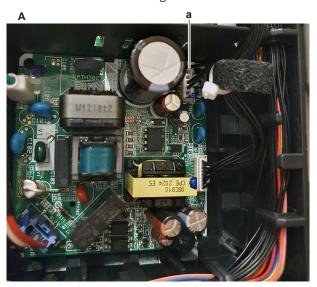
- - **A** Wall mounted indoor unit ATXM20R + CTXM15R
 - Black wire
- White wire

- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- Black wire
- **b** White wire

- Floor standing indoor unit
- Black wire
- White wire

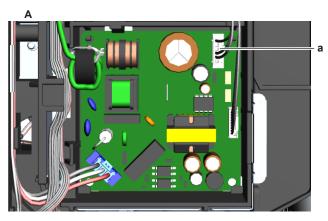
Is the measured voltage on the indoor unit power PCB correct?	Action
Yes	Return to "4.12.1 Checking procedures" [> 131] of the indoor unit power PCB and continue with the next procedure.
No	Continue with the next step.

3 Check the power supply to the indoor unit, see "5.1.1 Checking procedures" [▶ 264].

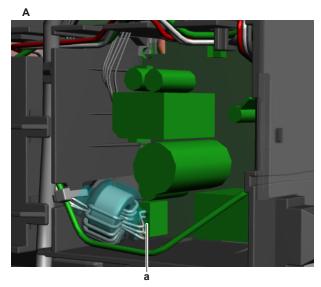

Is the power supply to the indoor unit correct?	Action
Yes	Correct the wiring between the power supply terminal of the indoor unit and the indoor unit power PCB, see "4.12.2 Repair procedures" [> 137].
No	See "To check the power supply to the indoor unit" ("5.1.2 Repair procedures" [> 266]) for the next steps.

To perform an electrical check of the indoor unit power PCB

Prerequisite: First perform a power check of the indoor unit power PCB, see "4.12.1 Checking procedures" [> 131].


1 Measure the voltage between the pins 1-4 of the connector \$102.

Result: The measured voltage MUST be 324 VDC.



- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Connector S102

- Wall mounted indoor unit CTXA15A + CTXA15B
- Connector S102

- A Floor standing indoor unit
- a Connector S102

Is the measured voltage on the indoor unit power PCB correct?	Action
Yes	Return to "4.12.1 Checking procedures" [> 131] of the indoor unit power PCB and continue with the next procedure.
No	Replace the indoor unit power PCB, see "4.12.2 Repair procedures" [▶ 137].

To check if the correct spare part is installed

Prerequisite: First perform all earlier checks of the indoor unit main PCB, see "4.12.1 Checking procedures" [▶ 131].

- 1 Visit your local spare parts webbank.
- Enter the model name of your unit and check if the installed spare part number corresponds with the spare part number indicated in the webbank.

Is the correct spare part for the indoor unit power PCB installed?	Action
Yes	Return to "4.12.1 Checking procedures" [> 131] of the indoor unit power PCB and continue with the next procedure.
No	Replace the indoor unit power PCB, see "4.12.2 Repair procedures" [▶ 137].

To check the wiring of the indoor unit power PCB

Prerequisite: First perform all earlier checks of the indoor unit main PCB, see "4.12.1 Checking procedures" [> 131].

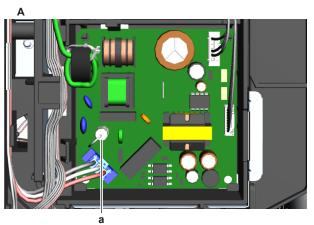
Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

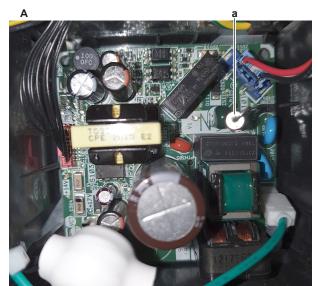
- 1 Check that all wires are properly connected and that all connectors are fully plugged-in.
- **2** Check that no connectors or wires are damaged.
- 3 Check that the wiring corresponds with the wiring diagram, see "7.2 Wiring diagram" [▶ 289].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit power PCB and continue with the next procedure.

To check the fuse of the indoor unit main PCB


Prerequisite: First perform all earlier checks of the indoor unit main PCB, see "4.12.1 Checking procedures" [> 131].

1 Measure the continuity of the fuse. If no continuity is measured, the fuse has blown.



- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Fuse F1U

- A Wall mounted indoor unit CTXA15A + CTXA15B
- a Fuse F1U

- A Floor standing indoor unit
- **a** Fuse F1U

Blown fuse on the indoor unit power PCB?	Action
Yes	Replace the blown fuse, see "4.12.2 Repair procedures" [▶ 137].
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit power PCB and continue with the next procedure.

Problem solved?

After all checking procedures listed above have been performed:

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.12.2 Repair procedures

To correct the wiring from the indoor unit power supply terminal to the indoor unit power PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

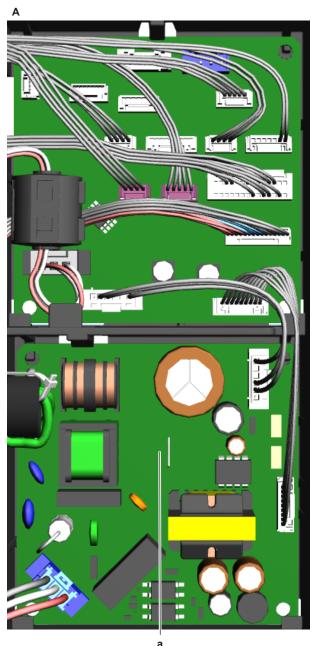
1 Correct the wiring from the indoor unit power supply terminal to the indoor unit power PCB, see "7.2 Wiring diagram" [▶ 289].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit power PCB and continue with the next procedure.

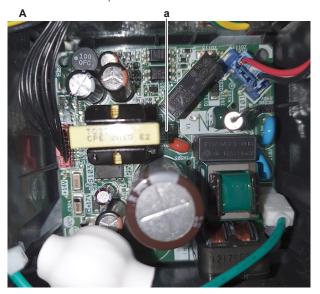
To remove the indoor unit power PCB


Prerequisite: Stop the unit operation via the user interface.

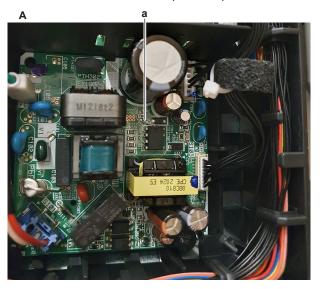
Prerequisite: Turn OFF the respective circuit breaker.

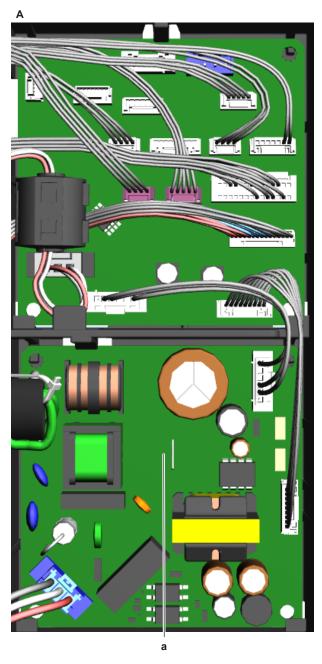

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect all connectors from the indoor unit power PCB.
- **2** Carefully click the indoor unit power PCB out of the PCB retainers.

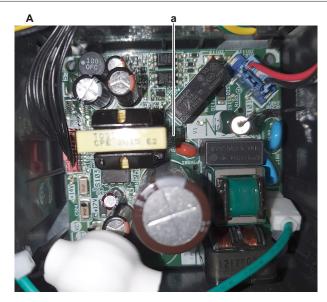


- A Wall mounted indoor unit ATXM20R + CTXM15Ra Indoor unit power PCB


- Wall mounted indoor unit CTXA15A + CTXA15B
- a Indoor unit power PCB


- A Floor standing indoor unit
- a Indoor unit power PCB
- **3** Remove the indoor unit power PCB from the indoor unit.
- **4** To install the indoor unit power PCB, see "4.12.2 Repair procedures" [▶ 137].

To install the indoor unit power PCB


1 Install the indoor unit power PCB in the correct location in the switch box. Make sure the PCB is correctly fixed by the PCB retainers.

- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- **a** Indoor unit power PCB

- A Wall mounted indoor unit CTXA15A + CTXA15Ba Indoor unit power PCB

- A Floor standing indoor unit
- a Indoor unit power PCB
- **2** Connect all connectors to the indoor unit power PCB.

INFORMATION

Use the wiring diagram and connection diagram for correct installation of the connectors, see "7.2 Wiring diagram" [> 289].

WARNING

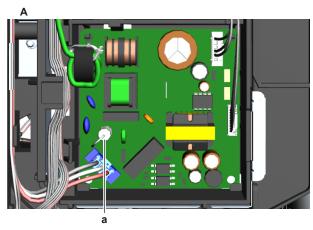
When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit power PCB and continue with the next procedure.

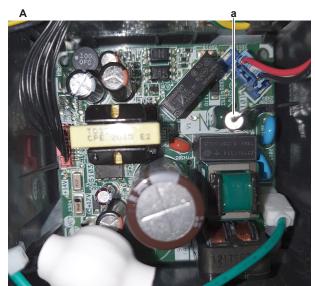
To remove a fuse of the indoor unit power PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.


Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Remove the fuse from the PCB.



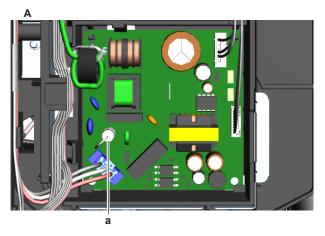
- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Fuse F1U

- A Wall mounted indoor unit CTXA15A + CTXA15B
- a Fuse F1U

- A Floor standing indoor unit
- a Fuse F1U
- 2 To install a fuse on the indoor unit power PCB, see "4.12.2 Repair procedures" [▶ 137].

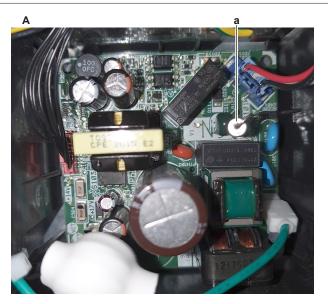
To install a fuse on the indoor unit power PCB

1 Install the fuse on the correct location on the PCB.



CAUTION

Make sure the fuse is plugged-in correctly (contact with the fuse holder).



- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- **a** Fuse F1U

- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- a Fuse F1U

- Floor standing indoor unit
- a Fuse F1U

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.11.1 Checking procedures" [> 121] of the indoor unit power PCB and continue with the next procedure.

4.13 Intelligent eye sensor

INFORMATION

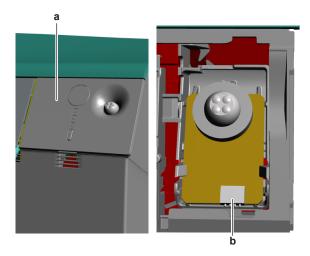
ONLY for ATXM20R and CTXM15R units.

4.13.1 Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a power check of the intelligent eye sensor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- **2** Turn ON the power of the unit.
- **3** Remove the control panel from the indoor unit.
- 4 Measure the power supply voltage between the pins 1-2 on the intelligent eye sensor connector CN.

Result: The measured voltage MUST be 4.75~5.25 V DC.

- **a** Control panel
- **b** Intelligent eye sensor connector CN

Is the measured power supply voltage correct?	Action
Yes	Perform an electrical check of the intelligent eye sensor, see "4.13.1 Checking procedures" [> 144].
No	Continue with the next step.

5 Measure the output voltage between between the pins 1-2 on the connector S602 on the indoor unit main PCB.

Result: The measured voltage MUST be 4.75~5.25 V DC.

Is the output voltage on the indoor unit main PCB correct?	Action
Yes	Replace the intelligent eye sensor wiring harness, see "4.13.2 Repair procedures" [> 146].
No	Perform a check of the indoor unit main PCB, see "4.11.1 Checking procedures" [> 121].

To perform an electrical check of the intelligent eye sensor

Prerequisite: First perform a power check of the intelligent eye sensor, see "4.13.1 Checking procedures" [> 144].

- **1** Leave the intelligent eye sensor connector S602 connected to the indoor unit main PCB.
- **2** Wave your hand in front of the left side (when facing the indoor unit) of the intelligent eye sensor and measure the voltage between the following pins of the intelligent eye sensor connector S602.

Result: The measured voltage MUST be:

Connector pins	Voltage
2-3	4.25~4.75 V DC
2-4	0 V DC

3 Wave your hand in front of the right side (when facing the indoor unit) of the intelligent eye sensor and measure the voltage between the following pins of the intelligent eye sensor connector S602.

Result: The measured voltage MUST be:

Connector pins	Voltage
2-3	0 V DC
2-4	4.25~4.75 V DC

Is the measured voltage correct?	Action
Yes	Intelligent eye sensor is OK. Return to troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

Again, wave your hand in front of the left side (when facing the indoor unit) of the intelligent eye sensor and measure the voltage between the following pins of the intelligent eye sensor connector CN.

Result: The measured voltage MUST be:

Connector pins	Voltage
2-3	0 V DC
2-4	4.25~4.75 V DC

5 Again, wave your hand in front of the right side (when facing the indoor unit) of the intelligent eye sensor and measure the voltage between the following pins of the intelligent eye sensor connector CN.

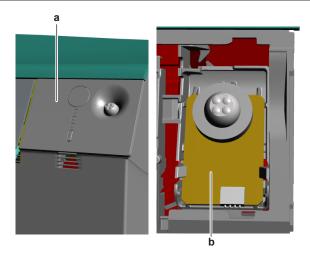
Result: The measured voltage MUST be:

Connector pins	Voltage
2-3	4.25~4.75 V DC
2-4	0 V DC

Is the measured voltage on the intelligent eye sensor correct?	Action
Yes	Replace the intelligent eye sensor wiring harness, see "4.13.2 Repair procedures" [> 146].
No	Replace the intelligent eye sensor, see "4.13.2 Repair procedures" [> 146].

4.13.2 Repair procedures

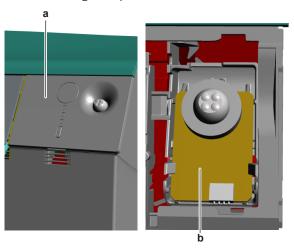
To remove the intelligent eye sensor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Remove the control panel from the indoor unit.



- **a** Control panel
- **b** Intelligent eye sensor PCB
- **2** Disconnect the connector from the intelligent eye sensor PCB.
- **3** Carefully click the complete intelligent eye sensor PCB out of the indoor unit.
- **4** To install the intelligent eye sensor PCB, see "4.13.2 Repair procedures" [▶ 146].

To install the intelligent eye sensor

1 Click the intelligent eye sensor PCB on the indoor unit.

- a Control panel
- **b** Intelligent eye sensor PCB
- **2** Connect the harness to the intelligent eye sensor PCB.
- **3** Install the control panel on the indoor unit.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To remove the intelligent eye sensor wiring harness

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

- Disconnect the wiring harness from the intelligent eye sensor (PCB).
- 2 Disconnect the wiring harness connector from the indoor unit main PCB.
- **3** Cut all tie straps (if any) that fix the wiring harness.
- Route the wiring harness out of the harness retainers and remove the intelligent eye sensor wiring harness.
- To install the intelligent eye sensor wiring harness, see "4.13.2 Repair procedures" [> 146].

To install the intelligent eye sensor wiring harness

1 Connect the wiring harness connector to the indoor unit main PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

- Route the wiring harness through the appropriate harness retainers towards the intelligent eye sensor (PCB).
- Connect the wiring harness to the intelligent eye sensor (PCB).
- Fix the wiring harness using new tie straps (if needed).

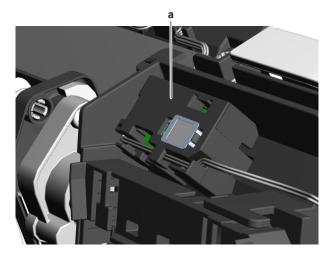
Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.14 Intelligent thermal sensor

INFORMATION

ONLY for CTXA15A and CTXA15B units.

4.14.1 Checking procedures


To perform a power check of the intelligent thermal sensor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- **2** Turn ON the power of the unit.
- 3 Carefully click the complete intelligent thermal sensor assembly out of the indoor unit.

- a Intelligent thermal sensor assembly
- **4** Measure the power supply voltage between the pins 1-4 on the intelligent thermal sensor connector S800.

Result: The measured voltage MUST be 4~6 V DC.

Is the measured power supply voltage correct?	Action
Yes	Skip the next step.
No	Continue with the next step.

5 Measure the output voltage between between the pins 1-4 on the connector on the indoor unit main PCB.S600

Result: The measured voltage MUST be 4~6 V DC.

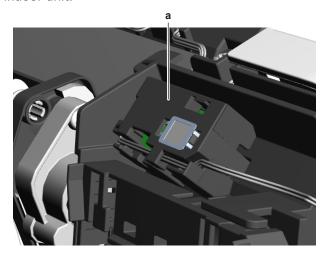
Is the output voltage on the indoor unit main PCB correct?	Action
Yes	Replace the intelligent thermal sensor wiring harness, see "4.14.2 Repair procedures" [> 149].
No	Perform a check of the indoor unit main PCB, see "4.11.1 Checking procedures" [> 121].

6 As there are no further check procedures for this component, first perform a check of the indoor unit PCB to check if the intelligent thermal sensor needs to be replaced. See "4.11.1 Checking procedures" [▶ 121].

After complete check of the indoor unit PCB, is the problem solved?	Action
Yes	No further actions required.
No	Replace the intelligent thermal sensor, see "4.14.2 Repair procedures" [> 149].

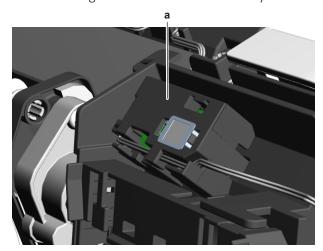
4.14.2 Repair procedures

To remove the intelligent thermal sensor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].


Carefully click the complete intelligent thermal sensor assembly out of the indoor unit.

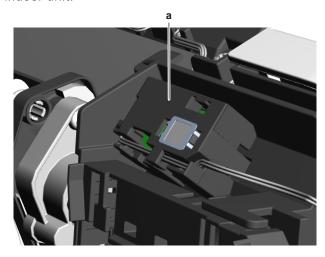
- a Intelligent thermal sensor assembly
- **2** Disconnect the wiring harness from the intelligent thermal sensor PCB.
- Click the intelligent thermal sensor PCB out of the bracket.
- install the intelligent thermal sensor, see "4.14.2 Repair procedures" [> 149].

To install the intelligent thermal sensor

- 1 Connect the wiring harness to the connector of the intelligent thermal sensor
- 2 Install the intelligent thermal sensor PCB in the bracket.
- Route the wiring harness along the harness retainers on the intelligent thermal sensor assembly.
- Click the intelligent thermal sensor assembly on the indoor unit.

a Intelligent thermal sensor assembly

Is the problem solved?	Action		
Yes	No further actions required.		
No	Return to the troubleshooting of the specific error and continue with the next procedure.		


To remove the intelligent thermal sensor wiring harness

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

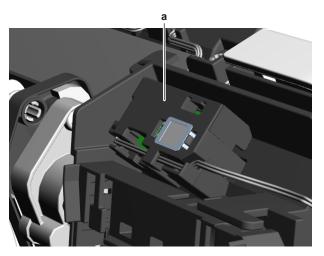
1 Carefully click the complete intelligent thermal sensor assembly out of the indoor unit.

a Intelligent thermal sensor assembly

- **2** Disconnect the wiring harness from the intelligent thermal sensor PCB.
- **3** Disconnect the wiring harness connector from the indoor unit main PCB.
- **4** Cut all tie straps (if any) that fix the wiring harness.
- **5** Route the wiring harness out of the harness retainers and remove the intelligent thermal sensor wiring harness.
- 6 To install the intelligent thermal sensor wiring harness, see "4.14.2 Repair procedures" [▶ 149].

To install the intelligent thermal sensor wiring harness

1 Connect the wiring harness connector to the indoor unit main PCB.



WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

- **2** Connect the wiring harness to the intelligent thermal sensor PCB.
- **3** Route the wiring harness along the harness retainers on the intelligent thermal sensor assembly.
- 4 Click the intelligent thermal sensor assembly on the indoor unit.

Intelligent thermal sensor assembly

5 Fix the wiring harness using new tie straps (if needed).

Is the problem solved?	Action		
Yes	No further actions required.		
No	Return to the troubleshooting of the specific error and continue with the next procedure.		

4.15 Main PCB

4.15.1 2(A)MXM40+50 units

Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a power check of the main PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Prerequisite: Access the switch box, see "4.18 Plate work" [▶ 185].

1 Turn ON the power of the unit.

2 Measure the voltage between the black and white wires.

Result: The measured voltage MUST be 230 V AC.

- **a** Black wire
- **b** White wire

Is the measured voltage on the PCB correct?	Action
Yes	Return to "Checking procedures" [> 152] of the PCB and continue with the next procedure.
No	Continue with the next step.

3 Check the power supply to the unit, see "5.1.1 Checking procedures" [▶ 264].

Does the unit receive power?	Action
Yes	Replace the main PCB, see "Repair procedures" [▶ 159].
No	Adjust the power supply to the unit, see "5.1.2 Repair procedures" [▶ 266].

To check the HAP LED of the main PCB

Prerequisite: First check the power supply to the main PCB, see "Checking procedures" [▶ 152].

1 Locate the HAP LED on the main PCB.

a HAP LED

INFORMATION

Make sure the correct software is available on the PCB. If NOT, update using the updater tool.

Does the HAP LED blink in regular intervals (1 second ON/1 second OFF)?	Action
Yes	Return to "Checking procedures" [> 152] of the main PCB and continue with the next procedure.
No	Replace the main PCB, see "Repair procedures" [> 159].

To check if the correct spare part is installed

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [▶ 152].

- 1 Visit your local spare parts webbank.
- 2 Enter the model name of your unit and check if the installed spare part number corresponds with the spare part number indicated in the webbank.

NOTICE

Also check that the correct spare part is installed for the capacity adapter.

Is the correct spare part for the PCB installed?	Action
Yes	Return to "Checking procedures" [> 152] of the main PCB and continue with the next procedure.
No	Replace the main PCB, see "Repair procedures" [> 159].

To check the wiring of the main PCB

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [> 152].

Prerequisite: Stop the unit operation via the user interface.

- **1** Turn OFF the respective circuit breaker.
- 2 Check that all wires are properly connected and that all connectors are fully plugged-in.
- **3** Check that no connectors or wires are damaged.
- Check that the wiring corresponds with the wiring diagram, see "7.2 Wiring diagram" [> 289].

INFORMATION

Correct the wiring as needed.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [▶ 152] of the PCB and continue with the next procedure.


To check the fuse of the main PCB

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [> 152].

154

1 Measure the continuity of the fuse. If no continuity is measured, the fuse has blown.

- a Fuse F1U
- **b** Fuse F2U
- c Fuse F3U

Blown fuse on the main PCB?	Action
Yes	Replace the main PCB, see "Repair procedures" [▶ 159].
No	Return to "Checking procedures" [▶ 152] of the main PCB and continue with the next procedure.

To check the rectifier voltage of the main PCB

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [▶ 152].

1 Turn ON the power of the unit.

DANGER: RISK OF ELECTROCUTION

Do NOT touch any live parts or PCB's.

2 Measure the DC voltage on the rectifier voltage check terminals (+ and –) on the main PCB.

Result: The measured voltage MUST be 300~350 V DC.

- a Diode module DB1
- **b** Diode module DB2
- + terminal
- $\textbf{d} \quad \, \text{terminal} \quad$

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

Is the measured voltage correct?	Action
Yes	Diode module is OK. Perform a check of the power module of the main PCB, see "Checking procedures" [> 152].
No	Continue with the next step.

3 Perform a check of the reactor, see "4.20.1 Checking procedures" [▶ 214].

Is the reactor OK?	Action
Yes	Replace the main PCB, see "Repair procedures" [> 159].
No	Replace the reactor, see "4.20.2 Repair procedures" [> 217].

To perform a diode module check

1 First check the rectifier voltage of the main PCB, see "Checking procedures" [> 152].

INFORMATION

If the rectifier voltage is OK, the diode module is OK. If rectifier voltage is NOT OK, proceed as described in the rectifier voltage check procedure.

Below procedure describes how to check the diode module itself.

Prerequisite: Stop the unit operation via the user interface.

2 Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

3 Check the diode module in reference with the image and the table below.

- V DC out (+) V AC in
- V AC in
- d V DC out (-)

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

VDC	Com	Ref	VDC	Com	Ref
d	b	0.51~0.52 V	b	d	O.L
b	а	0.51~0.52 V	а	b	O.L
d	С	0.51~0.52 V	С	d	O.L
С	а	0.51~0.52 V	а	С	O.L

4 If the diode module is NOT OK, replace the main PCB, see "Repair procedures" [▶ 159].

To perform a power module check

Prerequisite: First check the rectifier voltage of the main PCB, see "Checking procedures" [> 152].

Prerequisite: Stop the unit operation via the user interface.

1 Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Power module IPM1 for compressor

- 1 Disconnect the compressor connector from the main PCB.
- **2** Check the power module IPM1 in reference with the image and the table below.

- a U
- **b** V
- c W d DC+
- **d** DC+ **e** DC-

INFORMATION

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

VDC	Com	Ref	VDC	Com	Ref
U	DC+	0.501 V	DC+	U	O.L
V	DC+	0.501 V	DC+	V	O.L
W	DC+	0.501 V	DC+	W	O.L
DC-	U	0.501 V	U	DC-	O.L
DC-	V	0.501 V	V	DC-	O.L
DC-	W	0.501 V	W	DC-	O.L

Power module IPM2 for fan motor

- 1 Disconnect the fan motor connector from the main PCB.
- 2 Check the power module IPM2 in reference with the image and the table below.

- а U
- V
- c W
- d DC+
- e DC-

INFORMATION

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

VDC	Com	Ref	VDC	Com	Ref
U	DC+	0.475 V	DC+	U	O.L
V	DC+	0.475 V	DC+	V	O.L
W	DC+	0.475 V	DC+	W	O.L
DC-	U	0.475 V	U	DC-	O.L
DC-	V	0.475 V	V	DC-	O.L
DC-	W	0.475 V	W	DC-	O.L

Are the test results OK?	Action
Yes	Power modules are OK. Return to "Checking procedures" [> 152] of the main PCB and continue with the next procedure.

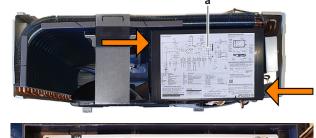
Are the test results OK?	Action	
	Replace the main PCB, see "Repair procedures" [> 159].	

Problem solved?

After all checking procedures listed above have been performed:

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

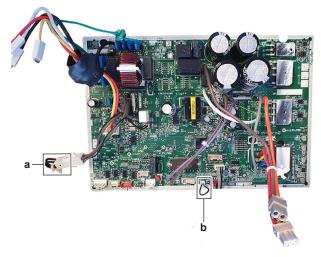
Repair procedures


To remove the main PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

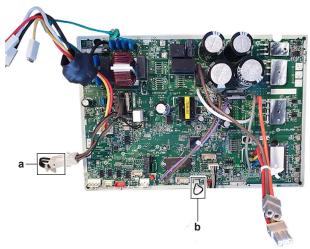
Prerequisite: Remove the switch box, see "4.18 Plate work" [▶ 185].


1 Press the side (arrows) of the switch box cover and remove the cover.

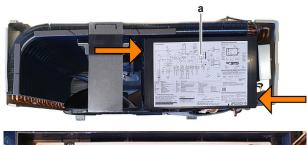
- a Switch box cover
- **b** Screw (main PCB)
- 2 Remove the screws that fix the main PCB.
- **3** Remove the main PCB from the switch box.
- **4** Disconnect the bridge connectors from the main PCB and keep them for reuse.

- a Bridge connector X12A
- **b** Bridge connector S99
- **5** To install the main PCB, see "Repair procedures" [▶ 159].

To install the main PCB


1 Apply grease to the PCB contact surface of the heat sink. Distribute the grease as evenly as possible.

CAUTION


ALWAYS apply new grease on the PCB heat sink. NOT doing so may cause the PCB to fail due to insufficient cooling.

2 Connect the bridge connectors to the main PCB.

- a Bridge connector X12A
- **b** Bridge connector S99
- Install the main PCB in the correct location in the switch box.
- Install and tighten the screws to fix the main PCB.

- Switch box cover
- **b** Screw (main PCB)
- 5 Install the switch box cover.
- 6 Install the switch box in the unit, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [> 152] of the PCB and continue with the next procedure.

4.15.2 2MXM68+3(A)MXM+4MXM+5MXM units

Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a power check of the main PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Turn ON the power of the unit.
- 2 Measure the voltage between the brown and blue wires.

Result: The measured voltage MUST be 230 V AC.

- Brown wire
- Blue wire

Is the measured voltage on the PCB correct?	Action
Yes	Return to "Checking procedures" [> 161] of the PCB and continue with the next procedure.
No	Continue with the next step.

3 Check the power supply to the unit, see "5.1.1 Checking procedures" [▶ 264].

Does the unit receive power?	Action
Yes	Replace the main PCB, see "Repair procedures" [▶ 169].
No	Adjust the power supply to the unit, see "5.1.2 Repair procedures" [> 266].

To check if the correct spare part is installed

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [▶ 161].

- 1 Visit your local spare parts webbank.
- 2 Enter the model name of your unit and check if the installed spare part number corresponds with the spare part number indicated in the webbank.

NOTICE

Also check that the correct spare part is installed for the capacity adapter.

Is the correct spare part for the PCB installed?	Action
Yes	Return to "Checking procedures" [> 161] of the main PCB
	and continue with the next procedure.

Is the correct spare part for the PCB installed?	Action
No	Replace the main PCB, see "Repair procedures" [▶ 169].

To check the wiring of the main PCB

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [> 161].

Prerequisite: Stop the unit operation via the user interface.

- 1 Turn OFF the respective circuit breaker.
- **2** Check that all wires are properly connected and that all connectors are fully plugged-in.
- **3** Check that no connectors or wires are damaged.
- 4 Check that the wiring corresponds with the wiring diagram, see "7.2 Wiring diagram" [▶ 289].

INFORMATION

Correct the wiring as needed.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [> 161] of the PCB and continue with the next procedure.

To perform a check of the inverter functions of the main PCB

INFORMATION

The inverter PCB is integrated in the main PCB. To check the inverter functions of the main PCB, perform as described below.

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [> 161].

1 Open the compressor insulation.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- **2** Remove the cover of the compressor wire terminals.
- **3** Disconnect the wiring from the compressor wire terminals U, V and W.

INFORMATION

Note the position of the Faston connectors on the compressor wire terminals to allow correct connection during installation.

Connect the Faston connectors to the Inverter Analyzer (SPP number 2238609).

- Turn ON the power of the unit.
- Press the SW1 on the outdoor unit service PCB for 5 seconds to activate the inverter test:

CAUTION

Make sure that the Faston connectors are disconnected from the compressor wire terminals and connected to the Inverter Analyzer before starting the power transistor check operation. If NOT, power transistor check operation may damage the compressor.

INFORMATION

Wait for 3 minutes for the power transistor check operation to start.

- **6** All LED's on the Inverter Analyzer must lit.
- Turn off the respective circuit breaker.
- Wait a few minutes and confirm that the LED's of the Inverter Analyzer are off.
- **9** Disconnect the Inverter Analyzer from the Faston connectors.
- 10 Connect the Faston connectors to the wire terminals U, V and W of the compressor.

INFORMATION

Use the notes made during disconnection to connect the compressor wiring to the correct wire terminals of the compressor.

11 Install the compressor wiring terminals cover.

All LED's of the inverter analyzer are lit during inverter test?	Action
Yes	Return to "Checking procedures" [> 161] of the main PCB and continue with the next procedure.
No	Replace the main PCB, see "Repair procedures" [> 169].

To check the fuse of the main PCB

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [▶ 161].

Measure the continuity of the fuse. If no continuity is measured, the fuse has blown.

164

- **a** Fuse F1U
- **b** Fuse F2U
- **c** Fuse F3U

For fuses F1U and F2U

Blown fuse on the main PCB?	Action
Yes	Replace the fuse, see "Repair procedures" [▶ 169].
No	Return to "Checking procedures" [> 161] of the main PCB and continue with the next procedure.

For fuse F3U

Blown fuse on the main PCB?	Action
Yes	Replace the main PCB, see "Repair procedures" [▶ 169].
No	Return to "Checking procedures" [> 161] of the main PCB and continue with the next procedure.

To check the rectifier voltage of the main PCB

Prerequisite: First perform all earlier main PCB checks, see "Checking procedures" [▶ 161].

- 1 Turn ON the power of the unit.
- 2 Measure the voltage on the rectifier voltage check terminals (+ and –) on the main PCB.

Result: The measured voltage MUST be approximately 300~350 V DC.

- a Diode module DB1
- Diode module DB2
- + terminal
- terminal

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

Is the measured rectifier voltage correct?	Action
Yes	Perform a check of the power module, see "Checking procedures" [▶ 161].
No	Replace the main PCB, see "Repair procedures" [> 169].

To perform a diode module check

First check the rectifier voltage of the main PCB, see "Checking procedures" [▶ 161].

INFORMATION

If the rectifier voltage is OK, the diode module is OK. If rectifier voltage is NOT OK, replace the main PCB.

Below procedure describes how to check the diode module itself.

Prerequisite: Stop the unit operation via the user interface.

Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Check the diode module in reference with the image and the table below.

- a Diode module DB1
- **b** Diode module DB2
- **c** V DC out (+)
- **d** VACin
- e V AC in
- f V DC out (-)

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

VDC	Com	Ref	VDC	Com	Ref
d	b	0.51~0.52 V	b	d	O.L
b	а	0.51~0.52 V	а	b	O.L
d	С	0.51~0.52 V	С	d	O.L
С	а	0.51~0.52 V	а	С	O.L

4 If the diode module is NOT OK, replace the main PCB, see "Repair procedures" [▶ 169].

To perform a power module check

Prerequisite: First check the rectifier voltage of the main PCB, see "Checking procedures" [> 161].

Prerequisite: Stop the unit operation via the user interface.

1 Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Power module IPM1 for compressor

- **1** Disconnect the compressor connector.
- **2** Check the power module IPM1 in reference with the image and the table below.

- \mathbf{c} W
- d DC+
- DC-

When measuring on the front of the main PCB, make sure to locally remove the protective varnish with the test leads of the multi meter.

VDC	Com	Ref	VDC	Com	Ref
U	DC+	0.501 V	DC+	U	O.L
V	DC+	0.501 V	DC+	V	O.L
W	DC+	0.501 V	DC+	W	O.L
DC-	U	0.501 V	U	DC-	O.L
DC-	V	0.501 V	V	DC-	O.L
DC-	W	0.501 V	W	DC-	O.L

Are the test results OK?	Action
Yes	Power module is OK. Return to "Checking procedures" [> 161] of the main PCB and continue with the next procedure.
No	Replace the main PCB, see "Repair procedures" [▶ 169].

Problem solved?

After all checking procedures listed above have been performed:

Is the problem solved?	Action
Yes	No further actions required.

Is the problem solved?	Action
No	Return to the troubleshooting of the specific error and continue with the next procedure.

Repair procedures

To remove the main PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the switch box, see "4.18 Plate work" [▶ 185].

1 Unplug the fixation plugs and remove the compressor harness and wiring (for service PCB) from the switch box.

- **a** Fixation plug
- **b** Compressor wiring harness
- c Wiring (for service PCB)
- **d** Tie strap
- e Screw (main PCB)
- **2** Cut the tie strap to remove the wiring (for service PCB) from the switch box.
- **3** Remove the screws from the main PCB.
- 4 Remove the main PCB from the switch box.
- **5** To install the main PCB, see "Repair procedures" [▶ 169].

To install the main PCB

1 Apply grease to the PCB contact surface of the heat sink. Distribute the grease as evenly as possible.

CAUTION

ALWAYS apply new grease on the PCB heat sink. NOT doing so may cause the PCB to fail due to insufficient cooling.

- 2 Install the main PCB in the correct location in the switch box.
- 3 Install and tighten the screws.

- **a** Fixation plug
- Compressor wiring harness
- Wiring (for service PCB)
- Tie strap
- e Screw (main PCB)
- Install the fixation plugs to fix the compressor harness and the wiring (for service PCB) to the switch box.
- Install a new tie strap to fix the wiring (for service PCB) to the switch box.
- Install the switch box, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [> 161] of the PCB and continue with the next procedure.

To remove a fuse of the main PCB

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Remove the fuse from the PCB.

- **a** Fuse F1U
- **b** Fuse F2U
- 2 To install a fuse on the main PCB, see "Repair procedures" [▶ 169].

To install a fuse on the main PCB

WARNING

For continued protection against risk of fire, replace only with same type and rating of fuse.

1 Install the fuse on the correct location on the PCB.

CAUTION

Make sure the fuse is plugged-in correctly (contact with the fuse holder).

a Fuse F1U

b Fuse F2U

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [> 161] of the PCB and continue with the next procedure.

4.16 Outdoor unit fan motor

4.16.1 2(A)MXM40+50 units

Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the propeller fan blade assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 If propeller fan blade touches the bell mouth, check if the fan motor is correctly mounted on its base, see "Repair procedures" [▶ 174].
- Check the state of the propeller fan blade assembly for damage, deformations and cracks.

Is the propeller fan blade assembly damaged?	Action
Yes	Replace the propeller fan blade assembly, see "Repair procedures" [> 174].
No	Perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [> 172].

To perform a mechanical check of the DC fan motor assembly

Prerequisite: First perform a mechanical check of the propeller fan blade assembly, see "Checking procedures" [▶ 172].

- 1 Visually check:
 - For any burnt-out part or wire. If found, replace the fan motor, see "Repair procedures" [▶ 174].
 - That fan motor fixation bolts are correctly installed and fixed. Correct as needed.
- **2** Manually rotate the fan motor shaft. Check that it rotates smoothly.
- **3** Check the friction of the DC fan motor shaft bearing.

Is the DC fan motor shaft friction normal?	Action
Yes	Perform an electrical check of the DC fan motor assembly, see "Checking procedures" [> 172].
No	Replace the DC fan motor assembly, see "Repair procedures" [▶ 174].

To perform an electrical check of the DC fan motor assembly

1 First perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [▶ 172].

INFORMATION

Check the DC fan motor power supply (voltage) circuit on the PCB.

- 2 Turn ON the power of the unit.
- **3** Activate **Cooling** or **Heating** operation via the user interface.
- **4** Check the functioning of the outdoor unit fan.

Outdoor unit fan	Action
Rotates continuously (without interruption)	DC fan motor assembly is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
Does not rotate or rotates for a short time	Continue with the next step.

- **5** Turn OFF the unit via the user interface.
- **6** Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- 7 Check that the DC fan motor connector is properly connected to the PCB.
- **8** Unplug the DC fan motor connector and measure the resistance between the pins 1-3, 1-5, and 3-5 of the DC fan motor connector.

Result: All measurements MUST be $74^{\circ}84 \Omega$.

INFORMATION

Winding resistance values above are given for reference. You should NOT be reading a value in $k\Omega$ or a short-circuit. Make sure that the propeller fan blade does NOT rotate, as this could affect resistance measurements.

- **9** Set the Megger voltage to 500 V DC or 1000 V DC.
- 10 Measure the insulation resistance for the motor terminals. Measurements between each phase and fan motor body (e.g. axle) MUST be >1000 M Ω .

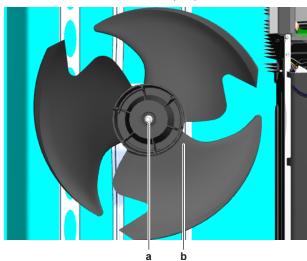
Are the measured resistance values correct?	Action
	Perform a check of the main PCB, see "Checking procedures" [> 152].

Are the measured resistance values correct?	Action
	Replace the DC fan motor, see "Repair procedures" [> 174].

Problem solved?

After all checking procedures listed above have been performed:

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.


Repair procedures

To remove the propeller fan blade assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- Remove the required plate work, see "4.18 Plate work" [> 185].
- Remove the nut that fixes the propeller fan blade assembly.

- Propeller fan blade assembly
- 3 Pull and remove the propeller fan blade assembly from the DC fan motor assembly.

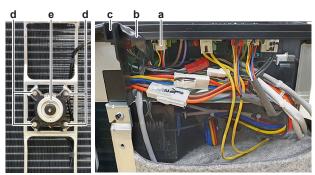
INFORMATION

Use a pulley remover if the propeller cannot be removed manually.

4 To install the propeller fan blade assembly, see "Repair procedures" [▶ 174].

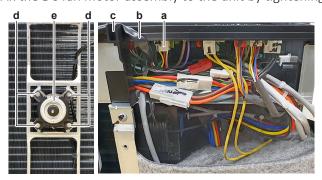
To remove the DC fan motor assembly

Remove the propeller fan blade assembly from the DC fan motor assembly, see "Repair procedures" [▶ 174].



DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.


2 Disconnect the DC fan motor connector from the main PCB.

- a DC fan motor connector
- **b** DC fan motor harness
- c Switch box
- **d** Screw
- e DC fan motor assy
- **3** Detach the DC fan motor harness from the switch box.
- **4** Slightly bend the harness retainers (if applicable) to detach the DC fan motor harness.
- **5** Remove the 4 screws that fix the DC fan motor assembly.
- **6** Remove the DC fan motor assembly from the unit.
- 7 To install the DC fan motor assembly, see "Repair procedures" [▶ 174].

To install the DC fan motor assembly

- 1 Install the DC fan motor assembly in the correct location.
- **2** Fix the DC fan motor assembly to the unit by tightening the screws.

- a DC fan motor connector
- **b** DC fan motor harness
- **c** Switch box
- **d** Screw
- e DC fan motor assy
- **3** If applicable: Route the DC fan motor harness through the harness retainers and bend the harness retainers to attach the DC fan motor harness.
- **4** Route the DC fan motor harness upwards and attach the DC fan motor harness to the switch box.
- **5** Connect the DC fan motor connector to the connector on the main PCB.
- 6 Install the propeller fan blade assembly, see "Repair procedures" [▶ 174].

To install the propeller fan blade assembly

1 Install the propeller fan blade assembly on the DC fan motor assembly.

CAUTION

Do NOT install a damaged propeller fan blade assembly.

2 Install and tighten the nut to fix the propeller fan blade assembly.

- a Nut
- **b** Propeller fan blade assembly

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "Checking procedures" [> 172] of the outdoor unit fan motor and continue with the next procedure.

4.16.2 2MXM68+3(A)MXM+4MXM+5MXM units

Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the propeller fan blade assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 If propeller fan blade touches the bell mounth, check if the fan motor is correctly mounted on its base, see "Repair procedures" [▶ 179].
- 2 Check the state of the propeller fan blade assembly for damage, deformations and cracks.

Is the propeller fan blade assembly damaged?	Action
Yes	Replace the propeller fan blade assembly, see "Repair procedures" [> 179].
No	Perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [> 176].

To perform a mechanical check of the DC fan motor assembly

Prerequisite: First perform a mechanical check of the propeller fan blade assembly, see "Checking procedures" [> 176].

- **1** Visually check:
 - For any burnt-out part or wire. If found, replace the fan motor, see "Repair procedures" [▶ 179].
 - That fan motor fixation bolts are correctly installed and fixed. Correct as needed.
- 2 Manually rotate the fan motor shaft. Check that it rotates smoothly.
- **3** Check the friction of the DC fan motor shaft bearing.

Is the DC fan motor shaft friction normal?	Action
Yes	Perform an electrical check of the DC fan motor assembly, see "Checking procedures" [> 176].
No	Replace the DC fan motor assembly, see "Repair procedures" [> 179].

To perform an electrical check of the DC fan motor assembly

1 First perform a mechanical check of the DC fan motor assembly, see "Checking procedures" [▶ 176].

INFORMATION

Check the DC fan motor power supply (voltage) circuit on the PCB.

- 2 Turn ON the power of the unit.
- **3** Activate **Cooling** or **Heating** operation via the user interface.
- 4 Check the functioning of the outdoor unit fan.

Outdoor unit fan	Action
Rotates continuously (without interruption)	DC fan motor assembly is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
Does not rotate or rotates for a short time	Continue with the next step.

INFORMATION

The DC fan motor connector MUST be plugged into the appropriate PCB.

- **5** Confirm via the service monitoring tool that the DC fan motor assembly receives an ON signal.
- **6** Turn OFF the unit via the user interface.
- **7** Turn OFF the respective circuit breaker.

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

Disconnect the DC fan motor connector S70 and measure the resistance on the connector pins shown below. The measured resistance MUST be:

VDC	Comm	Resistance
1	4	>1 MΩ
2	4	>100 kΩ
3	4	>100 Ω
7	4	>100 kΩ

INFORMATION

The measured resistance values may deviate from the listed values due to instability during the measurements.

DC fan motor resistance measurements are correct?	Action
Yes	Continue with the next step.
No	Replace the DC fan motor, see "Repair procedures" [▶ 179].

- Turn ON the power of the unit.
- 10 With the DC fan motor connector S70 disconnected from the main PCB, measure the voltage on the connector pins 4-7 (= fan motor power supply) on the main PCB.

Result: The voltage MUST be:

Unit	Voltage
2MXM68 + 3MXM + 3AMXM + 4MXM68	200~390 V DC
4MXM80 + 5MXM	342~408 V DC

11 Measure the voltage on the connector pins 4-3 (= fan motor control) on the main PCB.

Result: The voltage MUST be 15±10% V DC.

Are both measured voltages correct?	Action
Yes	Continue with the next step.
	Perform a check of the main PCB, see "Checking procedures" [▶ 161].

12 Measure the voltage on the DC fan motor connector S70 pins 2-4 (= rotation command) on the PCB.

Result: The measured voltage should be 0~7.5 V DC. It should NOT be 0 V DC.

Is the measured voltage 0 V DC?	Action
	Perform a check of the main PCB, see "Checking procedures" [▶ 161].
No	Continue with the next step.

13 Connect the DC fan motor connector to the PCB. Remove the plastic insert from the connector for easier measurement.

CAUTION

Ensure that the system CANNOT start the fan. Disable all modes (heating, cooling, ...) on the unit. The unit MUST be kept powered.

14 Manually (slowly) rotate the fan blade propeller 1 turn and measure the voltage on the DC fan motor connector pins 1-4.

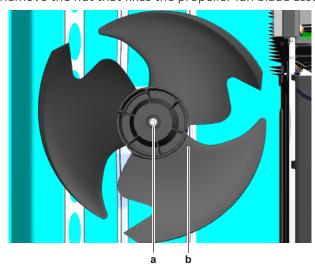
Result: 4 pulses MUST be measured.

Pulses are measured during fan blade propeller rotation?	Action
Yes	Perform a check of the main PCB, see "Checking procedures" [▶ 161].
No	Replace the DC fan motor, see "Repair procedures" [> 179].

Problem solved?

After all checking procedures listed above have been performed:

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.


Repair procedures

To remove the propeller fan blade assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

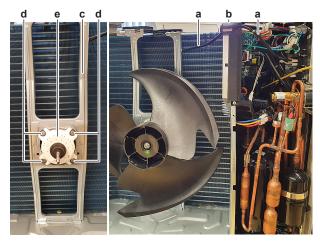
- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- 2 Remove the nut that fixes the propeller fan blade assembly.

- a Nu
- **b** Propeller fan blade assembly
- **3** Pull and remove the propeller fan blade assembly from the DC fan motor assembly.

Use a pulley remover if the propeller cannot be removed manually.

4 To install the propeller fan blade assembly, see "Repair procedures" [▶ 179].

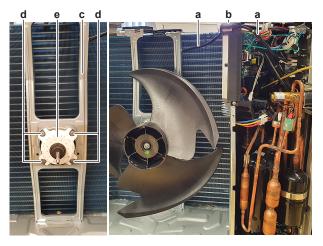
To remove the DC fan motor assembly


1 Remove the propeller fan blade assembly from the DC fan motor assembly, see "Repair procedures" [> 179].

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- 2 Disconnect the DC fan motor connector from the main PCB.
- Detach the DC fan motor harness from the switch box.



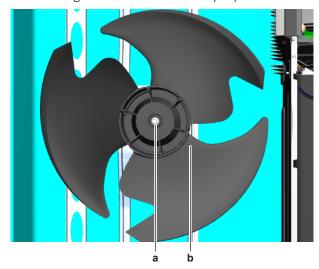
- DC fan motor harness
- Switch box
- Fan motor bracket
- Screw
- DC man motor assy
- 4 Slightly bend the harness retainers (at the back of the fan motor bracket) to detach the DC fan motor harness.
- **5** Remove the 4 screws that fix the DC fan motor assembly.
- Remove the DC fan motor assembly from the unit.
- To install the DC fan motor assembly, see "Repair procedures" [> 179].

To install the DC fan motor assembly

- 1 Install the DC fan motor assembly in the correct location.
- **2** Fix the DC fan motor assembly to the unit by tightening the screws.

- **a** DC fan motor harness
- **b** Switch box
- **c** Fan motor bracket
- **d** Screw
- e DC man motor assy
- **3** Route the DC fan motor harness through the harness retainers (at the back of the fan motor bracket) and bend the harness retainers to attach the DC fan motor harness.
- 4 Attach the DC fan motor harness to the switch box.
- **5** Connect the DC fan motor connector to the connector on the main PCB.
- 6 Install the propeller fan blade assembly, see "Repair procedures" [▶ 179].

To install the propeller fan blade assembly


1 Install the propeller fan blade assembly on the DC fan motor assembly.

CAUTION

Do NOT install a damaged propeller fan blade assembly.

2 Install and tighten the nut to fix the propeller fan blade assembly.

- a Nut
- **b** Propeller fan blade assembly

Is the problem solved?	Action
Yes	No further actions required.

Is the problem solved?	Action
No	Return to "Checking procedures" [> 176] of the outdoor unit fan motor and continue with the next procedure.

4.17 Outdoor unit heat exchanger

4.17.1 Checking procedures

To perform a mechanical check of the outdoor unit heat exchanger

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Visually check:

- For any signs of damage or corrosion. Replace the heat exchanger as needed, see "4.17.2 Repair procedures" [▶ 182].
- For bended hair fins. Straighten as needed.
- **2** Check the heat exchanger for leaks. Use soap test method.

CAUTION

Do NOT use soap containing Chlorine or Sulfide as this may result in corrosion of the

Any leaks found?	Action
Yes	Replace the outdoor unit heat exchanger, see "4.17.2 Repair procedures" [> 182].
No	Heat exchanger is OK. Return to the troubleshooting of the specific error and continue with the next step.

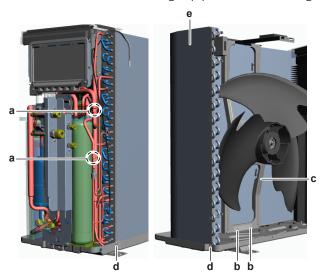
4.17.2 Repair procedures

To remove the outdoor unit heat exchanger

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

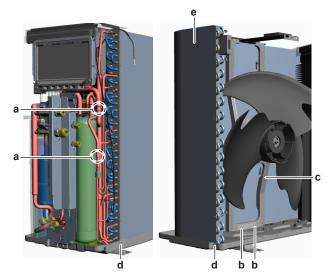
Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].


Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

- 1 If needed, remove any parts to create more space for the removal of the heat exchanger.
- **2** Remove the putty and insulation from the appropriate piping.
- **3** Remove the heat exchanger thermistor and air thermistor from their holder.
- Remove the screws and remove the guard nets from the unit.

- a Heat exchanger thermistor
- **b** Outdoor air thermistor
- **c** Guard net
- **d** Screw
- e Support plate
- **5** Remove the 2 screws and remove the support plate.
- **6** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **7** Wrap a wet rag around the components near the heat exchanger pipes. Heat the brazing point of the heat exchanger pipes using an oxygen acetylene torch and remove the heat exchanger pipes from the refrigerant pipes using pliers.

- **a** Heat exchanger pipe
- **b** Screw (fan motor mounting bracket)
- **c** Fan motor mounting bracket
- **d** Screw (heat exchanger)
- e Heat exchanger
- 8 Stop the nitrogen supply when the piping has cooled down.


INFORMATION

It is ALSO possible to cut the component pipe(s) using a pipe cutter. Make sure to remove the remaining component pipe end(s) from the refrigerant pipes by heating the brazing point(s) of the component pipe(s) using an oxygen acetylene torch.

- Install plugs or caps on the open pipe ends to avoid dirt or impurities from entering the piping.
- 10 Carefully remove the 2 screws from the fan motor mounting bracket while supporting it. Remove the fan motor mounting bracket (with fan motor and propeller fan blade installed) from the unit.
- 11 Remove the 2 screws that fix the heat exchanger to the bottom plate of the
- **12** Remove the heat exchanger from the unit.
- **13** To install the outdoor unit heat exchanger, "4.17.2 Repair procedures" [> 182].

To install the outdoor unit heat exchanger

- 1 Remove the plugs or caps from the refrigerant piping and make sure they are
- Install the heat exchanger in the correct location on the bottom plate. Make sure to correctly insert the pipe ends in the pipe expansions.
- Install and tighten the 2 screws to fix the heat exchanger to the bottom plate.

- Heat exchanger pipe
- Screw (fan motor mounting bracket)
- Fan motor mounting bracket
- Screw (heat exchanger)
- Heat exchanger
- Carefully install the fan motor mounting bracket (with fan motor and propeller fan blade installed) in the correct location. Install and tighten the 2 screws to fix the fan motor mounting bracket.
- 5 Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **6** Wrap a wet rag around the components near the heat exchanger and solder the heat exchanger pipes to the refrigerant pipes.
- After soldering is done, stop the nitrogen supply after the component has cooled-down.

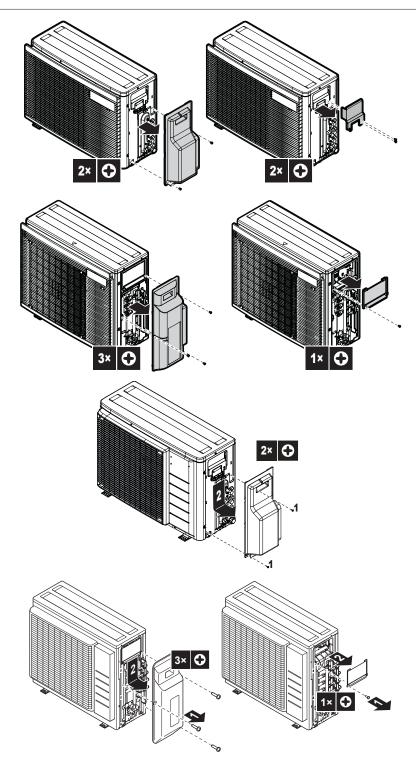
8 Install the support plate. Install and tighten the 2 screws to fix the support plate.

- a Heat exchanger thermistor
- **b** Outdoor air thermistor
- c Guard net
- **d** Screw
- e Support plate
- **9** Install the guard nets. Install and tighten the screws to fix the guard nets.
- **10** Install the heat exchanger thermistor and air thermistor in their holder.
- 11 Install the putty and insulation on the appropriate piping.
- **12** Perform a pressure test, see "5.2.1 Checking procedures" [▶ 266].
- **13** Add refrigerant to the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.18 Plate work

4.18.1 Outdoor unit


To remove the refrigerant connection cover

DANGER: RISK OF ELECTROCUTION

DANGER: RISK OF BURNING/SCALDING

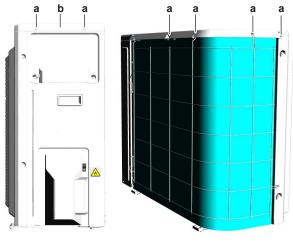
To remove the top plate

INFORMATION

This procedure is just an example and may differ on some details for your actual unit.

Prerequisite: Stop the unit operation via the user interface.

Turn OFF the respective circuit breaker.



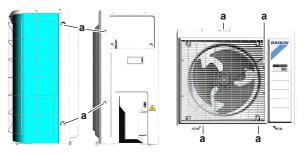
DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

2 Loosen and remove the screws that fix the top plate.

- **a** Screw
- **b** Top plate
- **3** Remove the top plate.

To remove the front plate



INFORMATION

This procedure is just an example and may differ on some details for your actual unit.

Prerequisite: Remove the top plate, see "4.18 Plate work" [▶ 185].

1 Loosen and remove the screws that fix the front plate.

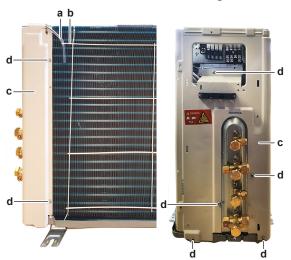
- **a** Screw
- **b** Front plate

- **a** Screw
- **b** Front plate
- **2** Remove the front plate.

To remove the side plate

2MXM40+50 + 2AMXM40+50 units

Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

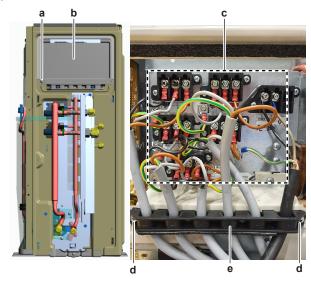
Prerequisite: Remove the refrigerant connection cover, top plate and front plate, see "4.18 Plate work" [▶ 185].

Remove the 2 screws that fix the terminal protection plate and remove the plate.

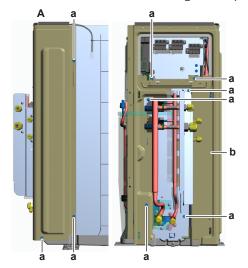
- Screw (terminal protection plate)
- Terminal protection plate
- Wire terminals
- Screw (wire clamp)
- Wire clamp
- **2** Disconnect the electrical power supply wiring from the wire terminals.
- Remove the 2 screws that fix the wire clamp.
- Remove the wire clamp.
- Remove the air thermistor out of the guard net and the side plate.

- Air thermistor
- Guard net
- Side plate
- **d** Screw (side plate)
- Remove the screws that fix the right side plate assembly.
- Remove the side plate assembly.

2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.



Prerequisite: Remove the refrigerant connection cover, top plate and front plate, see "4.18 Plate work" [> 185].

1 Remove the screw that fixes the terminal protection plate and remove the plate.

- a Screw (terminal protection plate)
- **b** Terminal protection plate
- **c** Wire terminals
- **d** Screw (wire clamp)
- e Wire clamp
- **2** Disconnect all electrical wiring from the wire terminals. The number of wire terminals (for power supply towards indoor units) differs depending on the unit.
- **3** Disconnect all ground wires.
- **4** Remove the 2 screws that fix the wire clamp.
- **5** Remove the wire clamp.
- **6** Remove the air thermistor out of the guard net and the side plate.
- **7** Remove the screws that fix the right side plate assembly.

- **A** 2MXM68 + 3MXM + 3AMXM + 4MXM68 units
- a Screw (side plate)
- **b** Side plate

- **A** 4MXM80 + 5MXM90 units
- a Screw (side plate)
- **b** Side plate
- **8** Remove the side plate assembly.

To access the switch box

INFORMATION

This procedure describes how to get access to the main PCB while all wiring stays connected (to be able to power the main PCB).

This is ONLY applicable for 2MXM40+50 and 2AMXM40+50 units.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the side plate, see "4.18 Plate work" [▶ 185].
- **2** Re-connect the electrical power supply wiring L and N to the wire terminal X2M.
- **3** Remove the 2 screws that fix the switch box.

- **a** Screw (switch box)
- **b** Switch box
- **4** Carefully lift the switch box from the unit.
- **5** Reposition the switch box to create access to the main PCB. Leave all wiring and connectors connected.

CAUTION

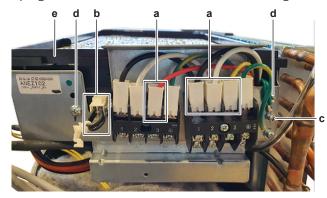
Take care NOT to damage the wiring or cables when repositioning the switch box.

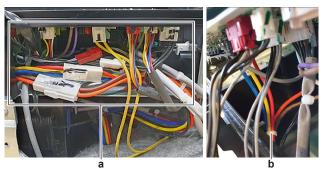
To remove the switch box

2MXM40+50 + 2AMXM40+50 units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.


1 Remove the side plate, see "4.18 Plate work" [> 185].


DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

2 Unplug the indicated connectors from the wiring terminals.

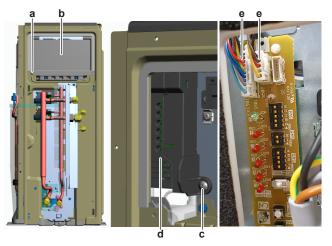
- **a** Connector (wiring terminals)
- **b** Connector (keep for reuse)
- **c** Screw (ground wire)
- **d** Screw (switch box)
- e Switch box
- **3** Unplug the connector and keep for reuse.
- **4** Remove the screw and disconnect the ground wiring.
- **5** Remove the 2 screws that fix the switch box.
- **6** Carefully lift the switch box to create access to the main PCB and disconnect all connectors from the main PCB.

- a Connectors (main PCB)
- **b** Tie strap
- **7** Cut the tie strap.
- **8** Remove the switch box from the unit.
- 9 To install the switch box, see "4.18 Plate work" [▶ 185].

2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units

Prerequisite: Stop the unit operation via the user interface.

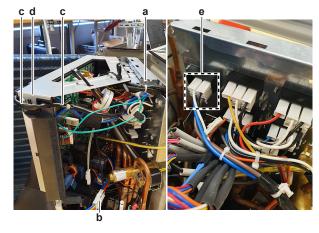
Prerequisite: Turn OFF the respective circuit breaker.

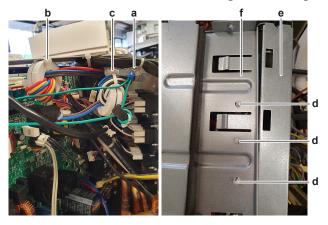

1 Remove the required plate work, see "4.18 Plate work" [▶ 185].

DANGER: RISK OF ELECTROCUTION

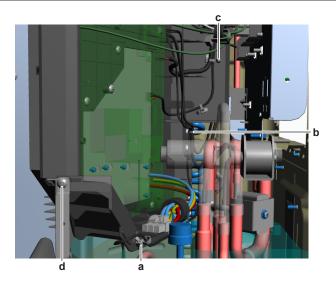
Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- Remove the top insulation from the switch box. 2
- 3 Remove the screw that fixes the terminal protection plate and remove the plate.


- a Screw (terminal protection plate)
- Terminal protection plate
- Screw (service PCB cover)
- Service PCB cover
- Connector
- Remove the screw from the service PCB cover and remove the service PCB
- Disconnect the 2 connectors from the service PCB.
- Remove the 2 screws from the terminal mounting plate.

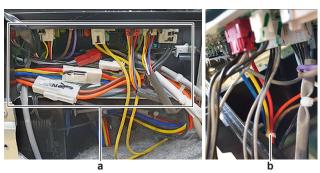

- a Screw (terminal mounting plate)
- Remove the screw that fixes the terminal mounting plate to the upper side of the switch box.
- Disconnect the compressor harness connector.

192



- a Screw (terminal mounting plate)
- **b** Compressor harness connector
- **c** Fan motor harness
- d Switch box
- e Faston connectors on X1M
- **9** Disconnect all connectors (except the wiring towards the service PCB) and Faston connectors from the main PCB.
- **10** Remove the fan motor harness from the switch box.
- **11** Disconnect the 4 Faston connectors from the back side of the wiring terminal X1M.
- **12** Disconnect the other end (Faston connectors) of the black and white wiring that was disconnected from wiring terminal X1M (and routed through the ferrite core) from the back side of the appropriate wiring terminal.
- **13** Remove the screw and disconnect the ground wiring from the switch box.

- a Screw (ground wiring)
- **b** Tie strap
- **c** Fixation plug (ferrite core)
- **d** Fixation plug (wiring harness)
- e Terminal mounting plate
- f Switch box
- **14** Cut the tie strap that fixes the ferrite core to the switch box.
- **15** Unplug the fixation to remove the ferrite core from the switch box.
- **16** Unplug the 3 fixation plugs that fix the wiring harness to the upper side of the switch box. Separate the terminal mounting plate from the switch box (upper side) as needed to create easier access to the fixation plugs.
- **17** Remove the fixation plug that fixes discharge thermistor harness to the switch box.



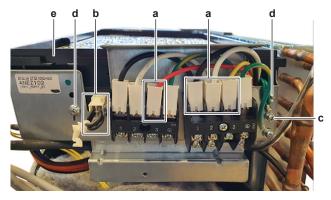
- a Fixation plug (discharge thermistor harness)
- Tie strap (thermistor harnesses)
- Fixation plug (outdoor air thermistor and heat exchanger harnesses)
- Screw (switch box)
- **18** Cut the tie strap that fixes the thermistor harnesses to the switch box.
- 19 Remove the fixation plug that fixes outdoor air thermistor and heat exchanger thermistor harnesses to the switch box.
- 20 Remove the screw from the switch box.
- 21 Remove the switch box from the unit.
- 22 To install the switch box, see "4.18 Plate work" [> 185].

To install the switch box

2MXM40+50 + 2AMXM40+50 units

Position the switch box on top of the unit and connect all connectors to the main PCB.

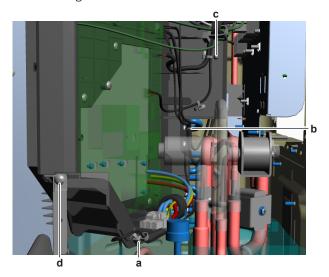
- Connectors (main PCB)
- **b** Tie strap



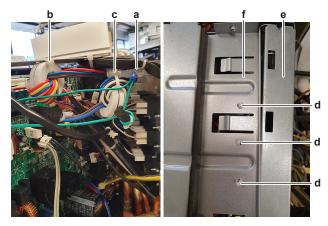
WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

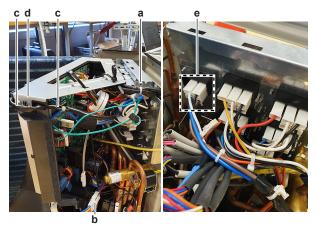
- 2 Route the main PCB ground wiring and appropriate connectors towards the wiring terminals.
- Install the switch box in the correct location. Install and tighten the 2 screw to fix the switch box.



- **a** Connector (wiring terminals)
- **b** Connector (keep for reuse)
- **c** Screw (ground wire)
- **d** Screw (switch box)
- e Switch box
- 4 Install and tighten the screw to fix the ground wiring to the unit.
- **5** Plug the connector (kept for reuse).
- **6** Connect the appropriate connectors to the wiring terminals.
- 7 Install a new tie strap to fix the compressor harness and reactor harness.
- 8 Install the side plate.


2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units

- **1** Install the switch box in the correct location on the unit.
- 2 Install and tighten the screw to fix the switch box.

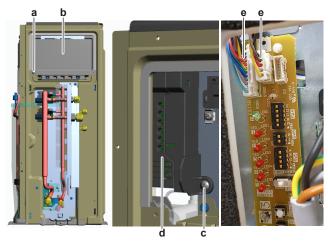


- a Fixation plug (discharge thermistor harness)
- **b** Tie strap (thermistor harnesses)
- c Fixation plug (outdoor air thermistor and heat exchanger harnesses)
- **d** Screw (switch box)
- 3 Install the fixation plug to fix the discharge thermistor harness to the switch hox
- Install the fixation plug to fix the outdoor air thermistor and heat exchanger thermistors harnesses to the switch box.
- 5 Install a new tie strap to fix the thermistor harnesses to the switch box.
- **6** Connect the ground wiring to the switch box. Install and tighten the screw.

- Screw (ground wiring)
- b Tie strap
- c Fixation plug (ferrite core)
- Fixation plug (wiring harness)
- Terminal mounting plate
- Switch box
- Install the fixation plug to fix the ferrite core to the switch box.
- Connect the other ferrite core to the switch box using a new tie strap.
- Install the 3 fixation plugs to fix the wiring harness to the upper side of the switch box. When done, correctly install the terminal mounting plate on the upper side of the switch box.
- **10** Connect the 4 Faston connectors to the back side of the wiring terminal X1M.

- a Screw (terminal mounting plate)
- Compressor harness connector
- Fan motor harness
- d Switch box
- e Faston connectors on X1M
- 11 Connect the other end (Faston connectors) of the black and white wiring that was connected to wiring terminal X1M (and routed through the ferrite core) to the back side of the appropriate wiring terminal.
- 12 Install and tighten the screw to fix the terminal mounting plate to the upper side of the switch box.
- 13 Route the fan motor harness through the retainers on the switch box and connect the fan motor harness to the main PCB.
- **14** Connect the compressor wiring harness.
- 15 Connect all connectors and Faston connectors to the main PCB.

196


WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

16 Install and tighten the 2 screws to fix the terminal mounting plate to the switch box.

- a Screw (terminal mounting plate)
- **17** Connect the 2 wiring harness connectors to the service PCB.

- a Screw (terminal protection plate)
- **b** Terminal protection plate
- c Screw (service PCB cover)
- **d** Service PCB cover
- e Connector
- **18** Install the service PCB cover. Install and tighten the screw to fix the cover.
- **19** Install the terminal protection plate. Install and tighten the screw to fix the plate.
- **20** Install the top insulation on the switch box.

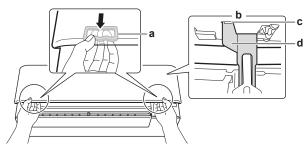
4.18.2 Indoor unit

To open the front panel

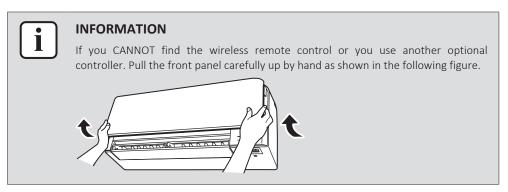
CTXA15A and CTXA15B units

Open the front panel using the user interface.

1 Stop operation.



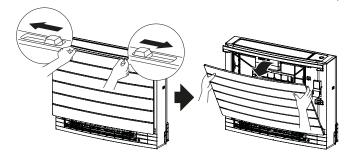
2 Hold on the user interface for at least 2 seconds.


Result: The front panel will open.

Note: Press and hold ^(®) again for at least 2 seconds to close the front panel.

- **3** Turn the power supply off.
- Pull down both locks on the back of the front panel.
- **5** Open the front panel until the support fits into the fixing tab.

- Lock (1 on each side)
- Backside of the front panel
- c Fixing tab
- **d** Support


ATXM20R and CTXM15R units

Hold the front panel by the panel tabs on both sides and open it.

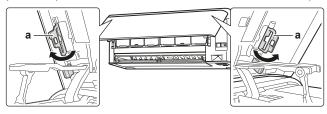
Floor standing units

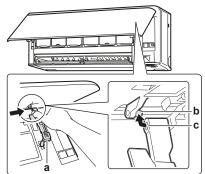
Slide both sliders in the direction of the arrows until they click.

2 Open the front panel.

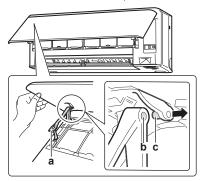
198

To remove the front panel


CTXA15A and CTXA15B units


INFORMATION

Remove the front panel only in case it MUST be replaced.

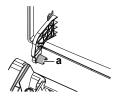

- **1** Open the front panel, see "4.18 Plate work" [▶ 185].
- **2** Open the panel locks located on the back side of the panel (1 on each side).

- a Panel lock
- **3** Push the right arm lightly to the right to disconnect the shaft from the shaft slot on the right side.

- **a** Arm
- **b** Shaft
- c Shaft slot
- 4 Disconnect the front panel shaft from the shaft slot on the left side.

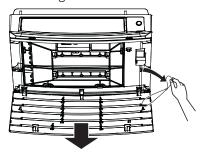
- **a** Arm
- Shaft slot
- **c** Shaft
- **5** Remove the front panel.
- **6** To re-install the front panel perform the steps in the opposite order.

ATXM20R and CTXM15R units


1 Open the front panel, see "4.18 Plate work" [▶ 185].

Remove the front panel by sliding it to the left or the right and pulling it toward you.

Result: The front panel shaft on 1 side will be disconnected.


Disconnect the front panel shaft on the other side in the same manner.

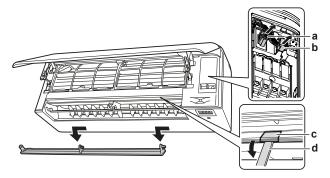
a Front panel shaft

Floor standing units

- Open the front panel, see "4.18 Plate work" [> 185].
- Remove the string.

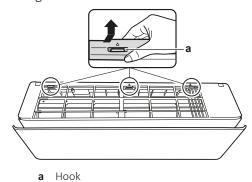
Remove the front panel.

To remove the front grille

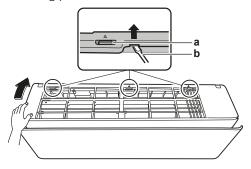

CTXA15A and CTXA15B units

CAUTION

Wear adequate personal protective equipment (protective gloves, safety glasses,...) when installing, maintaining or servicing the system.


- 1 Open the front panel, see "4.18 Plate work" [▶ 185].
- Remove the service cover, see "4.18 Plate work" [> 185]. 2
- Remove the wire harness from the wire clamp and the connector.
- Remove the flap by pushing it to the left side and towards you.
- Remove the 2 screw covers using a long flat plate such as a ruler wrapped in a cloth and remove 2 screws.

- Connector
- Wire clamp
- Screw cover
- Long flat plate wrapped in a cloth

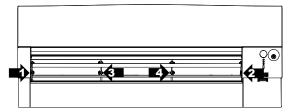


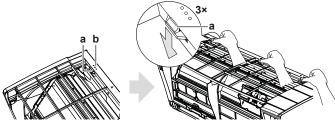
6 Push the front grille up and then towards the mounting plate to remove the front grille from the 3 hooks.

Prerequisite: If working space is limited.

- 7 Insert a flat screwdriver next to the hooks.
- **8** Pull the front grille up using the flat screwdriver and push towards the mounting plate.

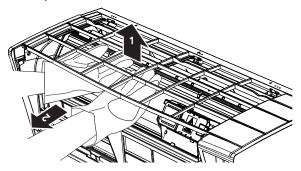
- a Hook
- **b** Flat screwdriver


ATXM20R + CTXM15R units

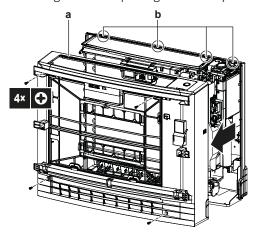

CAUTION

Wear adequate personal protective equipment (protective gloves, safety glasses,...) when installing, maintaining or servicing the system.

1 Remove the front panel to remove the air filter.


- **2** Remove 2 screws from the front grille.
- **3** Push down the 3 upper hooks marked with a symbol with 3 circles.

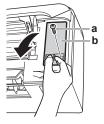
- a Upper hook
- **b** Symbol with 3 circles



- We recommend opening the flap before removing the front grille.
- Place both hands under the centre of the front grille, push it up and then toward you.

Floor standing units

- Remove the front panel. See "4.18 Plate work" [▶ 185].
- Remove the 4 screws, remove the grille from 4 tabs on the top and remove the front grille while pulling it toward you.


- **a** Front grille
- Tabs

To remove the electrical wiring box cover

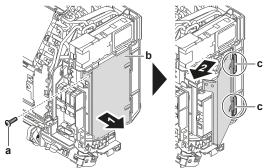
CTXA15A and CTXA15B units

TO OPEN THE SERVICE COVER

- Remove 1 screw from the service cover.
- Pull out the service cover horizontally away from the unit.

- Service cover screw
- Service cover

NOTICE

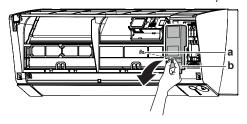

When closing the service cover, make sure that the tightening torque does NOT exceed 1.4 (±0.2) N•m.

TO REMOVE THE ELECTRICAL WIRING BOX COVER

Prerequisite: Remove the front grille.

- **1** Remove 1 screw from the electrical wiring box.
- **2** Open the electrical wiring box cover by pulling it to the front.
- **3** Remove the electrical wiring box cover from the 2 rear hooks.

- **a** Screw
- **b** Electrical wiring box
- c Rear hook
- **4** To re-install the cover, first attach the electrical wiring box to the hooks, close the electrical wiring box, and re-install the screw.


NOTICE

When closing the electrical wiring box cover, make sure that the tightening torque does NOT exceed 2.0 (± 0.2) N \bullet m.

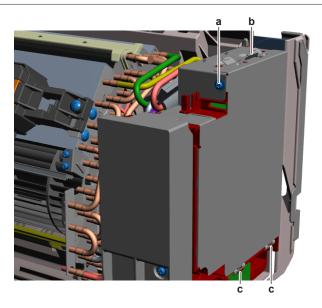
ATXM20R and CTXM15R units

TO OPEN THE SERVICE COVER

- **1** Remove 1 screw from the service cover.
- 2 Pull out the service cover horizontally away from the unit.

- a Service cover screw
- Service cover

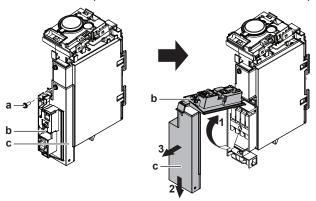
NOTICE


When closing the service cover, make sure that the tightening torque does NOT exceed 1.4 (\pm 0.2) N \bullet m.

TO REMOVE THE ELECTRICAL WIRING BOX COVER

Prerequisite: Remove the front grille.

- **1** Remove 1 screw from the electrical wiring box.
- **2** Open the electrical wiring box cover by pulling the protruding part on the top of the cover.
- **3** Unhook the tab(s) on the bottom and remove the electrical wiring box cover.

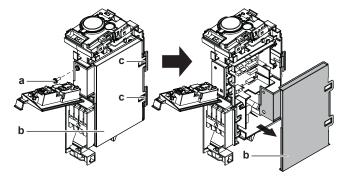


- Screw
- Protruding part on the top of the cover

Floor standing units

TO OPEN THE TERMINAL BLOCK

- 1 Remove the front grille.
- **2** Remove 1 lower screw.
- **3** Lift the sensor securing plate.
- Move the metal plate cover down and then towards you to remove it.


- Screw
- Sensor securing plate
- c Metal plate cover

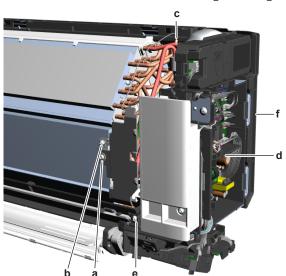
TO REMOVE THE ELECTRICAL WIRING BOX COVER

Prerequisite: Open the terminal block.

- Remove 1 screw from the electrical wiring box.
- Unhook the 2 tabs on the electrical wiring box cover and remove it.

- **a** Screw
- **b** Wiring box cover
- c Tabs

To remove the switch box


CTXA15A and CTXA15B units

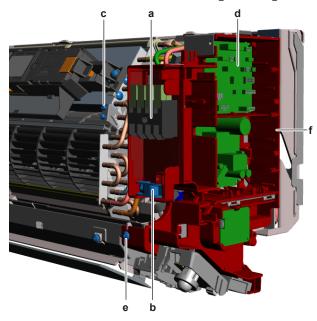
Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the power supply wiring from the power supply terminal X1M.
- 2 Remove the screw and power supply wiring bracket.
- **3** Pull the clip and remove the heat exchanger thermistor from its holder.
- **4** Remove the screw and remove the cover.
- **5** Remove the screw to disconnect the grounding wire from the heat exchanger

- a Grouding wire cover screw
- **b** Grounding wire screw
- c Heat exchanger thermistor
- d Indoor unit PCB
- e Switch box screw
- f Switch box
- **6** Disconnect the connectors of the indoor unit fan motor and the swing flap motors from the indoor unit PCB.
- 7 Detach these wiring harnesses from the switch box.
- **8** Remove the screw and remove the switch box from the indoor unit.
- 9 To install the switch box, see "4.18 Plate work" [▶ 185].


ATXM20R + CTXM15R units

Prerequisite: Stop the unit operation via the user interface.

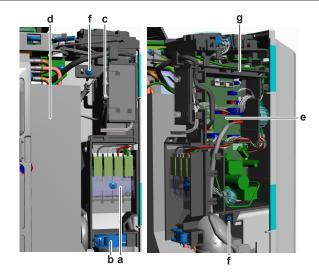
Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- Disconnect the power supply wiring from the power supply terminal X1M.
- Remove the screw and power supply wiring bracket.
- **3** Pull the clip and remove the heat exchanger thermistor from its holder.
- Remove the screw to disconnect the grounding wire from the heat exchanger.

- Power supply terminal X1M
- Power supply wiring bracket
- Screw (ground wire)
- Indoor unit main PCB
- Switch box screw
- Switch box
- Disconnect the connectors of the indoor unit fan motor, the swing flap motor, the swing raster motor and the streamer unit from the indoor unit main PCB.
- Detach these wiring harnesses from the switch box.
- Remove the screw and remove the switch box from the indoor unit. 7
- To install the switch box, see "4.18 Plate work" [▶ 185].

Floor standing indoor units


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- Disconnect the power supply wiring from the power supply terminal X1M.
- Remove the screw and power supply wiring bracket.

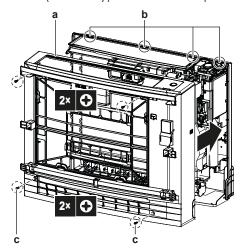
- a Power supply terminal X1M
- **b** Power supply wiring bracket
- **c** Screw (ground wire)
- **d** Plate
- e Indoor unit main PCB
- f Switch box screw
- **g** Switch box
- **3** Remove the screw to disconnect the grounding wire from the back side of the switch box.
- **4** Remove the screw and remove the plate from the indoor unit heat exchanger to create access to the heat exchanger thermistor.
- **5** Remove the air and heat exchanger thermistors from their holders.
- 6 Disconnect the connectors of the indoor unit fan motor, the swing flap motor, the damper motor and the streamer unit from the indoor unit main PCB.
- 7 Detach these wiring harnesses from the switch box.
- 8 Remove the two screws and remove the switch box from the indoor unit.
- 9 To install the switch box, see "4.18 Plate work" [▶ 185].

To re-install the front grille

CTXA15A and CTXA15B units

- 1 Install the front grille and firmly engage the 3 upper hooks.
- 2 Tighten the 2 screws and put the 2 screw covers back.
- **3** Re-install the flap.
- 4 Insert the wire harness back into the connector and secure it with the wire clamp.
- 5 Close the front panel, see "4.18 Plate work" [▶ 185].

ATXM20R +CTXM15R units


- 1 Install the front grille and firmly engage the 3 upper hooks.
- 2 Install 2 screws back on the front grille.
- 3 Install the air filter, mount the front panel and close it.

Floor standing units

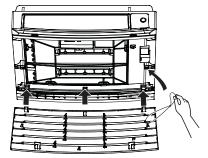
- **1** Attach the front grille to the original position.
- **2** Secure the front grille in 4 tabs.

Secure with the 2 original screws on the top part and with the 2 white head screws (accessory) on the bottom part.

- a Front grille
- 4 tabs
- White head screws (accessory)

To re-install the front panel

CTXA15A and CTXA15B units


- 1 Attach the front panel.
- 2 Align the shaft on right side with the shaft slot and insert it all the way in.
- 3 Push lightly the front panel to the right side, align the shaft on the left side with slot and insert it all the way in.
- Close the locks on both sides.

ATXM20R and CTXM15R units

- 1 Attach the front panel. Align the shafts with the slots and push them all the way in.
- Close the front panel, see "4.18 Plate work" [▶ 185].

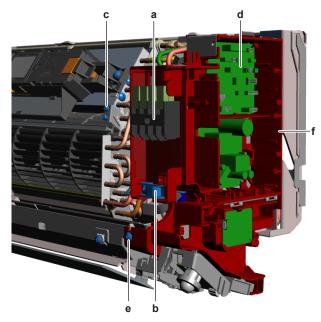
Floor standing units

Insert the front panel into the grooves of the unit (3 places) and attach the string.

2 Close the front panel, see "4.18 Plate work" [▶ 185].

To install the switch box

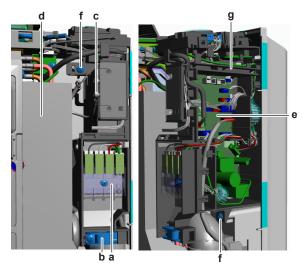
CTXA15A and CTXA15B units


1 install the switch box in the correct location on the indoor unit.

- **a** Grouding wire cover screw
- **b** Grounding wire screw
- **c** Heat exchanger thermistor
- d Indoor unit PCB
- e Switch box screw
- f Switch box
- **2** Route the connectors of the indoor unit fan motor and swing flap motors inside the switch box and connect them to the indoor unit PCB.
- **3** Install and tighten the screw to secure the switch box.
- 4 Install the heat exchanger thermistor in its holder.
- **5** Attach the wiring harnesses to the switch box as needed.
- **6** Connect the grounding wire to the heat exchanger using the screw.
- 7 Install the grounding wire cover using the screw.
- **8** Connect the power supply wiring to the power supply terminal X1M.
- **9** Install the power supply wiring bracket. Install and tighten the screw.

ATXM20R + CTXM15R units

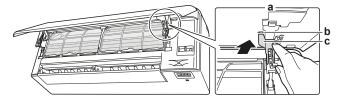
1 install the switch box in the correct location on the indoor unit.

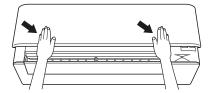

- a Power supply terminal X1M
- **b** Power supply wiring bracket

- c Screw (ground wire)
- Indoor unit main PCB d
- Switch box screw
- f Switch box
- 2 Route the connectors of the indoor unit fan motor, swing flap motor, swing raster motor and streamer unit inside the switch box and connect them to the indoor unit main PCB.
- **3** Install and tighten the screw to secure the switch box.
- 4 Install the heat exchanger thermistor in its holder.
- **5** Attach the wiring harnesses to the switch box as needed.
- **6** Connect the grounding wire to the heat exchanger using the screw.
- Connect the power supply wiring to the power supply terminal X1M.
- Install the power supply wiring bracket. Install and tighten the screw.

Floor standing indoor units

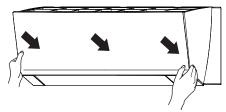
install the switch box in the correct location on the indoor unit.


- a Power supply terminal X1M
- **b** Power supply wiring bracket
- Screw (ground wire)
- Plate d
- Indoor unit main PCB
- Switch box screw
- Switch box
- 2 Route the connectors of the indoor unit fan motor, swing flap motor, damper motor, streamer unit and thermistors (air + heat exchanger) inside the switch box and connect them to the indoor unit main PCB.
- **3** Install and tighten the two screws to secure the switch box.
- **4** Attach the wiring harnesses to the switch box as needed.
- 5 Install the air and heat exchanger thermistor in their holders.
- 6 Connect the grounding wire to the back side of the switch box using the screw.
- 7 Install the plate and fix it to the indoor unit heat exchanger using the screw.
- Connect the power supply wiring to the power supply terminal X1M.
- Install the power supply wiring bracket. Install and tighten the screw.

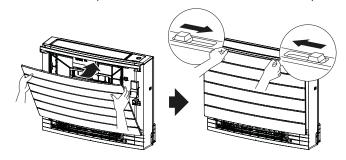

To close the front panel

CTXA15A and CTXA15B units

- **1** Set the filters as they were.
- **2** Lift the front panel slightly and remove the support from the fixing tab.


- a Backside of the front panel
- **b** Fixing tab
- **c** Support
- **3** Close the front panel.

4 Gently press the front panel down until it clicks.


ATXM20R and CTXM15R units

- **1** Set the filters as they were.
- **2** Gently press the front panel at both sides and at the center until it clicks.

Floor standing units

1 Close the front panel and slide both sliders until they click.

4.19 R32 leak detection sensor

4.19.1 Checking procedures

To perform an electrical check of the R32 leak detection sensor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Remove the required plate work, see "4.18 Plate work" [> 185].

DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- Disconnect the R32 leak detection sensor connector S903 from the indication LED PCB.
- **3** On the disconnected connector, using a multimeter in diode check, measure in reference with the table below.

VDC	сом	REF	VDC	сом	REF
Pin 1	Pin3	2.921~3.568 V	Pin3	Pin 1	OL
Pin 1	Pin 2	0 V	Pin 2	Pin 1	0 V
Pin3	Pin 2	OL	Pin 2	Pin3	2.921~3.568 V

Measured values are correct?	Action
Yes	Continue with the next step.
	Replace the R32 leak detection sensor, see "4.19.2 Repair procedures" [> 213].

- 4 Connect the R32 leak detection sensor connector to the indication LED PCB.
- Turn ON the power using the respective circuit breaker. 5
- Start the unit operation via the user interface.
- Activate Cooling operation via the user interface. 7
- Wait until the unit is operating properly and make sure NO R32 leak is present.
- Measure the voltage between pin 1 (N wire) and pin 3 (power supply wire) on connector S903 on the indication LED PCB.

Result: The measured voltage MUST be 12.15~14.85 V DC.

Is the measured voltage correct?	Action
Yes	Continue with the next step.
No	Perform a check of the indoor unit main PCB, see "4.11.1 Checking procedures" [> 121].

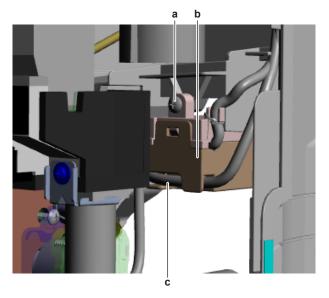
10 Measure the voltage between pin 1 (N wire) and pin 2 (R32 leak detection wire) on connector S903 on the indication LED PCB.

Result: The measured voltage MUST be 0.5~4.5 V DC.

Does the leak detection sensor function correctly?	Action
Yes	Return to troubleshooting of the specific error code and continue with the next procedure.
No	Replace the leak detection sensor, see "4.19.2 Repair procedures" [▶ 213].

4.19.2 Repair procedures

To remove the R32 leak detection sensor

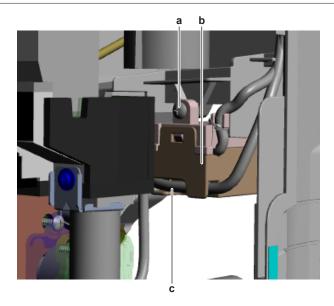

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

Prerequisite: Remove the switch box cover; see "4.18 Plate work" [▶ 185].

- Disconnect the R32 leak detection sensor connector from the indication LED PCB.
- **2** Route the R32 leak detection sensor wiring harness out of ALL harness retainers.
- **3** Release the damper motor wiring harness from the bottom of the R32 leak detection sensor assembly.
- **4** Remove the screw and from the R32 leak detection sensor assembly.



- **a** Screw
- **b** R32 leak detection sensor assy
- **c** Damper motor wiring harness
- **5** Remove the complete R32 leak detection sensor assembly from the unit.
- **6** To install the R32 leak detection sensor, see "4.19.2 Repair procedures" [▶ 213].

To install the R32 leak detection sensor

- 1 Install the R32 leak detection sensor assembly in the correct location on the unit. Make sure the damper motor wiring harness is routed in the correct location (bottom side of the R32 leak detection sensor assembly).
- 2 Install and tighten the screw to fix the R32 leak detection sensor assembly.

- а Screw
- R32 leak detection sensor assy
- c Damper motor wiring harness
- 3 Attach the damper motor wiring harness to the bottom of the R32 leak detection sensor assembly.
- Route the R32 leak detection sensor wiring harness through ALL appropriate harness retainers towards the indication LED PCB.
- Connect the R32 leak detection sensor connector to the indication LED PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.20 Reactor

4.20.1 Checking procedures

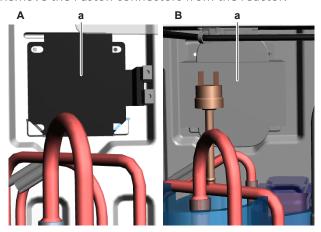
To perform an electrical check of the reactor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

1 Remove the required plate work, see "4.18 Plate work" [▶ 185].

DANGER: RISK OF ELECTROCUTION


Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

2 Visually check the reactor for any damage or burnt-out components. If any damage is found, replace the reactor, see "4.20.2 Repair procedures" [▶ 217].

2MXM40+50 + 2AMXM40+50 units

- 1 Check the connections of the reactor on the main PCB and check continuity of the wires, see "7.2 Wiring diagram" [▶ 289].
- **2** Remove the Faston connectors from the reactor.

- A 2MXM40 + 2AMXM40 units
- **B** 2MXM50 + 2AMXM50 units
- a Reactor
- **3** Using a megger device of 500 V DC, check the insulation resistance. Make sure there is no earth leakage.

Is the measured insulation resistance correct?	Action
Yes	Continue with the next step.
No	Replace the reactor, see "4.20.2 Repair procedures" [> 217].

4 Measure the resistance of the reactor.

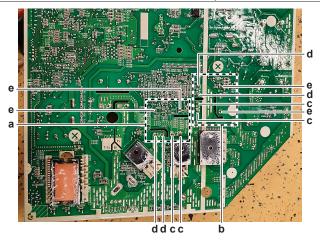
Result: The measured resistance MUST be:

Unit	Resistance
2MXM40 + 2AMXM40	213.5~288.65 mΩ
2MXM50 + 2AMXM50	201.6~246.4 mΩ

Is the resistance measurement correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next step.
No	Replace the reactor, see "4.20.2 Repair procedures" [> 217].

2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units

1 Check that the reactors are firmly installed on the main PCB.

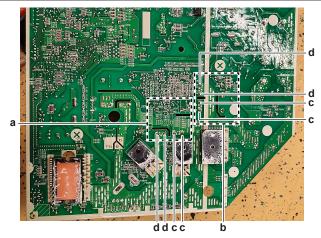


- a Reactor L803
- **b** Reactor L804
- 2 Remove the main PCB, see "Repair procedures" [> 169]. The reactor measuring points are ONLY reachable on the back side of the main PCB.
- **3** Measure the resistance of the reactor using a low ohm multi meter.

Result: The resistance MUST be as follows:

Measuring points	Resistance
c-d	20~30 mΩ
е	152~228 mΩ

- **a** L803
- L804
- c Measuring point
- **d** Measuring point
- e Measuring point


Is the resistance measurement correct?	Action
Yes	Proceed with the next step.
	Replace the reactor, see "4.20.2 Repair procedures" [> 217].

Measure the inductance of the reactor using an LCR meter.

Result: The inductance MUST be as follows:

Measuring points	Resistance
c-d	88.5~101.5 μH

- **a** L803
- **b** L804
- c Measuring point
- **d** Measuring point

Is the inductance measurement correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next step.
No	Replace the reactor, see "4.20.2 Repair procedures" [> 217].

4.20.2 Repair procedures

For 2MXM40+50 + 2AMXM40+50 units

See procedures below.

For 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units

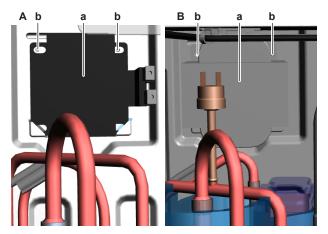
As the reactors are part of the main PCB, replace the complete main PCB. See "Repair procedures" [> 169].

To remove the reactor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

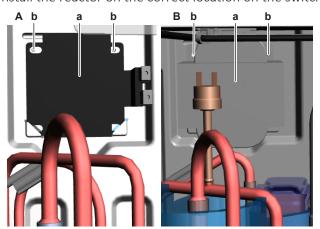
1 Remove the required plate work, see "4.18 Plate work" [▶ 185].



DANGER: RISK OF ELECTROCUTION

Wait for at least 10 minutes after the circuit breaker has been turned OFF, to be sure the rectifier voltage is below 10 V DC before proceeding.

- 2 Remove the Faston connectors to disconnect the wires from the reactor.
- **3** Remove the 2 screws that fix the reactor to the switch box.
- **4** Remove the reactor.



- 2MXM40 + 2AMXM40 units
- В 2MXM50 + 2AMXM50 units
- Reactor
- Screw
- **5** To install the reactor, see "4.20.2 Repair procedures" [▶ 217].

To install the reactor

1 Install the reactor on the correct location on the switch box.

- 2MXM40 + 2AMXM40 units
- 2MXM50 + 2AMXM50 units
- Reactor
- **b** Screw
- Install the 2 screws that fix the reactor to the switch box.
- Connect the Faston connectors to the reactor.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.21 Solenoid valve

4.21.1 Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the solenoid valve

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- **1** Visually check:
 - For oil drops around the solenoid valve. Locate and fix as needed.
 - Pipes for signs of damage. Replace pipes as needed.
- **2** Verify that the screw is firmly fixing the coil to the valve body.
- **3** Check coil and coil wires if any damage or burst is present.

Is the solenoid valve coil firmly fixed and not visually damaged?	Action
Yes	Perform an electrical check of the solenoid valve, see "4.21.1 Checking procedures" [> 218].
No	Fix or replace the solenoid valve coil, see "4.21.2 Repair procedures" [▶ 221].

To perform an electrical check of the solenoid valve

Prerequisite: First perform a mechanical check of the solenoid valve, see "4.21.1 Checking procedures" [▶ 218].

- 1 Unplug the solenoid valve Faston connectors from the appropriate PCB.
- 2 Measure the resistance of the solenoid valve coil.

Result: The measured value MUST be:

Name	Symbol	Location (PCB)	Connector	Winding resistance
Defrost solenoid valve	Y2S	Main PCB (OU)	AL1-AL2	2.025~2.475 kΩ

Is the measured value correct?	Action
Yes	Continue with the next step.
	Replace the solenoid valve coil, see "4.21.2 Repair procedures" [▶ 221].

- **3** Re-connect the solenoid valve Faston connectors to the appropriate PCB.
- **4** Turn ON the power using the respective circuit breaker.
- **5** Turn on the unit using the user interface.
- **6** Connect the service monitoring tool to the unit.
- **7** With the unit operating, check the solenoid valve status using the service monitoring tool.

INFORMATION

The solenoid valve is triggered open when ONLY 1 indoor unit is ON during defrost operation.

8 Measure the voltage (power supply) on the solenoid valve connection on the PCB. The measured voltage MUST be:

- 0 V AC when the solenoid valve is closed
- 230 V AC when the solenoid valve is triggered open
- 9 Wait for the solenoid valve to open or close and again measure the voltage (power supply) as described above.

Are the measured voltages correct?	Action
Yes	Perform an operation check of the solenoid valve, see "4.21.1 Checking procedures" [> 218].
No	Perform a check of the main PCB, see "4.15 Main PCB" [▶ 152].

To perform an operation check of the solenoid valve

Prerequisite: First perform an electrical check of the solenoid valve, see "4.21.1 Checking procedures" [▶ 218].

With the unit operating, check the solenoid valve status using the service monitoring tool.

INFORMATION

The solenoid valve is triggered open when ONLY 1 indoor unit is ON during defrost operation.

2 When the solenoid valve is closed according to the service monitoring tool, check the inlet and outlet of the valve with a contact thermometer or use a valve stethoscope to see if refrigerant flows through the solenoid valve. Check that the valve is NOT bleeding.

Result: There MUST be NO flow through the solenoid valve.

3 When the solenoid valve is open according to the service monitoring tool, check the inlet and outlet of the valve with a contact thermometer or use a valve stethoscope to see if refrigerant flows through the solenoid valve.

Result: Refrigerant MUST flow through the solenoid valve.

4 Wait for the solenoid valve to open or close and again perform the above checks.

Is the solenoid valve operating correctly?	Action
Yes	Component is OK. Return to the troubleshooting of the specific error and continue with the next step.
No	Replace the solenoid valve body, see "4.21.2 Repair procedures" [> 221].

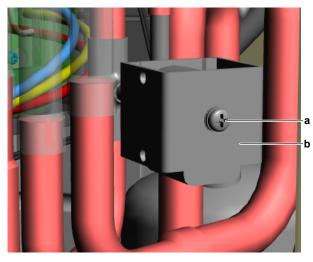
Problem solved?

After all checking procedures listed above have been performed:

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.21.2 Repair procedures

To remove the solenoid valve coil


Prerequisite: Stop the unit operation via the user interface.

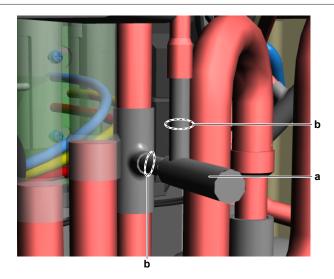
Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

Prerequisite: If needed, remove any parts or insulation to create more space for the removal.

1 Remove the screw that fixes the solenoid valve coil to the solenoid valve body.

- a Screw
- **b** Solenoid valve coil
- **2** Remove the solenoid valve coil from the solenoid valve body.
- **3** Disconnect the solenoid valve Faston connectors from the main PCB.
- **4** Cut all tie straps that fix the solenoid valve harness.
- 5 To install the solenoid valve coil, see "4.21.2 Repair procedures" [▶ 221].


To remove the solenoid valve body

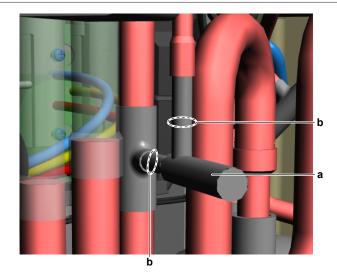
Prerequisite: Recuperate the refrigerant from the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

Prerequisite: If needed, remove any parts or insulation to create more space for the removal.

- 1 Remove the solenoid valve coil, see "4.21.2 Repair procedures" [▶ 221].
- **2** Remove the insulation from the oil return valve pipes (if applicable). Keep for reuse.
- **3** Using a valve magnet, open the solenoid valve.
- **4** Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **5** Wrap a wet rag around the components near the solenoid valve body pipes. Heat the brazing points of the solenoid valve body pipes using an oxygen acetylene torch and remove the solenoid valve body pipes from the refrigerant pipes using pliers.

- Solenoid valve body
- Pipe
- Stop the nitrogen supply when the piping has cooled down.
- Remove the solenoid valve body.

INFORMATION

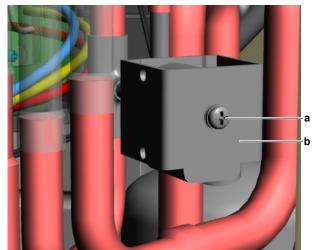

It is ALSO possible to cut the component pipe(s) using a pipe cutter. Make sure to remove the remaining component pipe end(s) from the refrigerant pipes by heating the brazing point(s) of the component pipe(s) using an oxygen acetylene torch.

- Install plugs or caps on the open pipe ends of the refrigerant piping to avoid dirt or impurities from entering the piping.
- To install the solenoid valve body, see "4.21.2 Repair procedures" [▶ 221].

To install the solenoid valve body

- 1 Remove the plugs or caps from the refrigerant piping and make sure they are
- **2** Remove the solenoid valve coil from the spare part solenoid valve body.
- **3** Install the solenoid valve body in the correct location and correctly oriented. Insert the pipe ends in the pipe expansions.
- **4** Open the solenoid valve using a valve magnet.
- 5 Supply nitrogen to the refrigerant circuit. The nitrogen pressure MUST NOT exceed 0.02 MPa.
- **6** Wrap a wet rag around the solenoid valve body and any other components near the solenoid valve and solder the solenoid valve body pipes to the refrigerant pipes.

- a Solenoid valve body
- **b** Pipe


CAUTION

Overheating the valve will damage or destroy it.

- **7** After soldering is done, stop the nitrogen supply after the component has cooled-down.
- 8 Install the insulation in the original location on the oil return valve pipes (if applicable).
- 9 Install the solenoid valve coil, see "4.21.2 Repair procedures" [▶ 221].
- **10** Perform a pressure test, see "5.2.1 Checking procedures" [▶ 266].
- **11** Add refrigerant to the refrigerant circuit, see "5.2.2 Repair procedures" [▶ 272].

To install the solenoid valve coil

1 Install and tighten the screw to fix the solenoid valve coil to the solenoid valve body.

- **a** Screw
- **b** Solenoid valve coil
- 2 Route the solenoid valve harness towards the switch box.
- **3** Connect the solenoid valve Faston connectors to the main PCB.
- **4** Fix the solenoid valve harness using new tie straps.

INFORMATION

Replace all cable ties that were cut during removal.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to "4.21.1 Checking procedures" [> 218] of the solenoid valve and continue with the next procedure.

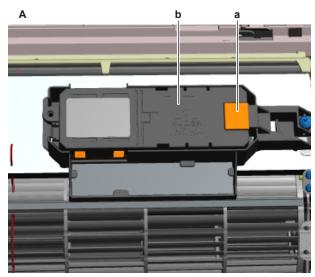
4.22 Streamer unit

4.22.1 Checking procedures

1 As there is no specific check procedure for this component, first perform a check of the indoor unit main PCB to check if the streamer unit needs to be replaced. See "4.11.1 Checking procedures" [▶ 121].

After complete check of the indoor unit main PCB, is the problem solved?	Action
Yes	No further actions required.
	Replace the streamer unit, see "4.22.2 Repair procedures" [> 224].

4.22.2 Repair procedures

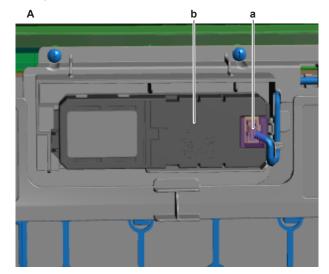

To remove the streamer unit

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

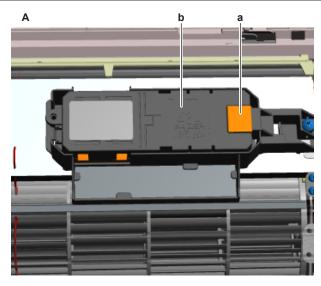
Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

1 Disconnect the connector from the streamer unit.

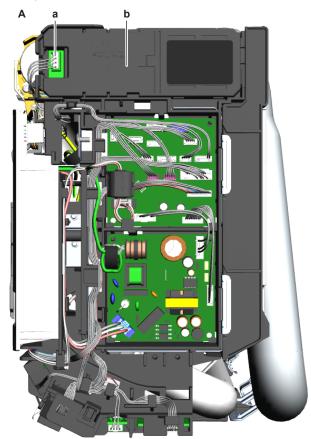


- Wall mounted indoor unit ATXM20R + CTXM15R
- Streamer unit connector
- **b** Streamer unit

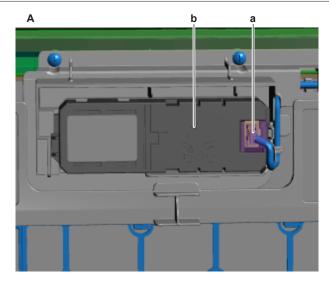
- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- **a** Streamer unit connector
- **b** Streamer unit



- **A** Floor standing indoor unit
- **a** Streamer unit connector
- **b** Streamer unit
- 2 Click the streamer unit out of the indoor unit.
- **3** To install the streamer unit, see "4.22.2 Repair procedures" [▶ 224].


To install the streamer unit

1 Install the streamer unit in the correct location on the indoor unit.



- Wall mounted indoor unit ATXM20R + CTXM15R
- Streamer unit connector
- Streamer unit

- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- Streamer unit connector
- Streamer unit

- A Floor standing indoor unit
- a Streamer unit connector
- **b** Streamer unit
- **2** Connect the streamer unit harness to the streamer unit.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.23 Swing flap motor

4.23.1 Main swing flap motor

Wall mounted indoor units

Checking procedures

To perform an electrical check of the swing flap motor

ATXM20R + CTXM15R units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the swing flap motor connector from the indoor unit main PCB.
- **2** Measure the resistance between the following pins of the motor connector.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
5-1	232.5~267.5
5-2	
5-3	
5-4	

Pins	Measured resistance (Ω)
1-2	465~535
1-3	
1-4	
2-3	
2-4	
3-4	

Swing flap motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Replace the swing flap motor, see "Repair procedures" [▶ 229].

CTXA15A and CTXA15B units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the swing flap motor connector from the indoor unit main PCB.
- **2** Measure the resistance between the following pins of the motor connector. **Result:** The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
1-2	353.4~406.6
1-3	
1-4	
1-5	
2-3	653.6~866.4
2-4	
2-5	
3-4	
3-5	
4-5	

Swing flap motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

3 Remove the swing flap motor, see "Repair procedures" [▶ 229].

4 Measure the resistance between the following pins of the connector on the swing flap motor.

Result: The measurements MUST be as shown in the table below.

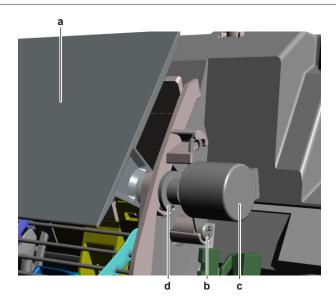
Pins	Measured resistance (Ω)
1-2	353.4~406.6
1-3	
1-4	
1-5	
2-3	653.6~866.4
2-4	
1-5	
3-4	
3-5	
4-5	

Swing flap motor resistance measurements are correct?	Action
Yes	Replace the swing flap motor wiring harness, see "Repair procedures" [> 229].
No	Replace the swing flap motor, see "Repair procedures" [> 229].

Repair procedures

ATXM20R+CTXM-R units

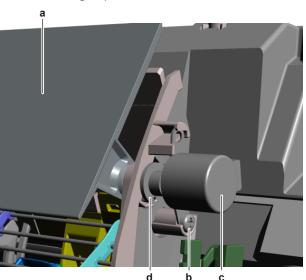
To remove the swing flap motor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Remove the switch box, see "4.18 Plate work" [> 185].
- 2 As the swing flap motor wiring harness is also connected to the swing raster motor, remove the swing raster motor, see "4.24.2 Repair procedures" [▶ 240].
- **3** Remove the swing flap from the indoor unit (by clicking it out).
- **4** Remove the screw that fixes the swing flap motor.



- a Swing flap
- Screw (swing flap motor fixation)
- Swing flap motor
- Coupling piece
- Remove the swing flap motor from the coupling piece.
- To install the swing flap motor, see "Repair procedures" [> 229].

To install the swing flap motor

- Install the coupling piece on the swing flap motor.
- Install the swing flap motor in the correct location on the indoor unit.

- a Swing flap
- Screw (swing flap motor fixation)
- c Swing flap motor
- **d** Coupling piece
- **3** Install and tighten the screw to fix the swing flap motor.
- Install the swing flap.
- Install the swing raster motor, see "4.24.2 Repair procedures" [▶ 240].
- Install the switch box, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action
Yes	No further actions required.

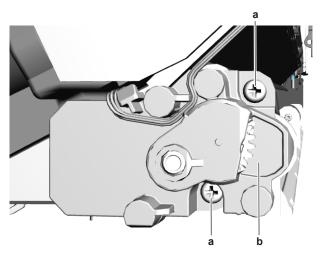
Is the problem solved?	Action
No	Return to the troubleshooting of the specific error and continue with the next procedure.

CTXA-A+CTXA-B units

INFORMATION

To replace the motor, the complete gearcase assembly MUST be replaced.

As the main swing flap motor wiring harness is part of the secondary swing flap motor gearcase assembly, see "Repair procedures" [> 236] to replace the wiring harness.

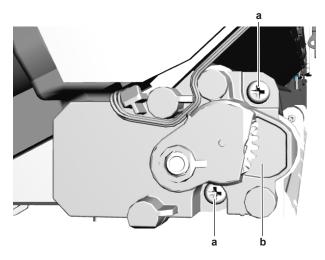

To remove the swing flap motor gearcase assembly

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Remove the main swing flap from the indoor unit (by clicking it out).
- **2** Remove the 2 screws and remove the swing flap motor gearcase assembly from the indoor unit.



- **a** Screw
- **b** Swing flap motor gearcase assembly
- **3** Disconnect the swing flap motor harness from the swing flap motor.
- **4** To install the swing flap motor gearcase assembly, see "Repair procedures" [▶ 229].

To install the swing flap motor gearcase assembly

- 1 Connect the swing flap motor harness to the swing flap motor connector.
- 2 Install the swing flap motor gearcase assembly on the indoor unit and tighten using the 2 screws.

- a Screw
- **b** Swing flap motor gearcase assembly
- **3** Install the main swing flap in the indoor unit (by clicking it on).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

Floor standing indoor units

Checking procedures

To perform an electrical check of the swing flap motor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the swing flap motor connector from the indoor unit main PCB.
- **2** Measure the resistance between the following pins of the motor connector.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
1-2	353.4~406.6
1-3	
1-4	
1-5	
2-3	706.8~813.2
2-4	
2-5	
2-4	
3-5	
4-5	

Swing flap motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

- **3** Remove the swing flap motor, see "Repair procedures" [▶ 233].
- **4** Measure the resistance between the following pins of the connector on the swing flap motor.

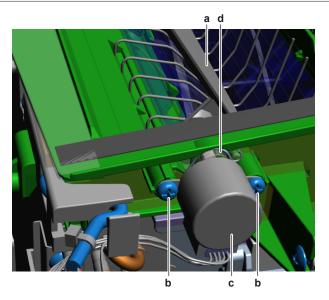
Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
1-2	353.4~406.6
1-3	
1-4	
1-5	
2-3	706.8~813.2
2-4	
2-5	
3-4	
3-5	
4-5	

Swing flap motor resistance measurements are correct?	Action
Yes	Replace the swing flap motor wiring harness, see "Repair procedures" [> 233].
No	Replace the swing flap motor, see "Repair procedures" [> 233].

Repair procedures

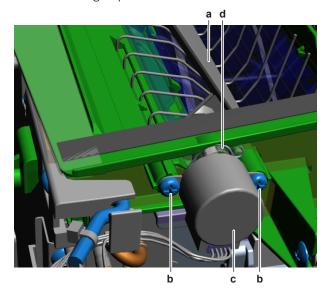
To remove the swing flap motor


Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Remove the switch box, see "4.18 Plate work" [▶ 185].
- 2 Remove the swing flap from the indoor unit (by clicking it out).
- **3** Remove the 2 screws that fix the swing flap motor.



- a Swing flap
- Screw (swing flap motor fixation)
- Swing flap motor
- d Coupling piece
- Remove the swing flap motor and coupling piece.
- **5** Remove the spring and remove the coupling piece from the swing flap motor.
- Disconnect the wiring harness from the swing flap motor.
- To install the swing flap motor, see "Repair procedures" [> 233].

To install the swing flap motor

- 1 Install the coupling piece on the swing flap motor. Install the spring to fix the coupling piece.
- Connect the wiring harness to the swing flap motor.
- Install the swing flap motor in the correct location on the indoor unit.

- a Swing flap
- **b** Screw (swing flap motor fixation)
- c Swing flap motor
- **d** Coupling piece
- Install and tighten the 2 screws to fix the swing flap motor.
- Install the swing flap.
- Install the switch box, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To remove the swing flap motor wiring harness

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Remove the switch box, see "4.18 Plate work" [▶ 185].
- **2** Disconnect the wiring harness from the swing flap motor.
- **3** Remove the swing flap motor wiring harness from the indoor unit.
- **4** To install the swing flap motor wiring harness, see "Repair procedures" [▶ 233].

To install the swing flap motor wiring harness

- **1** Connect the wiring harness connector to the swing flap motor.
- 2 Install the switch box, see "4.18 Plate work" [> 185].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.23.2 Secondary swing flap motor

INFORMATION

ONLY for CTXA15A and CTXA15B units.

Checking procedures

To perform an electrical check of the swing flap motor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the swing flap motor connector from the indoor unit main PCB.
- 2 Measure the resistance between the following pins of the motor connector.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
6-7	279~321
6-8	
6-9	
6-10	

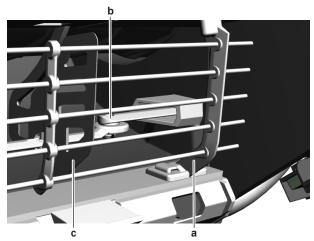
Pins	Measured resistance (Ω)
7-8	516~684
7-9	
7-10	
8-9	
8-10	
9-10	

Swing flap motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Replace the swing flap motor, see "Repair procedures" [> 236].

Repair procedures

INFORMATION

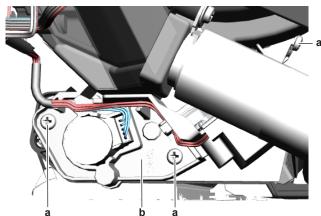
To replace the motor, the complete gearcase assembly MUST be replaced. This includes the secondary swing flap motor, swing raster motor, gears and wiring harness of main and secondary swing flap motor and swing raster motor.


To remove the swing flap motor gearcase assembly

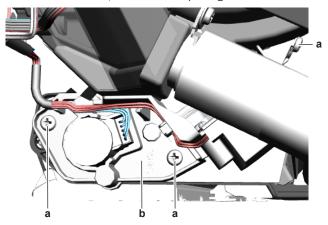
Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

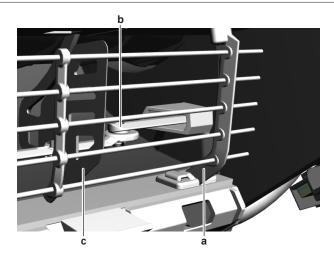
Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].


- Remove the switch box, see "4.18 Plate work" [> 185].
- **2** Remove the main swing flap from the indoor unit (by clicking it out).
- **3** Remove the secondary swing flap from the indoor unit (by clicking it out).
- Remove the right side fan guard from the indoor unit (by clicking it out).

- **a** Fan guard
- Swing raster motor rod
- **c** Swing raster
- Remove the main swing flap motor, see "Repair procedures" [▶ 229].


- 6 Put a small drain pan (or container) under the drain hose.
- **7** Remove the screw from the fixation bracket and pull the drain hose downwards to remove it from the indoor unit.
- **8** Remove the 3 screws from the swing flap motor gear case assembly. Do NOT yet remove the assembly from the indoor unit.

- a Screw
- **b** Swing flap motor gearcase assembly
- **9** Cut all tie straps that fix the wiring harness (harness to main and secondary swing flap motor and swing raster motor).
- **10** Route the wiring harness out of the harness retainers.
- **11** Disconnect the swing raster motor rod from the swing raster shaft.
- 12 Remove the swing flap motor gear case assembly from the indoor unit.
- **13** To install the swing flap motor gearcase assembly, see "Repair procedures" [▶ 236].


To install the swing flap motor gearcase assembly

- 1 Install the swing flap motor gearcase assembly on the correct location on the indoor unit while guiding the rod inside the swing raster compartment.
- 2 Install the 3 screws, but do NOT yet tighten them.

- **a** Screw
- **b** Swing flap motor gearcase assembly
- **3** Connect the swing raster motor rod to the swing raster shaft using soft tools.

- Fan guard
- Swing raster motor rod
- c Swing raster
- Tighten the 3 screws to fix the swing flap motor assembly.
- **5** Route the wiring harness through the harness retainers.
- Install new tie straps to fix the wiring harness as needed. 6
- **7** Connect the drain hose to the indoor unit.
- Install the drain hose fixation bracket. Install and tighten the screw.
- **9** Install the right side fan guard on the indoor unit (by clicking it on).
- **10** Install the secondary swing flap in the indoor unit (by clicking it on).
- 11 Install the main swing flap in the indoor unit (by clicking it on).
- **12** Install the main swing flap motor, see "Repair procedures" [▶ 229].
- **13** Install the switch box, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.24 Swing raster motor

4.24.1 Checking procedures

To perform an electrical check of the swing raster motor

ATXM20R and CTXM15R units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the swing raster motor connector from the indoor unit main PCB.
- **2** Measure the resistance between the following pins of the motor connector.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
15-14	353.4~406.6
15-13	
15-12	
15-11	
14-13	706.8~813.2
14-12	
14-11	
13-12	
13-11	
12-11	

Swing raster motor resistance measurements are correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

- **3** Remove the swing raster motor, see "4.24.2 Repair procedures" [▶ 240].
- **4** Measure the resistance between the following pins of the connector on the swing raster motor.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
1-2	353.4~406.6
1-3	
1-4	
1-5	
2-3	706.8~813.2
2-4	
2-5	
3-4	
3-5	
4-5	

Swing raster motor resistance measurements are correct?	Action
Yes	Replace the swing raster motor wiring harness, see "4.24.2 Repair procedures" [> 240].
No	Replace the swing raster motor, see "4.24.2 Repair procedures" [> 240].

CTXA15A and CTXA15B units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Disconnect the swing raster motor connector from the indoor unit main PCB.

2 Measure the resistance between the following pins of the motor connector.

Result: The measurements MUST be as shown in the table below.

Pins	Measured resistance (Ω)
11-12	279~321
11-13	
11-14	
11-15	
12-13	516~684
12-14	
12-15	
13-14	
13-15	
14-15	

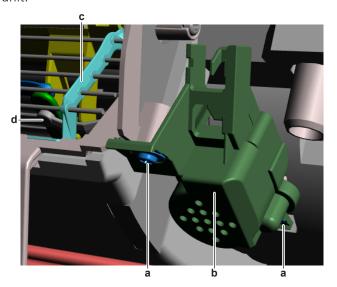
Swing raster motor resistance measurements are correct?	Action		
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.		
No	Replace the swing raster motor, see "4.24.2 Repair procedures" [> 240].		

4.24.2 Repair procedures

ATXM20R+CTXM-R units

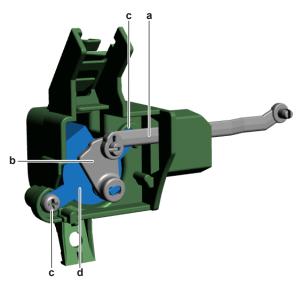
To remove the swing raster motor

Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

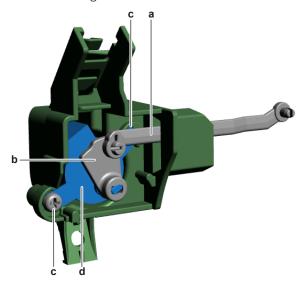
Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Remove the switch box, see "4.18 Plate work" [> 185].
- **2** Put a small drain pan (or container) under the drain hose.
- 3 Remove the screw from the fixation bracket and pull the drain hose downwards to remove it from the indoor unit.



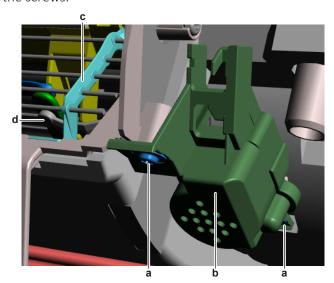
- a Screw (drain hose)
- **b** Drain hose
- 4 Remove the 2 screws that fix the swing raster motor assembly to the indoor unit

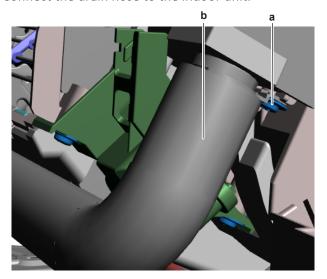
- a Screw (swing raster motor assembly)
- **b** Swing raster motor assembly
- **c** Fan guard
- **d** Swing raster motor rod
- **5** Remove the fan guard.
- **6** Disconnect the swing raster motor rod from the swing raster shaft.
- 7 Remove the swing raster motor assembly from the indoor unit.
- **8** Disconnect the rod and link from the swing raster motor. Keep the rod and link for reuse.



- Rod
- Link b
- Screw (swing raster motor fixation)
- **d** Swing raster motor
- **9** Remove the 2 screws that fix the swing raster motor to the bracket.
- **10** Remove the swing raster motor.
- **11** Disconnect the wiring harness from the swing raster motor.
- **12** To install the swing raster motor, see "4.24.2 Repair procedures" [▶ 240].

To install the swing raster motor


- **1** Connect the wiring harness to the swing raster motor.
- 2 Install the swing raster motor on the correct location on the bracket.


- Rod
- Link
- Screw (swing raster motor fixation)
- **d** Swing raster motor
- **3** Install and tighten the 2 screws to fix the swing raster motor to the bracket.
- **4** Guide the rod and link inside the bracket to the correct location.
- **5** Connect the rod and link to the swing raster motor.
- Install the swing raster motor assembly on the correct location on the indoor unit while guiding the rod inside the swing raster compartment.

Install the 2 screws to fix the swing raster motor assembly. Do NOT yet tighten the screws.

- a Screw (swing raster motor assembly)
- **b** Swing raster motor assembly
- **c** Fan guard
- **d** Swing raster motor rod
- **8** Connect the swing raster motor rod to the swing raster shaft using soft tools.
- **9** Tighten the 2 screws to properly fix the swing raster motor assembly.
- **10** Install the fan guard.
- **11** Connect the drain hose to the indoor unit.

- **a** Screw (drain hose)
- **b** Drain hose
- 12 Install the drain hose fixation bracket. Install and tighten the screw.
- **13** Install the switch box, see "4.18 Plate work" [▶ 185].

Is the problem solved?	Action		
Yes No further actions required.			
No	Return to the troubleshooting of the specific error and continue with the next procedure.		

To remove the swing raster motor wiring harness

As the swing raster motor wiring harness is part of the swing flap motor, remove the swing flap motor, see "Repair procedures" [> 229].

To install the swing raster motor wiring harness, see "4.24.2 Repair procedures" [> 240].

To install the swing raster motor wiring harness

As the swing raster motor wiring harness is part of the swing flap motor, install the swing flap motor, see "Repair procedures" [> 229].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

CTXA-A+CTXA-B units

INFORMATION

To replace the motor, the complete gearcase assembly MUST be replaced.

As the swing raster motor is part of the secondary swing flap motor gearcase assembly, see "4.23.2 Secondary swing flap motor" [> 235] for the repair procedures.

4.25 Thermistors

4.25.1 Checking procedures

INFORMATION

It is recommended to perform the checks in the listed order.

To perform a mechanical check of the specific thermistor

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Locate the thermistor and remove the insulation if needed. Check that the thermistor is correctly installed and that there is thermal contact between the thermistor and the piping or ambient (for air thermistor).

Is the thermistor correctly installed (thermal contact between the thermistor and the piping)?	Action
Yes	Perform an electrical check of the specific thermistor, see "4.25.1 Checking procedures" [> 244].
No	Correctly install the thermistor, see "4.25.2 Repair procedures" [▶ 254].

To perform an electrical check of the specific thermistor

- 1 First perform a mechanical check of the thermistor, see "4.25.1 Checking procedures" [▶ 244].
- **2** Locate the thermistor.

INFORMATION

Remove the thermistor from its holder if not reachable with a contact thermometer.

3 Measure the temperature using a contact thermometer.

Outdoor units 2MXM40 + 2AMXM40

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Air thermistor	R1T	Main (O/U)	S90:1-2	-	А
Heat exchanger thermistor	R2T	Main (O/U)	\$90:3-4	-	A
Discharge pipe thermistor	R3T	Main (O/U)	\$90:5-6	-	A
Refrigerant liquid thermistor – Room A	R5T	Main (O/U)	S91:1-2	X15A:1-2	A
Refrigerant liquid thermistor – Room B	R6T	Main (O/U)	S91:3-4	X15A:3-4	А
Refrigerant gas thermistor – Room A	R7T	Main (O/U)	S92:1-2	X14A:1-2	A
Refrigerant gas thermistor – Room B	R8T	Main (O/U)	S92:3-4	X14A:3-4	A

Outdoor units 2MXM50 + 2AMXM50

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Air thermistor	R1T	Main (O/U)	S90:1-2	-	A

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Heat exchanger thermistor	R2T	Main (O/U)	S90:3-4	-	A
Discharge pipe thermistor	R3T	Main (O/U)	S90:5-6	-	A
Refrigerant liquid thermistor – Room A	R5T	Main (O/U)	S91:1-2	X16A:1-2	А
Refrigerant liquid thermistor – Room B	R6T	Main (O/U)	S91:3-4	X16A:3-4	А
Refrigerant gas thermistor – Room A	R7T	Main (O/U)	S92:1-2	X15A:1-2	А
Refrigerant gas thermistor – Room B	R8T	Main (O/U)	S92:3-4	X15A:3-4	A

Outdoor units 2MXM68

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Air thermistor	R1T	Main (O/U)	S90:1-2	-	А
Heat exchanger thermistor	R2T	Main (O/U)	S90:3-4	-	A
Discharge pipe thermistor	R3T	Main (O/U)	S90:5-6	-	A
Refrigerant liquid thermistor – Room A	R4T	Main (O/U)	S93:1-2	-	А
Refrigerant liquid thermistor – Room B	R5T	Main (O/U)	S93:3-4	-	A

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Refrigerant gas thermistor – Room A	R9T	Main (O/U)	S92:1-2	-	A
Refrigerant gas thermistor – Room B	R10T	Main (O/U)	S92:3-4	-	A

Outdoor units 3MXM + 3AMXM

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Air thermistor	R1T	Main (O/U)	S90:1-2	-	А
Heat exchanger thermistor	R2T	Main (O/U)	\$90:3-4	-	A
Discharge pipe thermistor	R3T	Main (O/U)	S90:5-6	-	А
Refrigerant liquid thermistor – Room A	R4T	Main (O/U)	S93:1-2	-	А
Refrigerant liquid thermistor – Room B	R5T	Main (O/U)	S93:3-4	-	А
Refrigerant liquid thermistor – Room C	R6T	Main (O/U)	S93:5-6	-	А
Refrigerant gas thermistor – Room A	R9T	Main (O/U)	S92:1-2	-	А
Refrigerant gas thermistor – Room B	R10T	Main (O/U)	S92:3-4	-	А
Refrigerant gas thermistor – Room C	R11T	Main (O/U)	S92:5-6	-	A

Outdoor units 4MXM

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Air thermistor	R1T	Main (O/U)	S90:1-2	-	А
Heat exchanger thermistor	R2T	Main (O/U)	S90:3-4	-	A
Discharge pipe thermistor	R3T	Main (O/U)	\$90:5-6	-	А
Refrigerant liquid thermistor – Room A	R4T	Main (O/U)	S93:1-2	-	А
Refrigerant liquid thermistor – Room B	R5T	Main (O/U)	S93:3-4	-	А
Refrigerant liquid thermistor – Room C	R6T	Main (O/U)	S93:5-6	-	A
Refrigerant liquid thermistor – Room D	R7T	Main (O/U)	S93:7-8	-	А
Refrigerant gas thermistor – Room A	R9T	Main (O/U)	S92:1-2	-	А
Refrigerant gas thermistor – Room B	R10T	Main (O/U)	S92:3-4	-	А
Refrigerant gas thermistor – Room C	R11T	Main (O/U)	S92:5-6	-	A
Refrigerant gas thermistor – Room D	R12T	Main (O/U)	S92:7-8	-	А

Outdoor units 5MXM

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Air thermistor	R1T	Main (O/U)	S90:1-2	-	А
Heat exchanger thermistor	R2T	Main (O/U)	S90:3-4	-	A
Discharge pipe thermistor	R3T	Main (O/U)	S90:5-6	-	A
Refrigerant liquid thermistor – Room A	R4T	Main (O/U)	S93:1-2	-	A
Refrigerant liquid thermistor – Room B	R5T	Main (O/U)	S93:3-4	-	A
Refrigerant liquid thermistor – Room C	R6T	Main (O/U)	S93:5-6	-	A
Refrigerant liquid thermistor – Room D	R7T	Main (O/U)	S93:7-8	-	A
Refrigerant liquid thermistor – Room E	R8T	Main (O/U)	S93:9-10	-	А
Refrigerant gas thermistor – Room A	R9T	Main (O/U)	S92:1-2	-	А
Refrigerant gas thermistor – Room B	R10T	Main (O/U)	S92:3-4	-	A
Refrigerant gas thermistor – Room C	R11T	Main (O/U)	S92:5-6	-	А
Refrigerant gas thermistor – Room D	R12T	Main (O/U)	S92:7-8	-	A

Name	Symbol	Location (PCB)	(pins)		Referen ce (table)
Refrigerant gas thermistor – Room E	R13T	Main (O/U)	S92:9-10	_	A

Wall mounted indoor units ATXM20R + CTXM15R

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Indoor unit air (room) thermistor	R1T	Display PCB A3P on main PCB (I/ U)	S800:5-11	S27:1-2 on display PCB	В
Heat exchanger thermistor	R2T	Main (I/U)	S501:1-2	-	A

Wall mounted indoor units CTXA15A + CTXA15B

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Heat exchanger thermistor	R1T	Main (I/U)	S501:1-2	-	A
Indoor unit air (room) thermistor	R2T	Humidity sensor PCB A5P on main PCB (I/ U)	S600:1-2	CN1:1-2 (on A5P)	A

Floor standing indoor units CVXM-A

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Heat exchanger thermistor	R1T	Main (I/U)	S501:1-2	-	A
Indoor unit air (room) thermistor	R2T	Main (I/U)	S501:3-4	-	А

Name	Symbol	Location (PCB)	Connector (pins)	Inter- mediate connector (pins)	Referen ce (table)
Humidity thermistor	R3T	Humidity sensor PCB A5P on main PCB (I/ U)	S600	CN on A5P	-

4 Determine the thermistor resistance that matches the measured temperature.

Thermistor – Table A

T °C	kΩ	T °C	kΩ	T °C	kΩ	T °C	kΩ
-20	197.81	10	39.96	40	10.63	70	3.44
-19	186.53	11	38.08	41	10.21	71	3.32
-18	175.97	12	36.30	42	9.81	72	3.21
-17	166.07	13	34.62	43	9.42	73	3.11
-16	156.80	14	33.02	44	9.06	74	3.01
-15	148.10	15	31.50	45	8.71	75	2.91
-14	139.94	16	30.06	46	8.37	76	2.82
-13	132.28	17	28.70	47	8.05	77	2.72
-12	125.09	18	27.41	48	7.75	78	2.64
-11	118.34	19	26.18	49	7.46	79	2.55
-10	111.99	20	25.01	50	7.18	80	2.47

T °C	kΩ	T °C	kΩ	T °C	kΩ	T °C	kΩ
- 9	106.03	21	23.91	51	6.91		
-8	100.41	22	22.85	52	6.65		
- 7	95.14	23	21.85	53	6.41		
-6	90.17	24	20.90	54	6.65		
- 5	85.49	25	20.00	55	6.41		
-4	81.08	26	19.14	56	6.18		
-3	76.93	27	18.32	57	5.95		
-2	73.01	28	17.54	58	5.74		
-1	69.32	29	16.80	59	5.14		
0	65.84	30	16.10	60	4.87		
1	62.54	31	15.43	61	4.70		
2	59.43	32	14.79	62	4.54		
3	56.49	33	14.18	63	4.38		
4	53.71	34	13.59	64	4.23		
5	51.09	35	13.04	65	4.08		
6	48.61	36	12.51	66	3.94		
7	46.26	37	12.01	67	3.81		
8	44.05	38	11.52	68	3.68		
9	41.95	39	11.06	69	3.56		

Thermistor – Table B

T °C	kΩ	T °C	kΩ	T °C	kΩ	T °C	kΩ
-30	200.20	5	25.9	40	5.3	75	1.5
-25	144.32	10	20.2	45	4.3	80	1.3
-20	105.38	15	15.8	50	3.6	85	1.1
-15	77.90	20	12.5	55	3.0	90	0.9
-10	58.25	25	10.0	60	2.5	95	0.8
-5	44.0	30	8.0	65	2.1		
0	33.6	35	6.5	70	1.8		

- **5** Disconnect the thermistor connector from the appropriate PCB.
- **6** Measure the resistance between the appropriate pins of the thermistor connector.
- 7 Check that the measured resistance value matches the resistance determined through the measured temperature (earlier step in the procedure).

- E.g. R1T thermistor:
- Measured temperature with contact thermometer: 23.1°C,
- Resistance value determined through temperature (using the thermistor table A):

Resistance at 23°C: 21.85 k Ω , Resistance at 24°C: 20.90 k Ω ,

- Disconnect connector and measure resistance between S90 pin 1-2: Measured resistance: 21.80 k Ω ,
- Measured resistance value is inside the range. R1T thermistor passes the check.

INFORMATION

All thermistors have a resistance tolerance of 3%.

INFORMATION

In most cases, the user interface allows to monitor the thermistors.

If the measured resistance value matches the resistance determined through the measured temperature, but the temperature for the corresponding thermistor is NOT correct on the user interface display, replace the applicable PCB.

INFORMATION

See the overview of the thermistors at the start of the procedure and the "7.2 Wiring diagram" [> 289] to determine if the specific thermistor is either:

- Directly connected to the PCB
- Connected to an intermediate connector which is connected to the PCB

For thermistors directly connected to the PCB

Does the measured resistance of the thermistor match with the temperature determined resistance?	Action
Yes	Thermistor is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
No	Replace the specific thermistor, see "4.25.2 Repair procedures" [▶ 254].

For thermistors connected to an intermediate connector

Does the measured resistance of the thermistor match with the temperature determined resistance?	Action
Yes	Thermistor is OK. Return to the troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

8 Disconnect the thermistor from the intermediate connector and measure the resistance of the thermistor (between the appropriate pins of the connector).

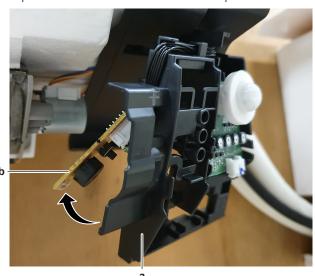
Does the measured resistance of the thermistor match with the temperature determined resistance?	Action
Yes	Correct the wiring between the thermistor connector on the PCB and the intermediate connector, see "7.2 Wiring diagram" [> 289].
No	Replace the specific thermistor, see "4.25.2 Repair procedures" [> 254].

4.25.2 Repair procedures

To remove the thermistor

Indoor unit air (room) thermistor

WALL MOUNTED INDOOR UNITS ATXM20R + CTXM15R


As the indoor unit air (room) thermistor is located on the display PCB, remove the display PCB as described in the steps below:

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- Remove the display panel from the indoor unit.
- Pull up the bottom of the indication lamp cover.

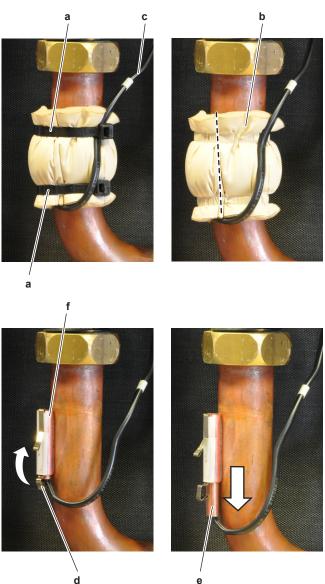
- a Indication lamp cover
- Display PCB
- **3** Remove the display PCB from the back side of the indication lamp cover.
- Disconnect the connector from the display PCB.
- To install the indoor unit air (room) thermistor, see "4.25.2 Repair procedures" [> 254].

WALL MOUNTED INDOOR UNITS CTXA15A + CTXA15B

As the indoor unit air (room) thermistor is located on the humidity sensor PCB, replace the humidity sensor assembly, see "4.8.2 Repair procedures" [> 101].

FLOOR STANDING INDOOR UNITS

6 Open the thermistor holder and remove the thermistor from the holder.


Other refrigerant side thermistors

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Locate the thermistor that needs to be removed.
- **2** Remove the thermistor as follows:
 - For outdoor unit air (ambient) thermistor: Remove the thermistor from the heat exchanger grille recess. Remove the protection tube.
 - For refrigerant piping thermistors:
 - Cut the tie straps that fix the insulation and the thermistor wire.
 - Cut and remove the insulation.
 - Pull the clip that fixes the thermistor.
 - Remove the thermistor from the thermistor holder.

- **a** Tie strap
- **b** Insulation
- **c** Thermistor wire
- d Clip

- Thermistor
- Thermistor holder
- **3** Cut all tie straps that fix the thermistor harness.

INFORMATION

See the overview of the thermistors at the start of the electrical check procedure and the "7.2 Wiring diagram" [> 289] to determine if the specific thermistor is either:

- Directly connected to the PCB
- Connected to an intermediate connector which is connected to the PCB
- If connected to an intermediate connector, disconnect the thermistor connector from the intermediate connector. If directly connected to the PCB, disconnect the thermistor connector from the PCB.

INFORMATION

Some of the thermistors are wired to the same connector. See connector and pin information of the thermistors at the start of the electrical check procedure and "7.2 Wiring diagram" [> 289]. ALWAYS replace the complete set of thermistors wired to the same connector.

- **5** When removing the complete set of thermistors wired to the same connector:
 - Remove all other thermistors wired to the connector from their thermistor holder.
 - Disconnect the thermistor connector,
 - Remove the complete set of thermistors.
- To install the thermistor, see "4.25.2 Repair procedures" [> 254].

To install the thermistor

Indoor unit air (room) thermistor

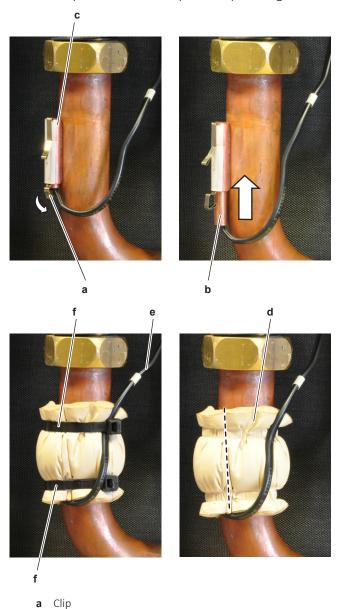
WALL MOUNTED INDOOR UNITS ATXM20R + CTXM15R

As the indoor unit air (room) thermistor is located on the display PCB, install the display PCB as described in the steps below:

- **1** Connect the connector to the display PCB.
- Install the display PCB in the correct location on the back side of the indication lamp cover. Make sure to route the wiring harness through the harness retainers.

- a Display PCB
- **b** Indication lamp cover
- 3 Install the indication lamp cover in the correct location on the indoor unit.
- 4 Install the display panel.

WALL MOUNTED INDOOR UNITS CTXA15A + CTXA15B


As the indoor unit air (room) thermistor is located on the humidity sensor PCB, replace the humidity sensor assembly, see "4.8.2 Repair procedures" [> 101].

FLOOR STANDING INDOOR UNITS

Procedure is similar as for the outdoor unit air thermistor, see below.

Other refrigerant side thermistors

- 1 Install the thermistor as follows:
 - For outdoor unit air (ambient) thermistor:
 Insert the thermistor in the protection tube.
 Correctly install the thermistor in the heat exchanger grille recess.
 - For refrigerant piping thermistors:
 Pull the clip and install the thermistor in the specific thermistor holder. Make sure the clip is in the correct position (blocking the thermistor).

- Thermistor
- Thermistor holder
- **d** Insulation
- e Thermistor wire
- f Tie strap

INFORMATION

See the overview of the thermistors at the start of the electrical check procedure and the "7.2 Wiring diagram" [▶ 289] to determine if the specific thermistor is either:

- Directly connected to the PCB
- Connected to an intermediate connector which is connected to the PCB
- 2 Route the thermistor harness towards the appropriate PCB or intermediate connector.
- If connected to an intermediate connector, connect the thermistor connector to the intermediate connector. If directly connected to the PCB, connect the thermistor connector to the appropriate PCB.

INFORMATION

Some of the thermistors are wired to the same connector. See connector and pin information of the thermistors at the start of the electrical check procedure and "7.2 Wiring diagram" [> 289]. ALWAYS replace the complete set of thermistors wired to the same connector.

- When installing the complete set of thermistors wired to the same connector:
 - Install all other thermistors wired to the connector in their thermistor holder,
 - Route the thermistor harness of all thermistors towards the appropriate PCB or intermediate connector,
 - Connect the thermistor connector.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

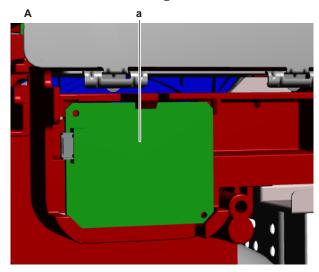
- **5** Fix the thermistor harness using new tie straps
- Install the insulation around the thermistor.
- Fix the insulation and the thermistor wire using new tie straps.

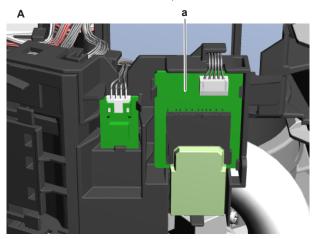
Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

4.26 Wifi control PCB

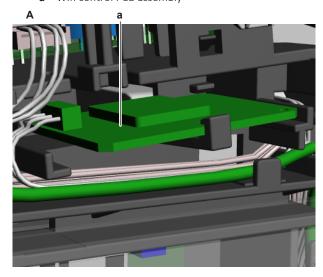
4.26.1 Checking procedures

To perform a power check of the wifi control PCB


Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- 2 Turn ON the power of the unit.
- Measure the power supply voltage between the pins 4-5 on the wifi control PCB connector.


Result: The measured voltage MUST be 10~16 V DC.

- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Wifi control PCB assembly

- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- a Wifi control PCB assembly

A Floor standing indoor unit

a	Wifi	control	PCB	assembly

Is the measured power supply voltage correct?	Action
Yes	Skip the next step
No	Continue with the next step.

Measure the output voltage between between the pins 4-5 on the connector S801 on the indoor unit main PCB.

Result: The measured voltage MUST be 10~16 V DC.

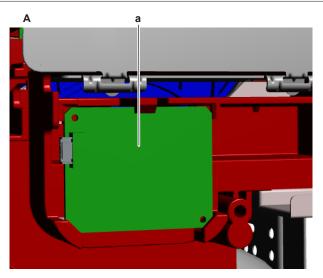
Is the output voltage on the indoor unit main PCB correct?	Action
Yes	Replace the wifi control PCB wiring harness, see "4.26.2 Repair procedures" [> 260].
No	Perform a check of the indoor unit main PCB, see "4.11.1 Checking procedures" [> 121].

5 As there are no further check procedures for this component, perform a check of the indoor unit main PCB to check if the wifi control PCB needs to be replaced. See "4.11.1 Checking procedures" [▶ 121].

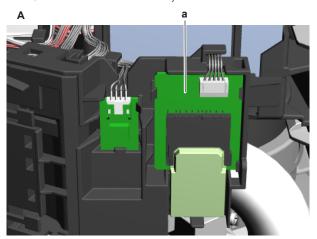
After complete check of the indoor unit main PCB, is the problem solved?	Action
Yes	No further actions required.
	Replace the wifi control PCB, see "4.26.2 Repair procedures" [> 260].

4.26.2 Repair procedures

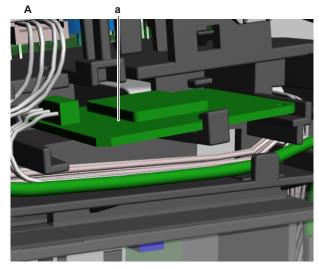
To remove the wifi control PCB


Prerequisite: Stop the unit operation via the user interface.

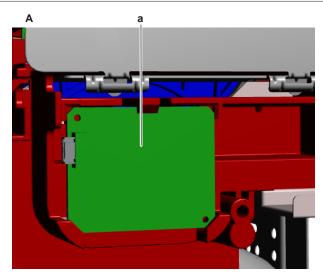
Prerequisite: Turn OFF the respective circuit breaker.

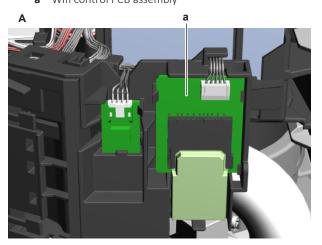

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

- 1 Disconnect the connector from the wifi control PCB.
- Carefully click the complete wifi control PCB assembly out of the indoor unit.

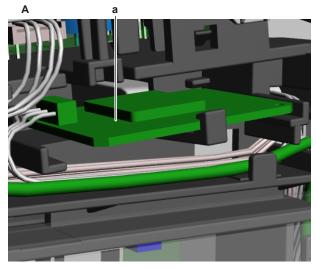


- **A** Wall mounted indoor unit ATXM20R + CTXM15R
- a Wifi control PCB assembly


- **A** Wall mounted indoor unit CTXA15A + CTXA15B
- **a** Wifi control PCB assembly


- A Floor standing indoor unit
- a Wifi control PCB assembly
- **3** To install the wifi control PCB assembly, see "4.26.2 Repair procedures" [▶ 260].

To install the wifi control PCB


1 Click the wifi control PCB assembly on the indoor unit.

- A Wall mounted indoor unit ATXM20R + CTXM15R
- **a** Wifi control PCB assembly

- Wall mounted indoor unit CTXA15A + CTXA15B
- Wifi control PCB assembly

- A Floor standing indoor unita Wifi control PCB assembly
- Connect the harness to the wifi control PCB assembly.

Is the problem solved?	Action
Yes	No further actions required.

Is the problem solved?	Action
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To remove the wifi control PCB wiring harness

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Disconnect the wiring harness from the wifi control PCB.
- **2** Disconnect the wiring harness connector from the indoor unit main PCB.
- **3** Cut all tie straps (if any) that fix the wiring harness.
- **4** Route the wiring harness out of the harness retainers and remove the wifi control PCB wiring harness.
- 5 To install the wifi control PCB wiring harness, see "4.26.2 Repair procedures" [▶ 260].

To install the wifi control PCB wiring harness

1 Connect the wiring harness connector to the indoor unit main PCB.

WARNING

When reconnecting a connector to the PCB, make sure to connect it on the correct location and do NOT apply force, as this may damage the connector or connector pins of the PCB.

- 2 Route the wiring harness through the appropriate harness retainers towards the wifi control PCB.
- **3** Connect the wiring harness to the wifi control PCB.
- **4** Fix the wiring harness using new tie straps (if needed).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

5 Third party components

5.1 Electrical circuit

5.1.1 Checking procedures

To check the power supply of the unit

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 For 2MXM40+50 and 2AMXM40+50 units: Check that the power supply cables and earth connection are firmly fixed to the power supply terminal X2M.
- 2 For 2MXM68, 3MXM, 3AMXM, 4MXM and 5MXM units: Check that the power supply cables and earth connection are firmly fixed to the power supply terminal X1M.
- 3 Measure the insulation resistance between each power supply terminal and the ground using a megger device of 500 V DC. All measurements MUST be >1M Ω . If insulation resistance is <1M Ω , earth leakage is present.
- **4** Turn ON the power of the unit.
- For 2MXM40+50 and 2AMXM40+50 units: Measure the voltage between L and N on the power supply terminal X2M. The voltage MUST be 230 V AC \pm 10%.
- 6 For 2MXM68, 3MXM, 3AMXM, 4MXM and 5MXM units: Measure the voltage between L and N on the power supply terminal X1M.

Result: The voltage MUST be 230 V AC \pm 10%.

Unbalance between the phases MUST NOT exceed 2%.

Is the measured voltage (power supply) correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Adjust the power supply, see "5.1.2 Repair procedures" [▶ 266].

To check the power supply to the indoor unit

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Remove the required plate work, see "4.18 Plate work" [▶ 185].
- 2 Check that the power supply cables and earth connection are firmly fixed to the indoor unit power supply terminal X1M.
- Measure the insulation resistance between each power supply terminal and the ground using a megger device of 500 V DC. All measurements MUST be >1M Ω . If insulation resistance is <1M Ω , earth leakage is present.
- **4** Turn ON the power using the respective circuit breaker.

5 Measure the voltage between L and N on the indoor unit power supply terminal X1M.

Result: The voltage MUST be 230 V AC ± 10%.

Is the measured voltage (power supply) correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Continue with the next step.

6 Check the power supply to the unit, see "5.1.1 Checking procedures" [▶ 264].

Does the unit receive power?	Action
Yes	Correct the wiring from the main power supply terminal to the indoor unit power supply terminal, see "5.1.2 Repair procedures" [> 266].
No	Adjust the power supply to the unit, see "5.1.2 Repair procedures" [> 266].

To check if the power supply is compliant with the regulations

1 Check that the power source is in line with the requirements described in the databook.

Is the power supply compliant with the regulations?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Adjust the power supply, see "5.1.2 Repair procedures" [▶ 266].

To check the wiring between the outdoor unit and the indoor unit

- 1 Check that all wires are properly connected and that all connectors are fully plugged-in.
- **2** Check that no connectors or wires are damaged.
- 3 Check that the wiring corresponds with the wiring diagram, see "7.2 Wiring diagram" [▶ 289].

INFORMATION

Correct the wiring as needed.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

5.1.2 Repair procedures

To adjust the power supply

- **1** Make sure that the power source is in line with the requirements described in the databook.
- 2 Adjust the power supply within 50 Hz \pm 3%.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To correct the wiring from the main power supply terminal to the indoor unit power supply terminal

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

- 1 Make sure that all wires are firmly and correctly connected, see "7.2 Wiring diagram" [▶ 289].
- 2 Check the continuity of all wires.
- **3** Replace any damaged or broken wires.

INFORMATION

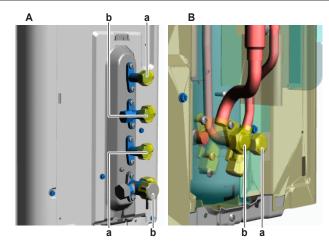
If applicable, also check the electrical components between the main power supply terminal and the indoor unit power supply terminal (e.g. intermediate terminal, noise filter, fuse, ...).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

5.2 Refrigerant circuit

5.2.1 Checking procedures

INFORMATION


It is recommended to perform the checks in the listed order.

To check if the stop valves are open

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Remove the caps.

- **A** 2MXM40+50 + 2AMXM40+50 units
- **B** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- a Liquid stop valve
- **b** Gas stop valve
- **2** Check if the stop valves are completely open.

The refrigerant circuit stop valves are open?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Open the stop valves of the refrigerant circuit, see "5.2.2 Repair procedures" [> 272].

To check if the refrigerant circuit is clogged

2MXM40+50 + 2AMXM40+50 units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- **1** Wait for the refrigerant to reach the outdoor temperature.
- **2** Check that all field piping is done according to the refrigeration practice and installation manual:
 - Correct piping diameters
 - Piping distance limits are followed
 - NO pipes are squeezed
 - NO short radius bends
- **3** Connect a manometer to one of the service ports.
- **4** Turn ON the power of the unit.
- **5** Activate **Heating** operation via the user interface.
- **6** Read the pressure on the pressure gauge. If, at the start of the unit operation, the pressure is high or very low, the refrigerant circuit might be clogged.
- On the refrigerant liquid piping (between the indoor unit heat exchanger and the outdoor unit heat exchanger (coil)), using a contact thermometer, measure the temperature before and after every restricting device. If a big temperature difference is measured (>2.5~4K), an internal pipe obstruction may be present at this location.

INFORMATION

Focus on positions with a potential risk for clogging such as:

- Valves
- Brazing points

INFORMATION

A bigger temperature drop before and after the expansion valve can be normal, however excessive ice is indicating a malfunction of the expansion valve or internal obstruction of the valve (dirt or ice build up in case of humidity in the system).

Temperature drop found?	Action
Yes	Replace the clogged part, see "5.2.2 Repair procedures" [▶ 272].
No	Return to the troubleshooting of the specific error and continue with the next procedure.

2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- **1** Wait for the refrigerant to reach the outdoor temperature.
- Check that all field piping is done according to the refrigeration practice and installation manual:
 - Correct piping diameters
 - Piping distance limits are followed
 - NO pipes are squeezed
 - NO short radius bends
- **3** Connect a manometer to the high pressure and low pressure service ports.
- Turn ON the power of the unit. 4
- Activate **Heating** operation via the user interface.
- Read the pressure on the high and low pressure gauges. If there is a significant difference between high and low pressure, the refrigerant circuit might be clogged.
- 7 On the refrigerant liquid piping (between the indoor unit heat exchanger and the outdoor unit heat exchanger (coil)), using a contact thermometer, measure the temperature before and after every restricting device. If a big temperature difference is measured (>2.5~4K), an internal pipe obstruction may be present at this location.

INFORMATION

Focus on positions with a potential risk for clogging such as:

- Filters
- Valves
- Brazing points

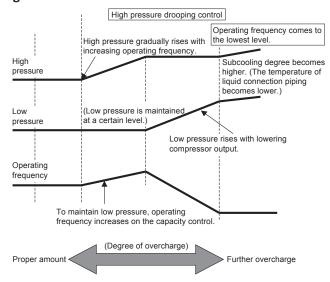
INFORMATION

A bigger temperature drop before and after the expansion valve can be normal, however excessive ice is indicating a malfunction of the expansion valve or internal obstruction of the valve (dirt or ice build up in case of humidity in the system).

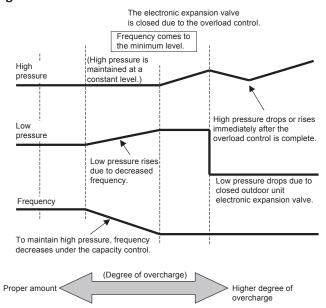
Temperature drop found?	Action
Yes	Replace the clogged part, see "5.2.2 Repair procedures" [▶ 272].
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To check if the refrigerant circuit is correctly charged

Due to the relationship to pressure control and electronic expansion valve control, the amount of refrigerant needs to be examined according to operating conditions.

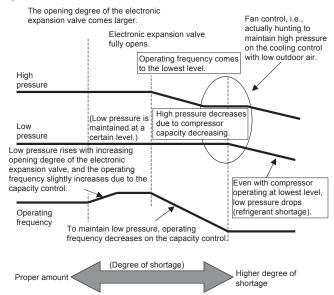

Refer to the procedures shown below for correct examination.

Refrigerant overcharge diagnosis


- **1** High pressure rises. Consequently, overload control is conducted to cause insufficient cooling capacity.
- **2** The superheated degree of suction gas lowers (or the wet operation is performed). Consequently, the compressor consumes more power and is noisy (before over-current relay trips).
- **3** The subcooling degree of refrigerant in liquid form rises (values >4~5K are NOT normal).

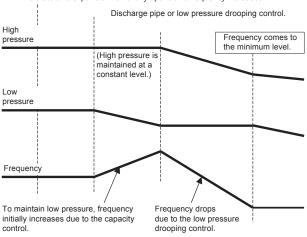
Cooling

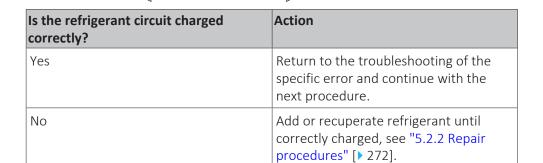
Heating



Refrigerant shortage diagnosis

- 1 The superheated degree of suction gas rises. Consequently, the compressor discharge gas temperature becomes higher than normal.
- The superheated degree of suction gas rises. Consequently, the electronic expansion valve turns open more than normal or completely open for average output.
- Low pressure drops to cause the unit not to reach cooling capacity (or heating capacity).


Cooling


Heating

The opening degree of the electronic expansion valve becomes larger.

The electronic expansion valve fully opens and frequency increases.

(Degree of refrigerant shortage)

Higher degree

of shortage

To check for non-condensables in the refrigerant circuit

Proper amount

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

- 1 Wait for the refrigerant to reach the outdoor temperature.
- **2** Connect a manometer to the service port.

- Measure the pressure of the refrigerant. The measured pressure converted into saturated temperature MUST be in line with the expected pressure / saturated temperature at current ambient temperature.
- If the measured pressure is significantly higher (>5K), non-condensables gasses are most likely present in the refrigerant.

Any non-condensables found in the refrigerant circuit?	Action
Yes	To replace the refrigerant, see "5.2.2 Repair procedures" [▶ 272].
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To perform a pressure test of the refrigerant circuit

1 Perform a pressure test in line with local legislation.

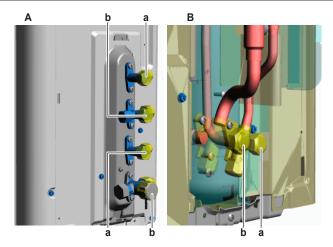
Is the pressure in the refrigerant circuit correct?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Replace the leaking part of the refrigerant circuit, see "5.2.2 Repair procedures" [> 272].

To check if the refrigerant field piping is compliant with the regulations

1 Check if the refrigerant field piping is compliant with the regulations. Adjust as needed. See installation manual for field piping specifications.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

5.2.2 Repair procedures


To open the stop valves of the refrigerant circuit

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Remove the caps.

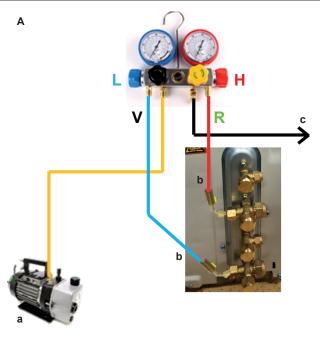
272

- **A** 2MXM40+50 + 2AMXM40+50 units
- **B** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- **a** Liquid stop valve
- **b** Gas stop valve
- **2** Completely open the stop valves by screwing the stop valve screw counterclockwise.

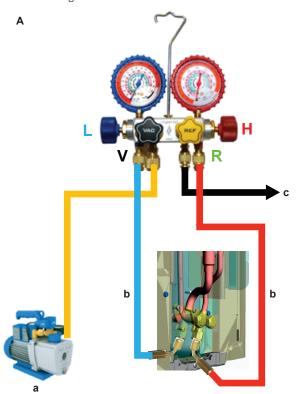
Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To replace the clogged/leaking part of the refrigerant circuit

1 See the correct procedure for the component that needs to be repaired. See also "Repair information" [▶ 275] for more details.


Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To recuperate the refrigerant


Prerequisite: Stop the unit operation via the user interface.

- **1** Manually open all expansion valves.
- **2** For 2MXM68, 3MXM68, 4MXM and 5MXM units: Manually open the solenoid valve.
- **3** Connect the vacuum pump, manifold, recovery unit, and refrigerant bottle to the service port of the refrigerant circuit as shown below.

- **A** 2MXM40+50 + 2AMXM40+50 units
- a Vacuum pump
- **b** Connect flexible hose to service port
- To recovery pump
- **L** Low pressure
- **H** High pressure
- Vacuum
- **R** Refrigerant

- **A** 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units
- a Vacuum pump
- **b** Connect flexible hose to service port
- c To recovery pump
- **L** Low pressure
- **H** High pressure
- **V** Vacuum
- **R** Refrigerant
- **4** To add refrigerant, see "5.2.2 Repair procedures" [▶ 272].

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To add refrigerant

1 See the installer reference guide for the correct procedure.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to troubleshooting of the specific error and continue with the next procedure.

Repair information

Refrigerant piping handling

- Make sure that the applied pressure is never higher than the unit design pressure indicated on the nameplate (PS).
- Work according to the F-gas regulation and/or local regulations.
- Make sure the correct amount of refrigerant is charged after repair according to the F-gas regulation label on the unit (factory + additional where required).
- Make sure to use the appropriate equipment and tools according to the refrigerant and unit type.
- R32 can be charged in gas phase.
- Make sure to use a digital scale (no charging cylinder).
- Execute correct vacuum drying procedure after repair:
 - When using an electronic vacuum gauge with an absolute pressure readout, a pressure of minimal 2000 micron / 2 Torr / 266 Pa MUST be reached. This pressure should stay stable for 30 minutes when vacuum pump is NOT running. If vacuum pressure CANNOT be held, most likely there is still moisture in the system. Again run the vacuum pump for 1~2 hours to a pressure (absolute pressure readout) lower than 2000 micron / 2 torr / 266 Pa. If target pressure CANNOT be reached, again check for leaks.
 - Connect the unit according to the available service ports.
 - Use related field setting where necessary to open expansion valve / solenoid valve.

To perform refrigerant pump down operation

The unit is equipped with an automatic pump down operation which will collect all refrigerant from the field piping and indoor unit in the outdoor unit. To protect the environment, make sure to perform the following pump down operation when relocating the unit.

DANGER: RISK OF EXPLOSION

Pump down – Refrigerant leakage. If you want to pump down the system, and there is a leak in the refrigerant circuit:

- Do NOT use the unit's automatic pump down function, with which you can collect all refrigerant from the system into the outdoor unit. Possible consequence: Selfcombustion and explosion of the compressor because of air going into the operating compressor.
- Use a separate recovery system so that the unit's compressor does NOT have to operate.

CAUTION

Some outdoor units are equipped with a low pressure switch to protect the compressor by switching it off. NEVER short-circuit the low pressure switch during pump down operation.

- 1 Remove the refrigerant connection cover, see "4.18 Plate work" [> 185].
- 2 Remove the cap from the stop valves.
- **3** Perform pump down operation, see installer reference guide for the correct procedure.
- **4** After 5~10 minutes (after only 1~2 minutes in case temperature <-10°C), close the liquid stop valve using a hexagonal wrench.
- **5** Check the manifold if vacuum is reached. Close the gas stop valve and stop forced cooling operation.

Refrigerant piping repair

- Make sure to cover open pipe ends during repair so no dust or moisture can enter.
- Make sure to re-apply insulation removed during repair.
- Pipe expansion / flare making:
 - Remove any burrs on the cut surface using the correct tool such as reamer or scraper (note that excessive deburring can thin the pipe walls and cause cracking of the pipe).
 - Make sure the flare has the correct size (use a flare gauge).
 - Make sure no particles remain in the piping.
 - Apply just a drop of refrigerant oil on the inner surface of the flare.
 - Make sure the flare connection is tightened with the correct torque (torque values refer to installation manual).
- Brazing:
 - Use the correct brazing tool.
 - Use a phosphor copper filler metal (silver composition of 0 to 2%). Do not use flux material.
 - Flush the piping before brazing with nitrogen to avoid oxidation of the inside of the copper tubes (nitrogen purity ≥99.99%).

Refrigerant circuit vacuuming - general advice

The effectiveness of the vacuum drying depends on many factors. Besides following the correct procedures and using equipment that is well maintained, the ambient conditions at which the vacuum is done MUST be considered. If there is moisture in the refrigerant and the ambient temperature is lower, the vacuum pressure that MUST be reached to allow the evaporation of the moisture will need

276

to be lower. In some cases the vacuum pump may NOT be able to achieve these pressures. If possible, heat the locations where moisture is expected.

As a general target, the values below CAN be used as reference to achieve a proper vacuum on the unit:

- Absolute pressure below 270 Pa MUST be reached. The time needed for the
 pressure to lower is also depending on the moisture amount. If it takes very long
 or it is hard to reach the pressure, this MIGHT be an indication of moisture
 presence, so the vacuum pump will need to run longer.
- After stopping the vacuum pump, the absolute pressure MUST be kept below 270 Pa for at least 30 minutes, without a significant increase of pressure. If pressure increases significantly, this is an indication of the presence of moisture in the system.
- If multiple vacuum cycles need to be performed, break the vacuum between the cycles using dry nitrogen.

Depending on the site conditions, as mentioned above, lower pressure values MIGHT be needed to allow the boiling of the moisture in the system. The table below shows the boiling point of water for different absolute pressures.

Pressure (absolute)		Boiling point
Micron / Torr	Mbar / Pa	°C
760000 / 760	1013 / 101325	100
50000 / 50	66 / 6666	38
10000 / 10	13 / 1333	11
2000 / 2	2.6 / 266	-10
1000 / 1	1.33 / 133	-18
500 / 0.5	0.66 / 66	-24

5.3 External factors

5.3.1 Checking procedures

To check the outdoor temperature

1 The temperature ranges for the different operation modes of the unit can be found in the databook on Business Portal.

INFORMATION

If the outdoor temperature is outside the range of operation, the unit may NOT operate or may NOT deliver the required capacity.

Is the outdoor temperature within the operating range?	Action
Yes	Return to the troubleshooting of the specific error and continue with the next procedure.
No	Wait for the outdoor temperature to return within the operating range.

To check for objects that may block the airflow

1 Check for the presence of object(s) near the indoor unit that may block the airflow. Remove the object(s) as needed.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

To check the required space around the outdoor unit heat exchanger

1 Check if the space around the outdoor unit heat exchanger is sufficient. See the installation manual for the required space specifications. Adjust as needed.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

6 Maintenance

NOTICE

General maintenance/inspection checklist. Next to the maintenance instructions in this chapter, a general maintenance/inspection checklist is also available on the Daikin Business Portal (authentication required).

The general maintenance/inspection checklist is complementary to the instructions in this chapter and can be used as a guideline and reporting template during maintenance.

6.1 To clean the outdoor unit heat exchanger

- 1 Straighten the hair fins.
- 2 Clear the outdoor unit heat exchanger from dust, leaves,... using a fin-comb or compressed air/N₂

CAUTION

Avoid bending or damaging the hair fins of the outdoor unit heat exchanger during the cleaning process.

Do NOT use a high-pressure washer.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

6.2 To clean the indoor unit heat exchanger

- 1 Straighten the hair fins.
- 2 Clear the indoor unit heat exchanger from dust, ... using a fin-comb or compressed air/N₂.

CAUTION

Avoid bending or damaging the hair fins of the indoor unit heat exchanger during the cleaning process.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

6.3 To clean the indoor unit heat exchanger in extreme condition

When cleaning the indoor unit heat exchanger (contaminated by cooking oil, ...), make sure to:

- Use proper field supply cleaning agent which is suitable for cleaning heat exchangers and drain pans.
- Clearly follow the instructions of local supply cleaning agent and to NOT use household cleaning agents.
- Rinse the heat exchanger and drain pan with water after the cleaning process.

CAUTION

Rinse out the cleaning agent until there is NO cleaning agent left. Otherwise, the corrosion of heat exchanger and drain pan may occur. Pay attention to the cleaning agent that may also corrode other materials of the indoor unit (Aluminium, copper, plastic, ABS, ...).

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

6.4 To clean the indoor unit and wireless remote control

WARNING

Improper detergents or cleaning procedure may cause damage on plastic components or water leakage. Splashed detergent on electric components, such as motors, may cause failure, smoke or ignition.

DANGER: RISK OF ELECTROCUTION

Before cleaning, be sure to stop the operation, turn the breaker OFF or pull out the supply cord. Otherwise, an electrical shock and injury may result. In case the unit is equipped with a refrigerant leakage sensor, turn the power supply breaker back ON immediately after cleaning in order to maintain detection functionality.

NOTICE

- Do NOT use gasoline, benzene, thinner, polishing powder or liquid insecticide. **Possible consequence:** Discoloration and deformation.
- Do NOT use water or air of 40°C or higher. **Possible consequence:** Discoloration and deformation.
- Do NOT use polishing compounds.
- Do NOT use a scrubbing brush. **Possible consequence:** The surface finishing peels
- As an end user, you may NEVER clean inside parts of the unit by yourself; this work must be performed by a qualified service person. Contact your dealer.
- Clean with a soft cloth. If it is difficult to remove stains, use water or a neutral detergent.

280

6.5 To clean the front panel

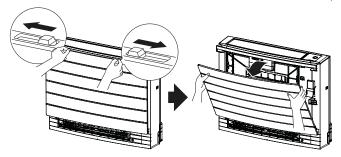
Floor standing units

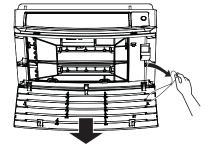
WARNING

Do NOT let the indoor unit get wet. Possible consequence: Electrical shock or fire.

NOTICE

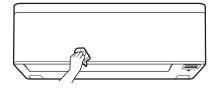
- Do NOT use gasoline, benzene, thinner polishing powder or liquid insecticide.
 Possible consequence: Discoloration and deformation.
- Do NOT use water or air of 50°C or higher. Possible consequence: Discoloration and deformation.
- Do NOT scrub firmly when washing the blade with water. Possible consequence:
 The surface sealing peels off.


You can remove the front panel to clean it.

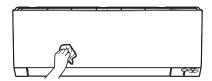

CAUTION

Be careful when opening and handling the front panel; sharp edge of the front panel may cause injury.

1 Slide both sliders in the direction of the arrows until they click.

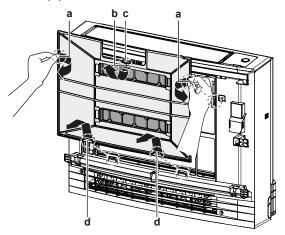


2 Open the front panel and undo the string.

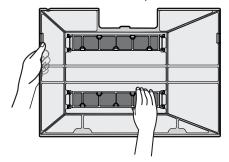


- **3** Remove the front panel.
- **4** Wipe it with a soft cloth soaked in water.
- 5 Let it dry in the shade after washing.
- **6** To reinstall and close the front panel, see "4.18 Plate work" [▶ 185].

Wall mounted units

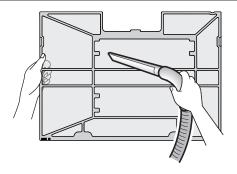


Clean the front panel with a soft cloth. If it is difficult to remove stains, use water or a neutral detergent.


6.6 To clean the air filters

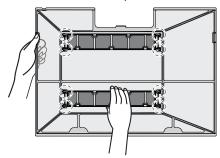
Floor standing units

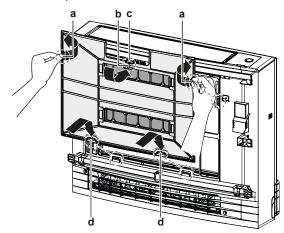
- REMOVE THE FILTER
- 1 Remove the front panel, see "4.18 Plate work" [▶ 185].
- Carefully remove the air filter tabs from the claws (a) on the sides. Hold the air filter by the filter knob (b) and unhook the air filter tab from the claw (c) on the top. Pull the filter up to remove the filter tabs from the claws on the bottom (d).



- a Tabs for claws on the side
- Filter knob
- Tab for the claw on the top
- Tabs for claws on the bottom
- Remove both titanium apatite deodorising filters from the claws (4 on each).

- CLEAN THE FILTER
- 1 Wash the air filter with water or clean it with a vacuum cleaner.

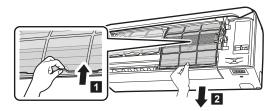




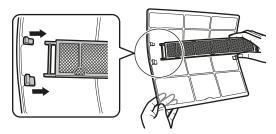
INFORMATION

- If the dust does NOT come off easily, wash them with a neutral detergent diluted in lukewarm water. Dry the air filters in the shade.
- It is recommended to clean the air filters every 2 weeks.
- INSTALL THE FILTER
- **1** Hook both titanium apatite deodorising filters to the claws (4 on each).

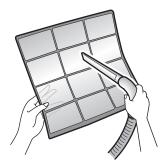
2 Insert the filter tabs to the claws on the bottom (d). Hold the air filter by the filter knob (b) and insert the air filter tab to the claw (c) on the top. Insert the air filter tabs to the claws (a) on the sides. Make sure the air filter is securely fixed in all positions.



- **a** Tabs for claws on the side
- **b** Filter knob
- c Tab for the claw on the top
- **d** Tabs for claws on the bottom
- 3 Install the front panel, see "4.18 Plate work" [▶ 185].


CTXA15A and CTXA15B units

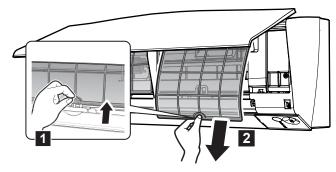
- 1 Push the tab at the centre of each air filter, then pull it down.
- **2** Pull out the air filters.



Remove the titanium apatite deodorising filter and silver particle filter from the tabs.

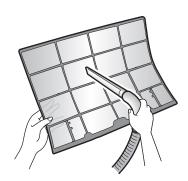
Wash the air filters with water or clean them with a vacuum cleaner.

Soak in lukewarm water for about 10 to 15 minutes.



INFORMATION

- If the dust does NOT come off easily, wash the air filters with a neutral detergent diluted in lukewarm water. Dry the air filters in the shade.
- Be sure to remove the titanium apatite deodorising and silver particle filters.
- It is recommended to clean the air filters every 2 weeks.


Wall mounted units ATXM20R + CTXM15R

- 1 Push the tab at the centre of each air filter, then pull it down.
- Pull out the air filters.

3 Wash the air filters with water or clean them with a vacuum cleaner.

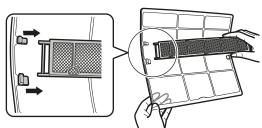
4 Soak in lukewarm water for about 10 to 15 minutes.

INFORMATION

- If the dust does NOT come off easily, wash them with a neutral detergent diluted in lukewarm water. Dry the air filters in the shade.
- It is recommended to clean the air filters every 2 weeks.

Is the problem solved?	Action
Yes	No further actions required.
No	Return to the troubleshooting of the specific error and continue with the next procedure.

6.7 To clean the titanium apatite deodorising filter and the silver particle filter (Ag-ion filter)


CTXA15A and CTXA15B units

INFORMATION

Clean the filter with water every 6 months.

1 Remove titanium apatite deodorising filter and the silver allergen removal air purifying filter from all 4 claws.

a Claw

2 Remove the dust from the filter with a vacuum cleaner.

3 Soak the filter for 10 to 15 minutes in warm water.

Note: Do NOT remove the filter from the frame.

After washing, shake off remaining water and dry the filter in the shade. Do NOT wring out the filter when removing water.

ATXM20R + CTXM15R units

INFORMATION

Clean the filter with water every 6 months.

1 Remove silver allergen removal air purifying filter from the tabs.

Remove the dust from the filter with a vacuum cleaner.

Soak the filter for 10 to 15 minutes in warm water.

After washing, shake off remaining water and dry the filter in the shade. Do NOT wring out the filter when removing water.

6.8 To replace the titanium apatite deodorising filter and the silver particle filter (Ag-ion filter)

INFORMATION

Replace the filter every 3 years.

To order titanium apatite deodorising filter or silver particle filters, contact your dealer.

Item	Part number
Titanium deodorising filter	KAF970A46
Silver particle filter	KAF057A41

CTXA15A and CTXA15B units

1 Remove the filer from the tabs of the filter frame and replace the filter with a new one.

INFORMATION

- Do NOT throw away the filter frame, but use it again.
- Dispose of the old filter as non-flammable waste.

ATXM20R and CTXM15R units

1 Remove the filter from the tabs and prepare a new filter.

INFORMATION

Dispose of the old filter as non-flammable waste.

7 Technical data

7.1 Detailed information setting mode

7.1.1 Detailed information setting mode: Indoor unit

See the installer reference guide on business portal for more information.

7.1.2 Detailed information setting mode: Outdoor unit

See the installer reference guide on business portal for more information.

7.1.3 Detailed information setting mode: Remote controller

See the installer reference guide on business portal for more information.

7.2 Wiring diagram

7.2.1 Wiring diagram: Indoor unit

Unified wiring diagram legend

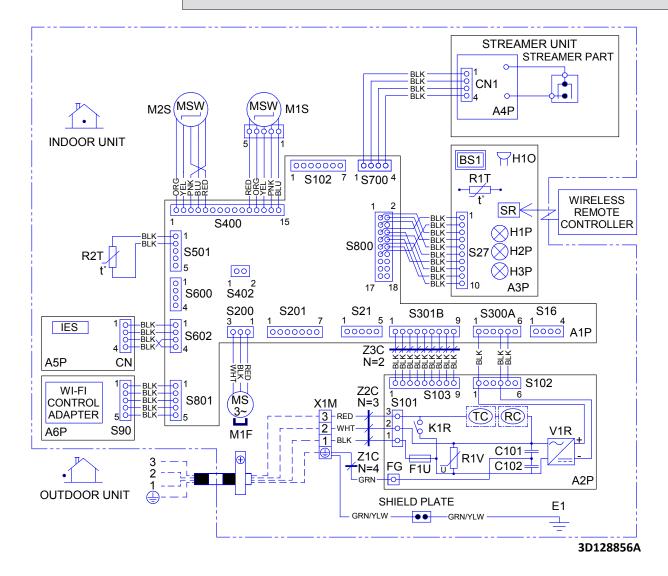
For applied parts and numbering, refer to the wiring diagram on the unit. Part numbering is by Arabic numbers in ascending order for each part and is represented in the overview below by "*" in the part code.

Symbol	Meaning	Symbol	Meaning
	Circuit breaker	(1)	Protective earth
-b			
•	Connection		Protective earth (screw)
00-←- 00,]-	Connector	(A), [Z]	Rectifier
Ŧ	Earth	-(Relay connector
	Field wiring	00	Short-circuit connector
	Fuse	-0-	Terminal
INDOOR	Indoor unit		Terminal strip
OUTDOOR	Outdoor unit	0 •	Wire clamp
	Residual current device		

Symbol	Colour	Symbol	Colour
BLK	Black	ORG	Orange
BLU	Blue	PNK	Pink
BRN	Brown	PRP, PPL	Purple
GRN	Green	RED	Red
GRY	Grey	WHT	White
SKY BLU	Sky blue	YLW	Yellow

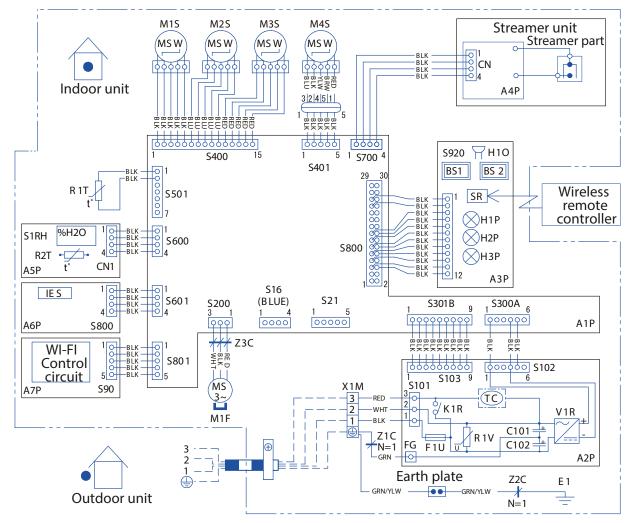
Symbol	Meaning
A*P	Printed circuit board
BS*	Pushbutton ON/OFF, operation switch
BZ, H*O	Buzzer
C*	Capacitor
AC*, CN*, E*, HA*, HE*, HL*, HN*, HR*, MR*_A, MR*_B, S*, U, V, W, X*A, K*R_*, NE	Connection, connector
D*, V*D	Diode
DB*	Diode bridge
DS*	DIP switch

Symbol	Meaning
E*H	Heater
FU*, F*U, (for characteristics, refer to PCB inside your unit)	Fuse
FG*	Connector (frame ground)
H*	Harness
H*P, LED*, V*L	Pilot lamp, light emitting diode
НАР	Light emitting diode (service monitor green)
HIGH VOLTAGE	High voltage
IES	Intelligent eye sensor
IPM*	Intelligent power module
K*R, KCR, KFR, KHuR, K*M	Magnetic relay
L	Live
L*	Coil
L*R	Reactor
M*	Stepper motor
M*C	Compressor motor
M*F	Fan motor
M*P	Drain pump motor
M*S	Swing motor
MR*, MRCW*, MRM*, MRN*	Magnetic relay
N	Neutral
n=*, N=*	Number of passes through ferrite core
PAM	Pulse-amplitude modulation
PCB*	Printed circuit board
PM*	Power module
PS	Switching power supply
PTC*	PTC thermistor
Q*	Insulated gate bipolar transistor (IGBT)
Q*C	Circuit breaker
Q*DI, KLM	Earth leak circuit breaker
Q*L	Overload protector
Q*M	Thermo switch
Q*R	Residual current device
R*	Resistor
R*T	Thermistor
RC	Receiver
S*C	Limit switch


Symbol	Meaning
S*L	Float switch
S*NG	Refrigerant leak detector
S*NPH	Pressure sensor (high)
S*NPL	Pressure sensor (low)
S*PH, HPS*	Pressure switch (high)
S*PL	Pressure switch (low)
S*T	Thermostat
S*RH	Humidity sensor
S*W, SW*	Operation switch
SA*, F1S	Surge arrester
SR*, WLU	Signal receiver
SS*	Selector switch
SHEET METAL	Terminal strip fixed plate
T*R	Transformer
TC, TRC	Transmitter
V*, R*V	Varistor
V*R	Diode bridge, Insulated-gate bipolar transistor (IGBT) power module
WRC	Wireless remote controller
X*	Terminal
X*M	Terminal strip (block)
Y*E	Electronic expansion valve coil
Y*R, Y*S	Reversing solenoid valve coil
Z*C	Ferrite core
ZF, Z*F	Noise filter

ATXM20R + CTXM15R

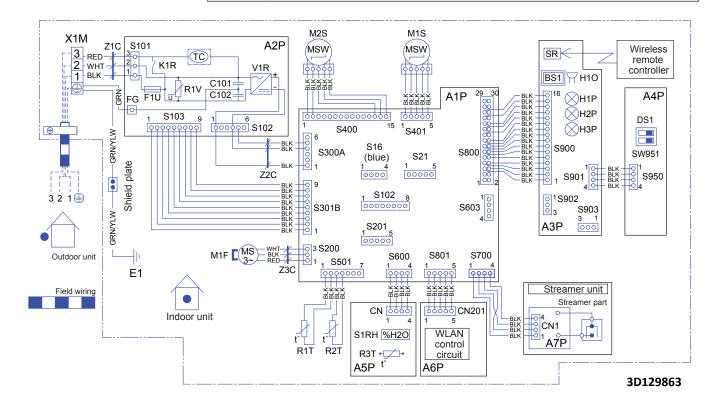
INFORMATION



CTXA15A and CTXA15B units

INFORMATION

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.


3D113338D

CVXM-A

INFORMATION

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.

CVXM-A9

INFORMATION

7.2.2 Wiring diagram: Outdoor unit

Unified wiring diagram legend

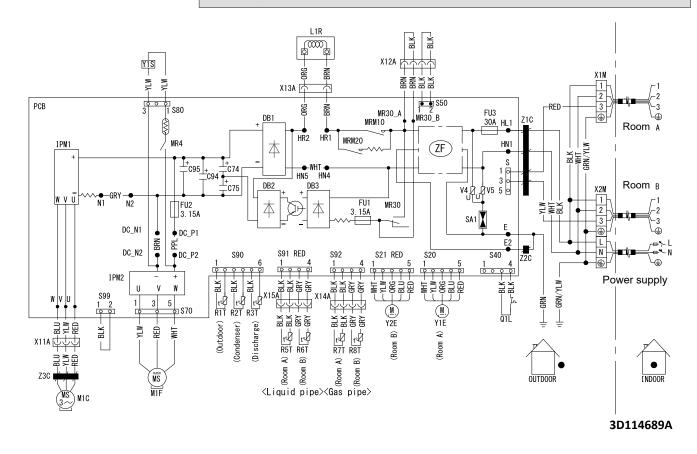
For applied parts and numbering, refer to the wiring diagram on the unit. Part numbering is by Arabic numbers in ascending order for each part and is represented in the overview below by "*" in the part code.

Symbol	Meaning	Symbol	Meaning
	Circuit breaker	(Protective earth
þ			
•	Connection		Protective earth (screw)
∞-<	Connector	(A), [Z]	Rectifier
Ť	Earth	-(Relay connector
=======================================	Field wiring	00	Short-circuit connector
	Fuse	-0-	Terminal
INDOOR	Indoor unit		Terminal strip
OUTDOOR	Outdoor unit	0 •	Wire clamp
	Residual current device		

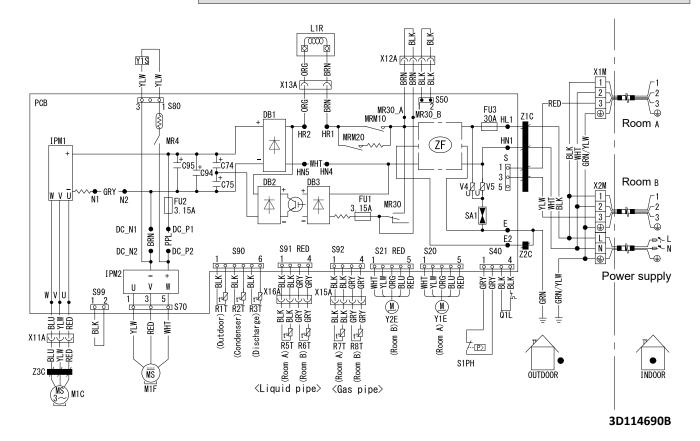
Symbol	Colour	Symbol	Colour
BLK	Black	ORG	Orange
BLU	Blue	PNK	Pink
BRN	Brown	PRP, PPL	Purple
GRN	Green	RED	Red
GRY	Grey	WHT	White
SKY BLU	Sky blue	YLW	Yellow

Symbol	Meaning
A*P	Printed circuit board
BS*	Pushbutton ON/OFF, operation switch
BZ, H*O	Buzzer
C*	Capacitor
AC*, CN*, E*, HA*, HE*, HL*, HN*, HR*, MR*_A, MR*_B, S*, U, V, W, X*A, K*R_*, NE	Connection, connector
D*, V*D	Diode
DB*	Diode bridge
DS*	DIP switch
E*H	Heater

Symbol	Meaning
FU*, F*U, (for characteristics, refer to	Fuse
PCB inside your unit)	
FG*	Connector (frame ground)
H*	Harness
H*P, LED*, V*L	Pilot lamp, light emitting diode
НАР	Light emitting diode (service monitor green)
HIGH VOLTAGE	High voltage
IES	Intelligent eye sensor
IPM*	Intelligent power module
K*R, KCR, KFR, KHuR, K*M	Magnetic relay
L	Live
L*	Coil
L*R	Reactor
M*	Stepper motor
M*C	Compressor motor
M*F	Fan motor
M*P	Drain pump motor
M*S	Swing motor
MR*, MRCW*, MRM*, MRN*	Magnetic relay
N	Neutral
n=*, N=*	Number of passes through ferrite core
PAM	Pulse-amplitude modulation
PCB*	Printed circuit board
PM*	Power module
PS	Switching power supply
PTC*	PTC thermistor
Q*	Insulated gate bipolar transistor (IGBT)
Q*C	Circuit breaker
Q*DI, KLM	Earth leak circuit breaker
Q*L	Overload protector
Q*M	Thermo switch
Q*R	Residual current device
R*	Resistor
R*T	Thermistor
RC	Receiver
S*C	Limit switch
S*L	Float switch

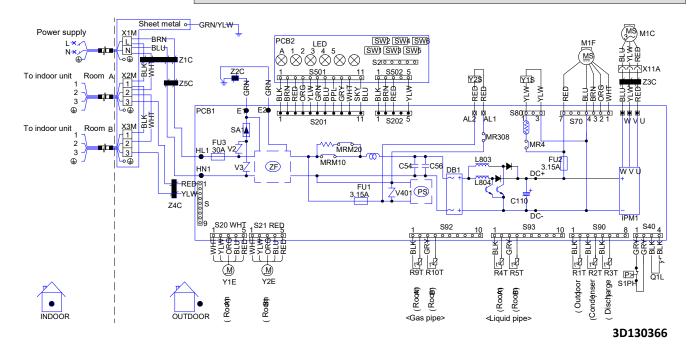

Symbol	Meaning
S*NG	Refrigerant leak detector
S*NPH Pressure sensor (high)	
S*NPL	Pressure sensor (low)
S*PH, HPS*	Pressure switch (high)
S*PL	Pressure switch (low)
S*T	Thermostat
S*RH	Humidity sensor
S*W, SW*	Operation switch
SA*, F1S	Surge arrester
SR*, WLU	Signal receiver
SS*	Selector switch
SHEET METAL	Terminal strip fixed plate
T*R	Transformer
TC, TRC	Transmitter
V*, R*V	Varistor
V*R	Diode bridge, Insulated-gate bipolar transistor (IGBT) power module
WRC	Wireless remote controller
X*	Terminal
X*M	Terminal strip (block)
Y*E	Electronic expansion valve coil
Y*R, Y*S	Reversing solenoid valve coil
Z*C	Ferrite core
ZF, Z*F	Noise filter

2MXM40, 2AMXM40


INFORMATION

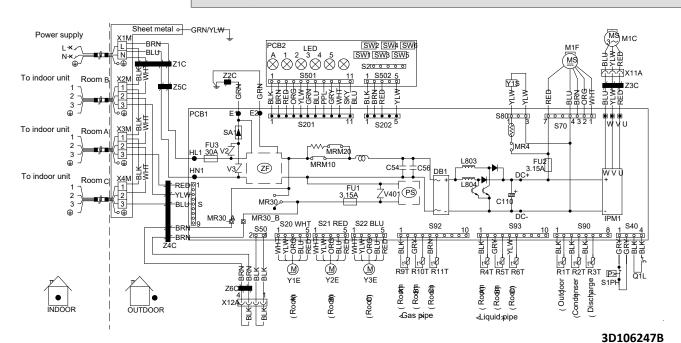
2MXM50, 2AMXM50

INFORMATION



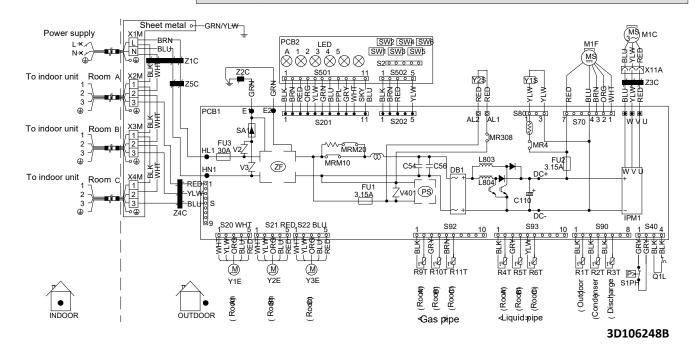
INFORMATION

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.

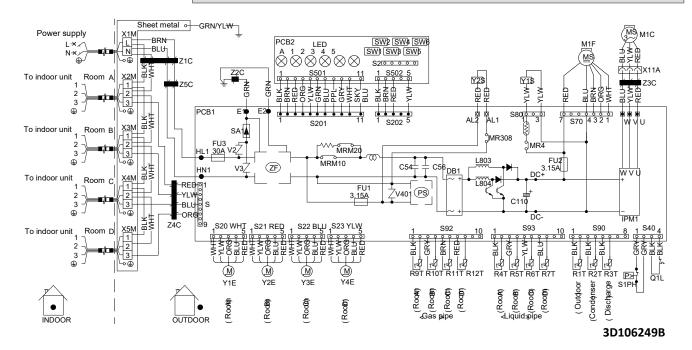


3MXM40, 3MXM52, 3AMXM52

INFORMATION

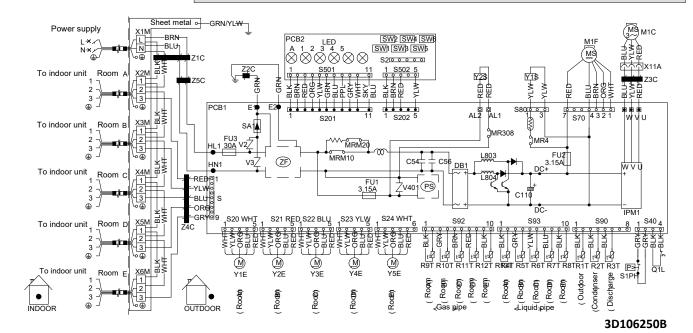

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.

INFORMATION


The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the

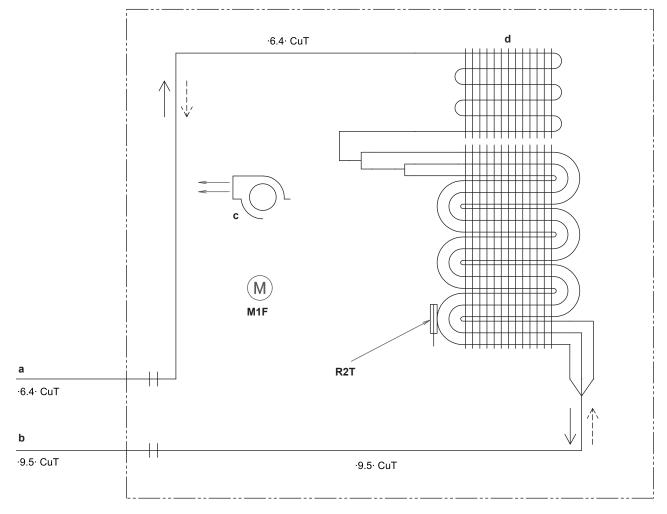
4MXM68, 4MXM80

INFORMATION



INFORMATION

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.

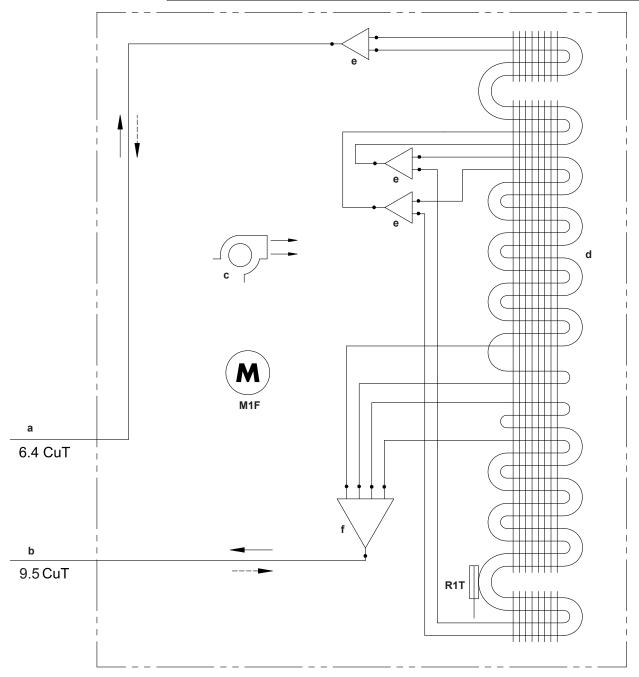

7.3 Piping diagram

7.3.1 Piping diagram: Indoor unit

ATXM20R + CTXM15R

INFORMATION

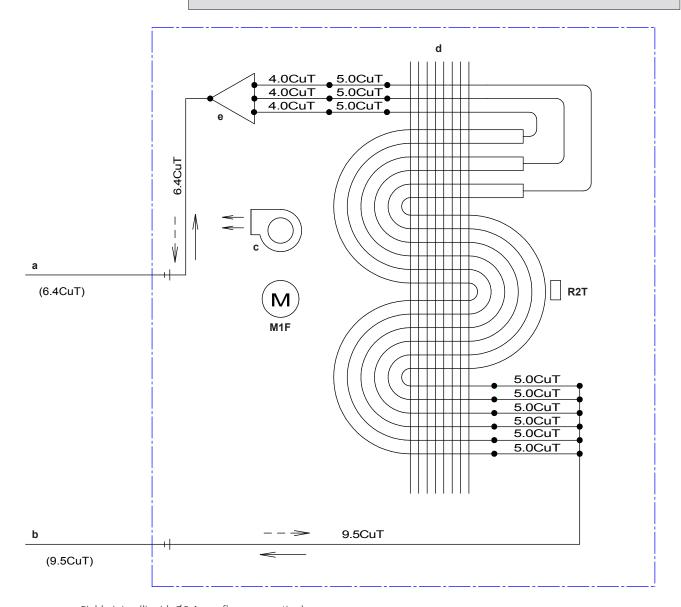
- **a** Field piping (liquid: Ø6.4 mm flare connection)
- Field piping (gas: Ø9.5 mm flare connection)
- c Crossflow fan
- d Heat exchanger
- M1F Fan motor
- Thermistor (heat exchanger)
- Heating
- Cooling



CTXA15A + CTXA15B

INFORMATION

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.


- **a** Field piping (liquid: Ø6.4 mm flare connection)
- **b** Field piping (gas: Ø9.5 mm flare connection)
- c Crossflow fan
- **d** Heat exchanger
- e Distributor
- **f** Gas header
- M1F Fan motor
- R1T Thermistor (heat exchanger)
- --- Heating
- Cooling

CVXM-A

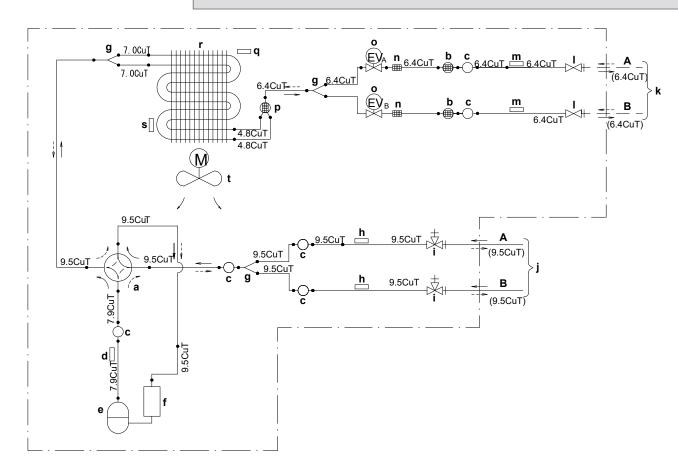
INFORMATION

- $\textbf{a} \quad \text{Field piping (liquid: } \emptyset 6.4 \text{ mm flare connection)}$
- Field piping (gas: Ø9.5 mm flare connection)
- **c** Turbo fan
- d Heat exchanger
- e Distributor
- M1F Fan motor
- R2T Thermistor (heat exchanger)
- Heating
- Cooling

7.3.2 Piping diagram: Outdoor unit

Component PED category classification:

- High pressure switches: category IV
- Compressor: category II
- Accumulator: 4MXM80, 5MXM90 category II, other models category I
- Other components: refer to PED article 4, paragraph 3


NOTICE

When the high pressure switch is activated, it MUST be reset by a qualified person.

2MXM40, 2AMXM40

INFORMATION

- A Room A
- **B** Room B
- a 4-way valve ON: heating
- **b** Muffler with filter
- c Muffler
- **d** Discharge pipe thermistor
- **e** Compressor
- f Accumulator

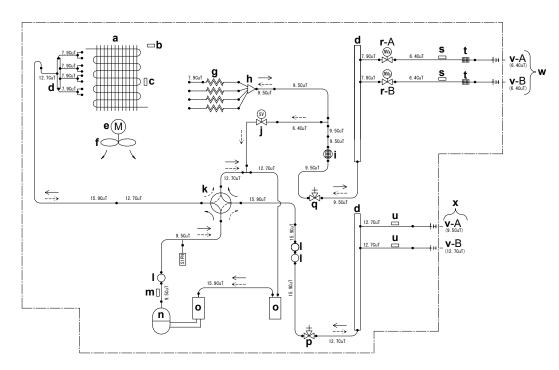

- g Branch pipe
- **h** Thermistor (gas)
- i Gas stop valve
- j Field piping (gas)
- k Field piping (liquid)
- I Liquid stop valve
- m Thermistor (liquid)
- **n** Filter

- Motor-operated valve
- **p** Muffler
- **q** Outdoor air temperature thermistor
- r Heat exchanger
- s Heat exchanger thermistor
- M Fan motor
- Refrigerant flow: cooling
- --- Refrigerant flow: heating

2MXM50, 2AMXM50

INFORMATION

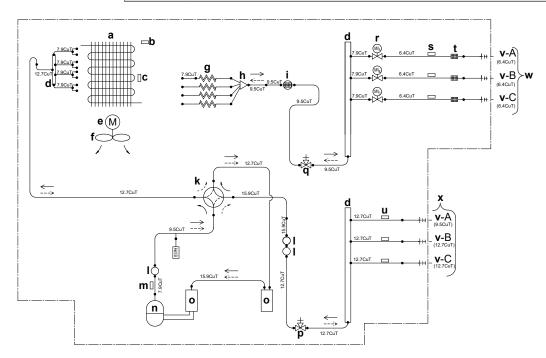
- Room A
- Room B R
- 4-way valve ON: heating
- High pressure switch with automatic reset
- Muffler
- Discharge pipe thermistor d
- Compressor
- Accumulator


- Branch pipe
- Thermistor (gas)
- Gas stop valve
- Field piping (gas)
- Field piping (liquid)
- Liquid stop valve
- Thermistor (liquid)
- Filter

- Motor-operated valve
- Muffler
- Outdoor air temperature thermistor
- Heat exchanger
- Heat exchanger thermistor
- М Fan motor
- Refrigerant flow: cooling
- Refrigerant flow: heating

INFORMATION

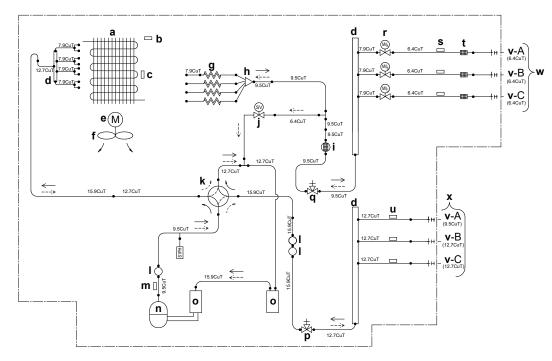
- a Heat exchanger
- **b** Outdoor air temperature thermistor
- c Heat exchanger thermistor
- **d** Refnet header
- e Fan motor
- **f** Propeller fan
- **g** Capillary tube
- h Distributor
- i Muffler with filter
- **j** Solenoid valve


- k 4-way valve
- **I** Muffler
- m Discharge pipe thermistor
- **n** Compressor
- Accumulator
- **p** Gas stop valve
- **q** Liquid stop valve
- r Electronic expansion valve
- s Thermistor (liquid)
- **t** Filter

- **u** Thermistor (gas)
- **/** Room
- w Field piping liquid
- x Field piping gas
- y Liquid receiver
- **S1PH** High pressure switch (automatic reset)
 - Refrigerant flow: cooling
 - Refrigerant flow: heating

3MXM40, 3MXM52, 3AMXM52

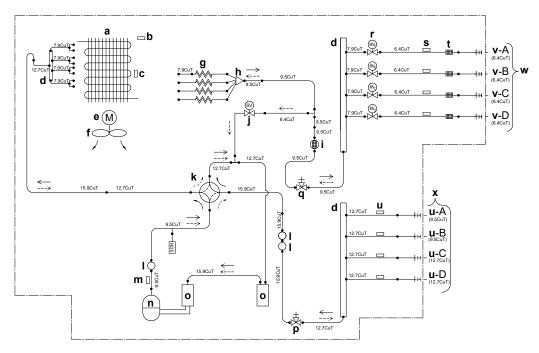
INFORMATION


- Heat exchanger
- Outdoor air temperature thermistor
- Heat exchanger thermistor
- d Refnet header
- Fan motor
- Propeller fan
- Capillary tube
- Distributor
- Muffler with filter
- Solenoid valve

- k 4-way valve
- Muffler
- Discharge pipe thermistor m
- Compressor
- Accumulator 0
- Gas stop valve
- Liquid stop valve q
- Electronic expansion valve
- Thermistor (liquid) s
- Filter

- Thermistor (gas)
- Room
- Field piping liquid w
- Field piping gas
- Liquid receiver
- S1PH High pressure switch (automatic reset)
 - Refrigerant flow: cooling
- Refrigerant flow: heating

INFORMATION

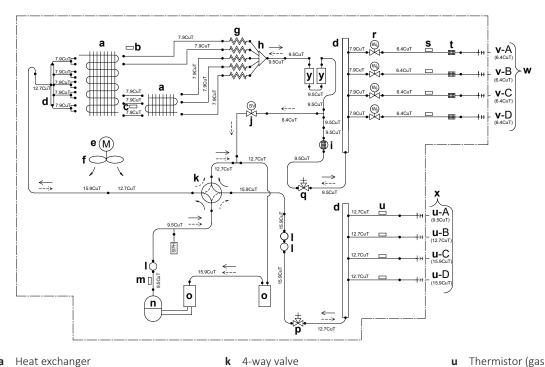

- Heat exchanger
- b Outdoor air temperature thermistor
- Heat exchanger thermistor
- d Refnet header
- Fan motor е
- Propeller fan
- Capillary tube g
- Distributor h
- Muffler with filter
- Solenoid valve

- 4-way valve
- Muffler
- m Discharge pipe thermistor
- Compressor
- Accumulator 0
- Gas stop valve
- Liquid stop valve
- Electronic expansion valve
- Thermistor (liquid)
- Filter

- Thermistor (gas)
- Room
- Field piping liquid Field piping gas w
- X
- Liquid receiver
- S1PH High pressure switch (automatic reset)
 - Refrigerant flow: cooling
 - Refrigerant flow: heating

INFORMATION

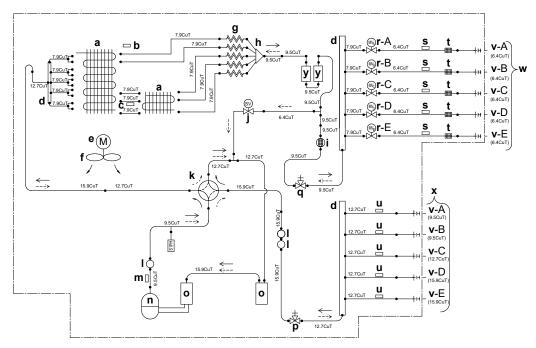
- Heat exchanger
- Outdoor air temperature thermistor
- Heat exchanger thermistor
- Refnet header
- Fan motor
- Propeller fan
- Capillary tube
- Distributor
- Muffler with filter
- j Solenoid valve


- 4-way valve
- Muffler
- m Discharge pipe thermistor
- Compressor
- Accumulator 0
- Gas stop valve
- Liquid stop valve
- Electronic expansion valve
- Thermistor (liquid)
- Filter

- Thermistor (gas)
- Room
- Field piping liquid W
- Field piping gas
- Liquid receiver
- S1PH High pressure switch (automatic reset)
- Refrigerant flow: cooling
- Refrigerant flow: heating

INFORMATION

The diagrams shown in this manual may be incorrect due to changes/updates to the unit. Correct diagrams are supplied with the unit and can also be found in the technical data book.

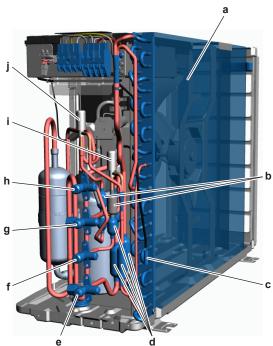

- Heat exchanger
- b Outdoor air temperature thermistor
- C Heat exchanger thermistor
- Refnet header
- Fan motor е
- Propeller fan
- Capillary tube
- Distributor
- Muffler with filter Solenoid valve

- Muffler
- Discharge pipe thermistor
- Compressor
- Accumulator 0
- Gas stop valve
- Liquid stop valve
- Electronic expansion valve
- Thermistor (liquid)
- Filter

- Thermistor (gas)
- Room
- Field piping liquid w
- х Field piping – gas
- Liquid receiver
- S1PH High pressure switch (automatic reset)
 - Refrigerant flow: cooling
 - Refrigerant flow: heating

INFORMATION

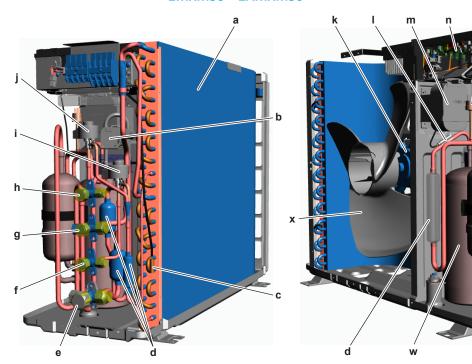
- Heat exchanger
- Outdoor air temperature thermistor
- Heat exchanger thermistor
- Refnet header d
- Fan motor е
- Propeller fan f
- Capillary tube
- Distributor
- Muffler with filter
- Solenoid valve


- 4-way valve
- Muffler
- Discharge pipe thermistor
- Compressor
- Accumulator 0
- Gas stop valve
- Liquid stop valve
- Electronic expansion valve
- Thermistor (liquid)
- Filter

- Thermistor (gas)
- Room
- Field piping liquid w
- Field piping gas
- Liquid receiver
- S1PH High pressure switch (automatic reset)
- Refrigerant flow: cooling
- Refrigerant flow: heating

7.4 Component overview

7.4.1 Component overview: Outdoor unit


2MXM40 + 2AMXM40

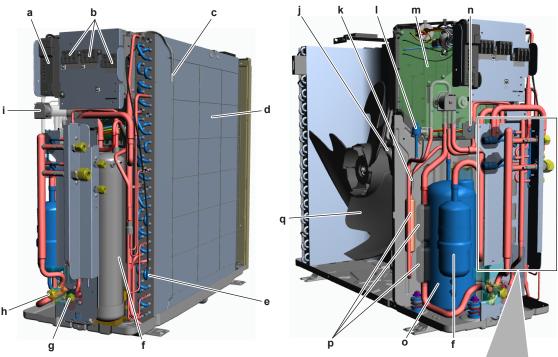
- **a** Heat exchanger (with air thermistor R1T)
- **b** Muffler with filter
- c Heat exchanger thermistor R2T
- **d** Muffler
- e Stop valve with service port (gas Room B)
- f Stop valve (liquid Room B)
- **g** Stop valve with service port (gas Room A)
- **h** Stop valve (liquid Room A)
- i Expansion valve (Room B) Y2E
- j Expansion valve (Room A) Y1E
- **k** Fan motor M1F
- I Discharge pipe thermistor R3T

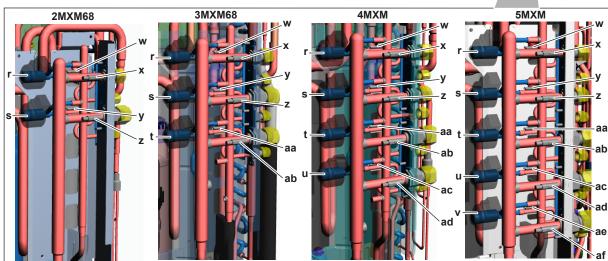
- **m** Reactor
- **n** Main PCB A1P
- Power supply terminal X1M
- p Power supply terminal X2M
- q 4-way valve Y1S
- r Refrigerant liquid thermistor (Room A) R5T
- s Refrigerant gas thermistor (Room A) R7T
- t Refrigerant liquid thermistor (Room B) R6T
- **u** Refrigerant gas thermistor (Room B) R8T
- v Accumulator
- **w** Compressor M1C (with thermal protector Q1L)
- **x** Fan

2MXM50 + 2AMXM50

- a Heat exchanger (with air thermistor R1T)
- 4-way valve Y1S
- **c** Heat exchanger thermistor R2T
- Stop valve with service port (gas Room B)
- Stop valve (liquid Room B)
- Stop valve with service port (gas Room A)
- **h** Stop valve (liquid Room A)
- i Expansion valve (Room B) Y2E
- j Expansion valve (Room A) Y1E
- Fan motor M1F
- I Discharge pipe thermistor R3T

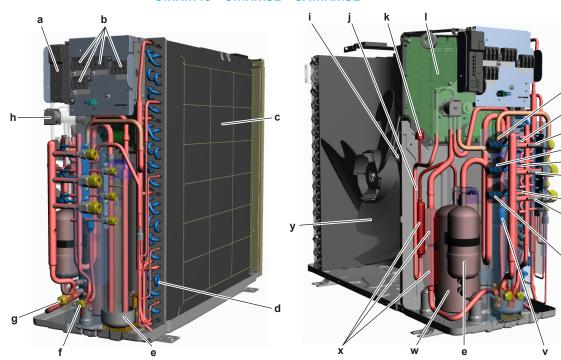
- Reactor m
- Main PCB A1P n
- High pressure switch S1PH 0
- Power supply terminal X1M р
- Power supply terminal X2M
- Refrigerant liquid thermistor (Room A) R5T
- Refrigerant gas thermistor (Room A) R7T
- Refrigerant liquid thermistor (Room B) R6T
- Refrigerant gas thermistor (Room B) R8T
- Accumulator
- Compressor M1C (with thermal protector Q1L) w
- Fan




2MXM68 + 3MXM68 + 4MXM + 5MXM

INFORMATION

Component overview of 2MXM68 units is shown. For other units the components may look slightly different, but their location is the same.



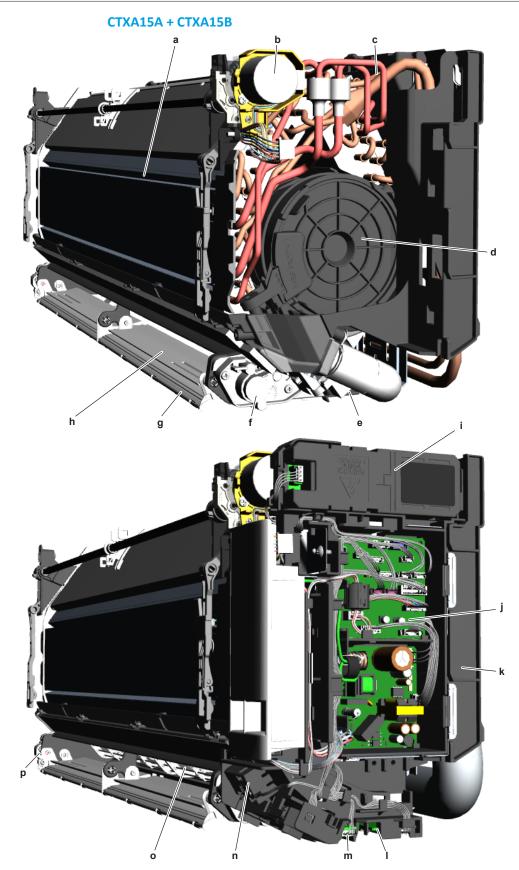
- a Service PCB
- **b** Power supply terminals (X1M~X6M depending on the unit)
- c Air thermistor R1T
- **d** Heat exchanger
- e Heat exchanger thermistor R2T
- **f** Accumulator
- **g** Stop valve with service port (liquid)
- **h** Stop valve with service port (gas)
- i 4-way valve Y1S
- j Fan motor M1F
- **k** Discharge pipe thermistor R3T
- I High pressure switch S1PH
- m Main PCB A1P
- n Solenoid valve Y2S
- o Compressor M1C (with thermal protector Q1L)
- **p** Muffler

- **q** Fan
- r Expansion valve (Room A) Y1E
- **s** Expansion valve (Room B) Y2E
- t Expansion valve (Room C) Y3E
- u Expansion valve (Room D) Y4E
- v Expansion valve (Room E) Y5E
- ${f w}$ Refrigerant liquid thermistor (Room A) R4T
- **x** Refrigerant gas thermistor (Room A) R9T
- ${f y}$ Refrigerant liquid thermistor (Room B) R5T
- z Refrigerant gas thermistor (Room B) R10Taa Refrigerant liquid thermistor (Room C) R6T
- **ab** Refrigerant gas thermistor (Room C) R11T
- ac Refrigerant liquid thermistor (Room D) R7T
- ad Refrigerant gas thermistor (Room D) R12T
- ae Refrigerant liquid thermistor (Room E) R8T
- **af** Refrigerant gas thermistor (Room E) R13T

3MXM40 + 3MXM52 + 3AMXM52

- a Service PCB
- **b** Power supply terminals (X1M~X4M)
- Heat exchanger (with air thermistor R1T)
- Heat exchanger thermistor R2T
- e Accumulator
- Stop valve with service port (liquid)
- **g** Stop valve with service port (gas)
- 4-way valve Y1S
- i Fan motor M1F
- j Discharge pipe thermistor R3T
- **k** High pressure switch S1PH
- I Main PCB A1P
- m Expansion valve (Room A) Y1E

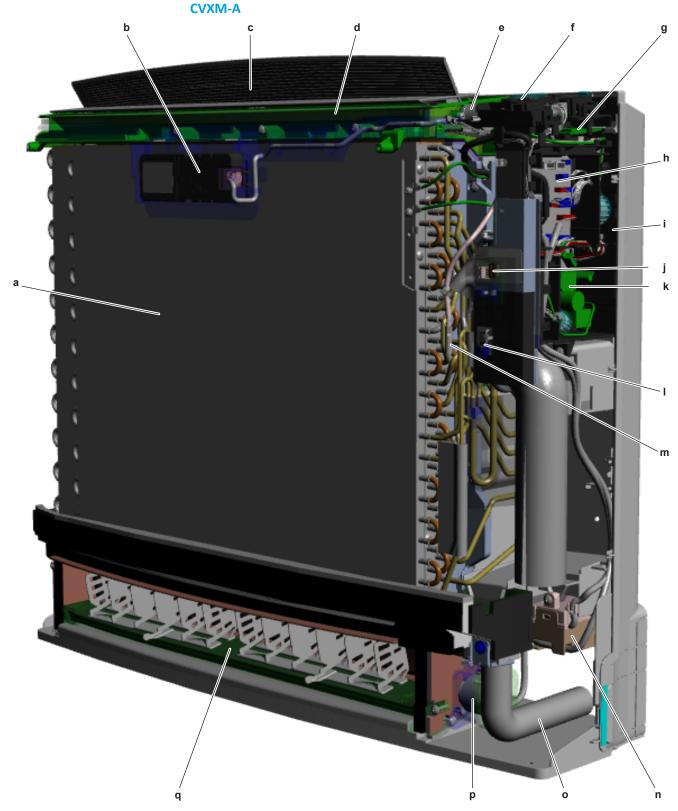
- n Refrigerant liquid thermistor (Room A) R4T
- Refrigerant gas thermistor (Room A) R9T
- Expansion valve (Room B) Y2E
- Refrigerant liquid thermistor (Room B) R5T
- Refrigerant gas thermistor (Room B) R10T
- Refrigerant liquid thermistor (Room C) R6T
- Refrigerant gas thermistor (Room C) R11T t
- Expansion valve (Room C) Y3E
- Muffler with filter
- Compressor M1C (with thermal protector Q1L) w
- Muffler
- **y** Fan


7.4.2 Component overview: Wall mounted indoor unit

ATXM20R + CTXM15R MERRICA

- a Heat exchanger
- **b** Streamer unit
- c Indoor unit main PCB A1P
- **d** Switch box
- e Indoor unit power PCB A2P
- **f** Wifi control PCB A6P
- **g** Intelligent eye sensor (PCB A5P)

- h Display PCB A3P
- i Swing flap
- **j** Fan
- **k** Heat exchanger thermistor R2T
- I Indoor unit fan motor M1F
- **m** Swing raster motor M1S
- **n** Swing flap motor M2S



- **a** Heat exchanger
- **b** Front panel motor
- c Heat exchanger thermistor R1T
- **d** Fan motor
- Swing raster motor
- **f** Secondary swing flap motor
- **g** Main swing flap
- **h** Secondary swing flap

- Streamer unit
- Indoor unit PCB
- Switch box
- Wifi control PCB
- Humidity sensor PCB (including room thermistor R2T)
- Intelligent thermal sensor
- Swing raster
- **p** Main swing flap motor

7.4.3 Component overview: Floor standing indoor unit

- a Heat exchanger
- **b** Streamer unit
- **c** Swing flap
- **d** Upper air outlet assembly
- e Swing flap motor M1S
- f Display PCB A3P
- **g** Wifi control PCB A6P
- h Indoor unit main PCB A1P
- i Switch box

- j Service PCB A4P
- k Indoor unit power PCB A2P
- I Humidity sensor (PCB A5P)
- m Heat exchanger thermistor R1T
- **n** R32 leak detection sensor (ONLY for CVXM-A9)
- **o** Drain hose
- **p** Damper motor M2S
- **q** Lower air outlet assembly

7.5 Field information report

See next page.

In case a problem occurred on the unit which could not be resolved by using the content of this service manual or in case you have a problem which could be resolved but of which the manufacturer should be notified, we advise you to contact your distributor.

To facilitate the investigation, additional information is required. Please fill out the following form before contacting your distributor.

FIELD INFORMATION REPORT		
Key person information		
Name:	Company name:	
Your contact details		
Phone number:	E-mail address:	
Site address:		
Your reference:	Date of visit:	
Claim information		
Title:		
Problem description:		
Error code:	Trouble date:	
Problem frequency:		
Investigation steps done:		
Insert picture of the trouble.		
Current situation (solved, not solved,):		
Countermeasures taken:		
Comments and proposals:		
Part available for return (if applicable):		
are available for recurry (if applicable).		

Application information
Application (house, apartment, office,):
New project or reimbursement:
Heat emitters (radiators / under floor heating / fan coils /):
Hydraulic layout (simple schematic):
Unit / Installation information

Unit / Installation information	
Model name:	Serial number:
Installation / commissioning date:	Software version hydro PCB A1P
	Software version hydro PCB A5P
Software version user interface:	Software version outdoor PCB:
Minimum water volume:	Maximum water volume:
Brine composition and mixture:	
Brine freeze up temperature:	
Space heating control (leaving water temperature, room thermostat, external room thermostat):	
Space heating setpoint:	
Domestic hot water control (reheat only, schedule only, reheat + schedule):	
Domestic hot water setpoint:	

Provide pictures of the field settings overview (viewable on the user interface).

7.6 Service tools

- **1** For an overview of the available service tools, check the Daikin Business Portal (authentication required).
- **2** Go to the tab After-sales support on the left navigation pane and select Technical support.

3 Click the button Service tools. An overview of the available service tools for the different products is shown. Also additional information on the service tools (instruction, latest software) can be found here.

7.7 Field settings

7.7.1 Field settings: Indoor unit

To control heating only mode

Prerequisite: Stop operation of the unit.

- 1 Press (Temp), and (Mode) simultaneously.
- Press Temp.
- 3 Select SU.
- Press Mode to confirm.
- 5 Press Temp.
- **6** Select 19.
- **7** Press Mode to confirm.
- 8 Press Temp.
- **9** Select 1 (0: factory setting, 1: heating only).
- **10** Press Mode to confirm.

To adjust target set temperature in heating operation

INFORMATION

When there is a big difference between the indoor room temperature and the set temperature in heating mode, adjust the target set temperature field setting.

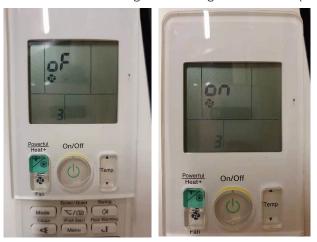
Example for wall mounted units:

 Target temperature = remote controller set temperature + 2.5°C. Remote controller set temperature = 20°C Target temperature = 20°C + 2.5°C = 22.5°C Thermo off temperature = 24.5°C

Example for floor standing units:

- Target temperature = remote controller set temperature + 2°C. Remote controller set temperature = 20°C Target temperature = 20°C + 2°C = 22°C Thermo off temperature = 24°C
- 1 Press (Temp), Temp), and Mode simultaneously.
- 2 Press Temp.
- 3 Select SU.
- 4 Press Mode to confirm.
- Press Temp.
- **6** Select 7.
- **7** Press Mode to confirm.
- Press Temp.
- Select the value to set the desired target temperature:

- -0 = -2.0°C
- 1 = -1,0°C
- 2 = 0°C (factory setting)
- = 3 = +1,0°C
- -4 = +2,0°C
- **10** Press Mode to confirm.


To control the indoor unit fan during thermostat off in cooling

Wall mounted units

- $1 \quad \text{Press} \, \widehat{\textbf{T}_{\text{emp}}^{\text{A}}}, \, \widehat{\textbf{T}_{\text{emp}}^{\text{Temp}}}, \, \text{and} \, \widehat{\textbf{M}_{\text{ode}}} \, \text{simultaneously}.$
- 2 Press Temp.
- 3 Select SU.
- 4 Press Mode to confirm.
- **5** Press Temp.
- **6** Select 4.
- **7** Press Mode to confirm.
- 8 Press Temp.
- **9** Select 0 (0: fan ON, 1: fan OFF (factory setting)).
- **10** Press Mode to confirm.

Floor standing units

- 1 On the home screen, press Menu for at least 2 seconds.
 - **Result:** The selection menu number 3 appears on the display. 3 is blinking.
- **2** Press Menu to enter the setting.
- **3** Press select or change the setting to ON or OFF (factory setting).

4 Press Menu to confirm the selected setting.

Note: The display automatically returns to the default screen after 60 seconds. To return to the default screen sooner, press Cancel twice.

To change auto restart ON to OFF

INFORMATION

After power failure, the unit will automatically restart (default setting). It is possible to switch OFF auto restart. For example: after a long power failure, generators have to start-up. As there is limited energy and the air conditioners do NOT have priority, it is recommended to switch OFF auto restart.

- 1 Press Temp, Temp, and Mode simultaneously.
- 2 Press Temp.
- Select SU. 3
- 4 Press Mode to confirm.
- 5 Press Temp.
- **6** Select 10.
- **7** Press Mode to confirm.
- 8 Press Temp.
- **9** Select 0 (0: auto restart OFF, 1: auto restart ON (factory setting)).
- **10** Press Mode to confirm.

To limit the angle of the upper swing flap

For embedded floor standing units, it may be needed to reduce the maximum angle of the upper swing flap to avoid collission. To do this, perform as described below.

Prerequisite: Remove the front panel and the front grille to get access to the service PCB.

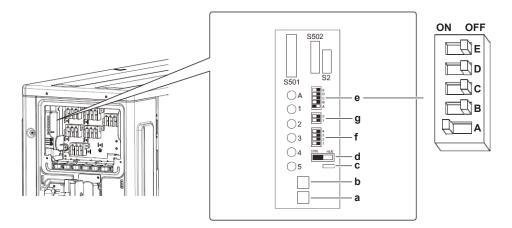
Set the DIP switch DS1-1 to the ON position.

Result: The maximum angle of the upper swing flap is now reduced.

a Service PCB

ON ON

OFF OFF


7.7.2 Field settings: Outdoor unit

DIP switch settings

INFORMATION

ONLY for 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units.

ON ON **OFF** OFF

a SW1

b SW3

С J_DP jumper

d Cool/Heat selector

SW4 е

f SW5

g SW6

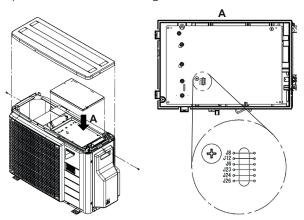
SW1	Forced operation.				
	• In combination with the cool/heat selector switch the unit can be started in cooling or heating.				
	 Is also used to activate the inverter checker mode. 				
SW3	Cross wiring check, see "To perform a wiring error check" [▶ 331] for more information.				
J_DP jumper	Not used.				
Cool/Heat selector	Used in combination with SW1				
	MUST be set in cooling for pump down operation.				
SW4	Priority room setting. The indoor unit for which priority room setting is applied takes priority in the following cases				
	1. Operation mode priority				
	The operation mode of the indoor unit which is set for priority room setting takes priority. If the set indoor unit is operating, all other indoor units do NOT operate and enter standby mode, according to the operation mode of the set indoor unit.				
	2. Priority during high-power operation				
	If the indoor unit which is set for priority room settings is operating at high power, the capabilities of other indoor units will be somewhat reduced. Power supply gives priority to the indoor unit which is set for priority room setting.				
	3. Quiet operation priority				
	Setting the indoor unit to quiet operation will make the indoor unit run quietly.				
	Setting procedure				
	Slide the switch to the ON side for the switch that corresponds to the piping connected to the indoor unit to be set (in the image above, it is room A). Make sure to set ONLY 1 room.				

7 | Technical data

SW5	SW5-1: Heat lock mode. This setting will force the unit to only operate in heating.		
	SW5-2: Not used.		
	SW5-3: Cold region setting for increased maximum Hz at low ambient.		
	SW5-4: Cold region setting for defrost change.		
SW6	SW6-1: Night quiet mode. The night quiet mode function reduces operating noise of the outdoor unit at night time. This function is useful if the customer is worried about the effects of the operating noises on the neighbours.		
	SW6-2: Reduce maximum sound levels (ONLY for 3MXM-N7 units).		

Jumper settings

INFORMATION


ONLY for 2MXM40+50 and 2AMXM40+50 units.

Prerequisite: Stop the unit operation via the user interface.

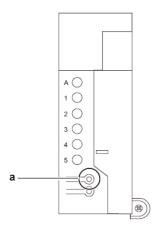
Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Cut the respective jumper on the main PCB of the outdoor unit to activate (set) the desired field setting.

Jumper	Field setting
J8	Reduce maximum sound levels (ONLY for 2MXM-N9 and 2AMXM-M9 units)
J12	Cold region setting for defrost change
J6	Night quiet mode setting
J23	Econo mode prohibition setting
J24	Not used
J26	Cold region setting for increased maximum Hz at low ambient

To perform a wiring error check



INFORMATION

ONLY for 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units.

By performing a wiring error check, an automatic correction of the wiring error is possible.

Shortly press the wiring error check switch SW3 on the outdoor unit service PCB to start the wiring error check. The wiring error check switch will NOT function for 3 minutes after the circuit breaker is turned on; or if the outside air temperature is 5°C or less.

a Wiring error check switch SW3

Approximately 15 to 20 minutes after the switch is pressed, the errors in the connection wiring will be corrected.

Shortly press the wiring error check switch SW3 again to cancel the wiring error check. Wiring error check is NOT possible anymore after cancellation. Turn the circuit breaker OFF and ON again to restart wiring error check.

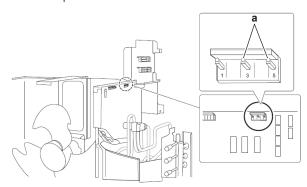
LED ^(a)	1	2	3	4	5	Message
Status	All flashing (simultaneously))	Automatic correction impossible
	Flashing (one after another)					Automatic correction completed
	One o	r more	nore LEDs 1 to 4 are ON			Abnormal stop ^(b)

 $^{^{\}mathrm{(a)}}$ The number of LEDs displayed depends on the number of rooms.

After wiring error check operation is completed, LED indication will continue until ordinary operation starts. This is normal.

If self-correction is NOT possible, check the indoor unit wiring and piping in the usual manner.

⁽b) See "3.2 To retrieve the error via the outdoor unit" [> 16] for more information.


To set cool mode lock

INFORMATION

ONLY for 2MXM68 + 3MXM + 3AMXM + 4MXM + 5MXM units.

Short-circuit the pins 3 and 5 of the connector S15 to set the unit to cool ONLY.

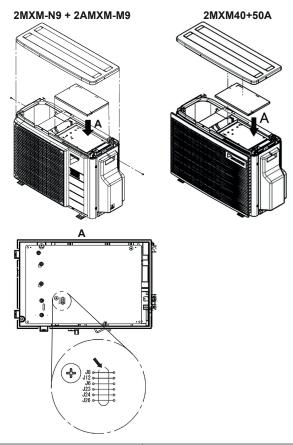
a Connector S15: pins 3 and 5

The following specifications apply to the connector housing and pins:

- ST products Housing: VHR-5N
- Pin: SVH-21T-1,1

To reduce maximum sound levels

2MXM-N9 + 2AMXM-M9 + 2MXM40+50A units


If the sound level CANNOT meet the local regulation (e.g. Netherlands), the maximum sound level can be reduced by cutting J8 jumper on the main PCB of the outdoor unit.

Prerequisite: Stop the unit operation via the user interface.

Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [> 185].

1 Cut the J8 jumper on the main PCB of the outdoor unit.

Field setting	Sound level reduc	To be used at		
		2MXM50-N9 + 2AMXM50-M9 + 2MXM50A		
Cut J8 jumper	2 dB	2 dB	Day	
J8 jumper + ECONO mode activated via remote controller	2 dB ^(a)	3 dB ^(b)	Night	

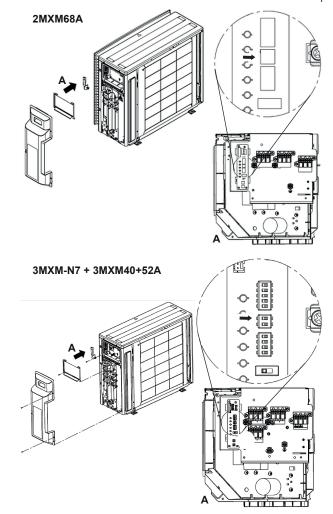
⁽a) If this field setting is done, the maximum sound level will be 2 dB lower than the maximum sound level during normal night operation (unit without this field setting and with outdoor unit quiet operation activated). So when this field setting is done on the unit, it is NOT needed to activate the outdoor unit quiet operation to meet the local regulation.

⁽b) If this field setting is done, the maximum sound level will be 3 dB lower than the maximum sound level during normal night operation (unit without this field setting and with outdoor unit quiet operation activated). So when this field setting is done on the unit, it is NOT needed to activate the outdoor unit quiet operation to meet the local regulation.

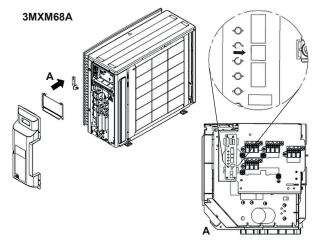
INFORMATION

New setting may affect the performance of the unit.

2MXM68A + 3MXM-N7 + 3MXM-A units


If the sound level CANNOT meet the local regulation (e.g. Netherlands), the maximum sound level can be reduced by setting the switch SW6-2 on the outdoor unit to the ON position.

Prerequisite: Stop the unit operation via the user interface.


Prerequisite: Turn OFF the respective circuit breaker.

Prerequisite: Remove the required plate work, see "4.18 Plate work" [▶ 185].

1 Set the switch SW6-2 on the outdoor unit to the ON position.

Field setting	Sound level red	To be used at		
	2MXM68A + 3MXM68A	3MXM-N7	3MXM40+52A	•••
Set switch SW6-2 to ON	2 dB	1 dB	1 dB	Day
Switch SW6-2 + ECONO mode activated via remote controller	1 dB ^(a)	1 dB ^(a)	2 dB ^(b)	Night

- (a) If this field setting is done, the maximum sound level will be 1 dB lower than the maximum sound level during normal night operation (unit without this field setting and with outdoor unit quiet operation activated). So when this field setting is done on the unit, it is NOT needed to activate the outdoor unit quiet operation to meet the local regulation.
- (b) If this field setting is done, the maximum sound level will be 2 dB lower than the maximum sound level during normal night operation (unit without this field setting and with outdoor unit quiet operation activated). So when this field setting is done on the unit, it is NOT needed to activate the outdoor unit quiet operation to meet the local regulation.

INFORMATION

New setting may affect the performance of the unit.

