

VRV IV+ heat pump, without continuous heating Air Conditioning Technical Data RXYO-UD

RXYQ8U5Y1BD RXYQ10U5Y1BD RXYQ12U5Y1BD RXYQ14U5Y1BD RXYQ16U5Y1BD RXYQ18U5Y1BD RXYQ20U5Y1BD RXYQ22U5Y1BD RXYQ24U5Y1BD RXYQ26U5Y1BD RXYQ28U5Y1BD RXYQ30U5Y1BD RXYQ32U5Y1BD RXYQ34U5Y1BD RXYQ36U5Y1BD RXYQ38U5Y1BD RXYQ40U5Y1BD RXYQ42U5Y1BD RXYQ44U5Y1BD RXYQ46U5Y1BD RXYQ48U5Y1BD RXYQ50U5Y1BD RXYQ52U5Y1BD

RXYQ54U5Y1BD

TABLE OF CONTENTS RXYQ-UD

1	RXYQ-UD	4
2	Specifications	5
3	Options	13
4	Combination table	14
5	Capacity tables Capacity Table Legend Capacity Correction Factor	17 17 18
6	Dimensional drawings	31
7	Centre of gravity	32
8	Piping diagrams	34
9	Wiring diagrams Wiring Diagrams - Three Phase	35
10	External connection diagrams	38
11	Sound data Sound Power Spectrum Sound Pressure Spectrum Sound Pressure Spectrum Quiet Mode Level 1 Sound Pressure Spectrum Quiet Mode Level 2 Sound Pressure Spectrum Quiet Mode Level 3	40 40 44 48 50 52
12	Installation Installation Method Fixation and Foundation of Units Refrigerant Pipe Selection	54 54 55 56
13	Operation range	59
14	Appropriate Indoors	60

1 Features

1 - 1 RXYO-UD

Daikin's solution for comfort & low energy consumption

- By choosing this product with LOOP by Daikin you support the reuse of refrigerant
- Covers all thermal needs of a building via a single point of contact: accurate temperature control, ventilation, hot water, air handling units and Biddle air curtains
- > Wide range of indoor units: possibility to combine VRV with stylish indoor units (Daikin Emura, Perfera)
- > Incorporates VRV IV standards & technologies: Variable Refrigerant Temperature, VRV configurator, 7 segment display and full inverter compressors, 4-side heat exchanger, refrigerant cooled PCB, new DC fan motor, ...
- Customize your VRV for best seasonal efficiency & comfort with the weather dependant Variable Refrigerant Temperature function. Increased seasonal efficiency with up to 28%. No more cold draft by supply of high outblow temperatures
- > Free combination of outdoor units to meet installation space or efficiency requirements

- > Fits any building as also indoor installation is possible as a result of high external static pressure of up to 78.4 Pa. Indoor installation leads to less piping length, lower installation costs, increased efficiency and better visual aesthetics
- Simplified installation & guaranteed optimal efficiency with automatic charging & testing
- > Easy compliance with F-gas regulation thanks to automated refrigerant containment check
- > Wide piping flexibility: 30m indoor height difference, maximum piping length: 190m, total piping length: 1,000m
- > The ability to control each conditioned zone individually keeps VRV system running costs to an absolute minimum
- > Spread your installation cost by phased installation
- Keep your system in top condition via the Daikin Cloud Service:
 24/7 monitoring for maximum efficiency, extented lifetime and immediate service support thanks to failure prediction
- > Available as heating only by irreversible field setting

Inverter

Replacement Variable refrigtechnology erant temperature

2 - 1 Specifications

Technical Specific				RXYQ8UD	RXYQ10UD	RXYQ12UD	RXYQ14UD	RXYQ16UD	RXYQ18UD	RXYQ20UD
Recommended combinat	tion			4 x FXFQ50AVEB	4 x FXFQ63AVEB	6 x FXFQ50AVEB	1x FXFQ50AVEB +			
							5 x FXFQ63AVEB	2 x FXFQ80AVEB	5 x FXFQ63AVEB	6 x FXFQ63AVE
Recommended combinat	tion 2			4 x FXSQ50A2VEB	4 x FXSQ63A2VEB	6 x FXSQ50A2VEB		4 x FXSQ63A2VEB		
							+ 5 x FXSQ63A2VEB	+ 2 x FXSQ80A2VEB	+ 5 x FXSQ63A2VEB	+ 6 X
Recommended combinat	tion 2			A v EVMOEODZVED	4 v FVMO62D7VED	6 v EVMOEODZVED	-	-	3 x FXMQ50P7VEB	FXSQ63A2VEB
necommended combina	11011 3			4 X FAMIQOUP/ VED	4 X FAMIQOSF/ VED	6 x FXMQ50P7VEB	+5x	+2x	+5x	+ 6 x
							FXMQ63P7VEB	FXMQ80P7VEB	FXMQ63P7VEB	FXMQ63P7VEB
Cooling capacity	Prated,c		kW	22.4 (1)	28.0 (1)	33.5 (1)	40.0 (1)	45.0 (1)	50.4 (1)	52.0 (1)
Heating capacity	Nom.	6°CWB	kW	22.4 (2)	28.0 (2)	33.5 (2)	40.0 (2)	45.0 (2)	50.4 (2)	56.0 (2)
reading capacity	Prated,h	V C115	kW	22.4 (2)	28.0 (2)	33.5 (2)	40.0 (2)	45.0 (2)	50.4 (2)	56.0 (2)
	Max.	6°CWB	kW	25.0 (2)	31.5 (2)	37.5 (2)	45.0 (2)	50.0 (2)	56.5 (2)	63.0 (2)
Power input - 50Hz	Heating	Nom. 6°CWB	kW	5.40 (2)	7.58 (2)	9.65 (2)	10.69 (2)	12.54 (2)	14.22 (2)	17.47 (2)
COP at nom. capacity	6°CWB		kW/kW	4.15 (2)	3.69 (2)	3.47 (2)	3.74 (2)	3.59 (2)	3.54 (2)	3.20 (2)
ESEER - Automatic				7.53	7.20	6.96	6.83	6.50	6.38	5.67
ESEER - Standard				6.37	5.67	5.50	5.31	5.05	4.97	4.42
SCOP				4	.3	4.1	4	.0	4.2	4.0
SCOP recommended com	bination 2			4.2	4.3	4.1	4.0	4.1	4.2	4.0
SCOP recommended com	bination 3			4.2	4	l.1	4	.0	4.1	3.9
SEER				7.6	6.8	6	.3	6	5.0	5.9
SEER recommended com	bination 2			6.9	6.8	5.9	6.3	5.9	6.0	5.9
SEER recommended com	bination 3			7.5	6.8	6	.2	5.8	6.0	5.9
ης,ς			%	302.4	267.6	247.8	250.7	236.5	238.3	233.7
ηs,h			%	167.9	168.2	161.4	155.4	157.8	163.1	156.6
Space cooling	A Condition	EERd		3.0	2.3	2.4	2.6	2.1	1	.9
	(35°C - 27/19)	Pdc	kW	22.4	28.0	33.5	40.0	45.0	50.4	52.0
	B Condition	EERd		5.2	4.7	4.3	4.1	3.9	3.8	3.7
	(30°C - 27/19)	Pdc	kW	16.5	20.6	24.7	29.5	33.2	37.1	38.3
	C Condition	EERd		9.5	8.3	7.7	7.8	7.7	7.5	7.3
	(25°C - 27/19)	Pdc	kW	10.6	13.3	15.9	18.9	21.3	23.9	24.6
	D Condition	EERd		18.8	17.0	13.9	14.3	14.2	18	3.3
	(20°C - 27/19)	Pdc	kW	8.0	9.3	9.4	8.4	9.5	1	1.5
Space cooling recom-	A Condition	EERd		2.6	2	.4	2.6	2.1	1	.9
mended combination 2	(35°C - 27/19)	Pdc	kW	22.4	28.0	33.5	40.0	45.0	50.4	52.0
	B Condition	EERd		4.9	4.7	4.0	4.1	3.8	3.7	3.6
	(30°C - 27/19)	Pdc	kW	16.5	20.6	24.7	29.5	33.2	37.1	38.3
	C Condition	EERd		8.8	8.5	7.1	7.9	7.6	7.5	7.3
	(25°C - 27/19)	Pdc	kW	10.6	13.3	15.9	18.9	21.3	23.9	24.6
	D Condition			15.1	17.2	13.1	14	1.0	18.1	18.9
	(20°C - 27/19)	Pdc	kW	8.8	9.3	9.1	8.4	9.5	11.4	10.9
Space cooling recom-	A Condition	EERd		3.0	2.3	2.4	2.6	2.1	1	.9
mended combination 3	(35°C - 27/19)									
Space cooling recom-	A Condition	Pdc	kW	22.4	28.0	33.5	40.0	45.0	50.4	52.0
mended combination 3	(35°C - 27/19)									
	B Condition			5.1	4.7	4.2	4.0		3.7	3.6
	(30°C - 27/19)		kW	16.5	20.6	24.7	29.5	33.2	37.1	38.3
	C Condition			9.6	8.4	7		7.4	7.6	7.3
	(25°C - 27/19)		kW	10.6	13.3	15.9	19.0	21.3	23.9	24.6
	D Condition			16.0	16.9	13.7	14.0	14.1		3.3
	(20°C - 27/19)		kW	9.1	9.3	9.4	8.4	9.5		1.6
Space heating (Average	TBivalent	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2	1.9	1.8
climate)		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2	27.9	31.0
		Tbiv (bivalent temperature)	°C				-10			
	TOL	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2	1.9	1.8
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2	27.9	31.0
	16	Tol (temperature operating limit)	°C				-10			1
		COPd (declared COP)		2.7	2.6	2.4		.6	2.4	2.1
	(-7°C)	Pdh (declared heating cap)	kW	12.1	14.2	16.3	18.2	20.5	24.7	27.4
		COPd (declared COP)			3.9			.5	3.7	3.6
	(2°C)	Pdh (declared heating cap)	kW	7.4	8.6	9.9	11.1	12.5	15.0	16.7
		COPd (declared COP)		6.3	6.4		i.1	6.3	6.7	6.5
	(7°C)	Pdh (declared heating cap)	kW	5.0	5.5	6.4	7.1	8.0	9.7	10.7
		COPd (declared COP)		7.9	8.2	7.9	8.5	8.6	9.0	9.1
	(12°C)	Pdh (declared heating cap)	kW	5	.9	6.3	4	.9	7	' .1

2 - 1 Specifications

Technical Specific	cations			RXYQ8UD	RXYQ10UD	RXYQ12UD	RXYQ14UD	RXYQ16UD	RXYQ18UD	RXYQ20UD
Space heating (Average		COPd (declared COP)		2	.7	2.4	2	.6	2.4	2.2
climate) recommended	(-7°C)	Pdh (declared heating cap)	kW	12.1	14.2	16.3	18.2	20.5	24.7	27.4
combination 2	B Condition	COPd (declared COP)		3.9	4.0	3.9		.5	3.8	3.7
	(2°C)	Pdh (declared heating cap)	kW	7.4	8.6	9.9	11.1	12.2	15.0	16.7
	C Condition	COPd (declared COP)		6.3	6.5		.1	6.3	6.8	6.5
	(7°C)	Pdh (declared heating cap)	kW	5.0	5.5	6.4	7.1	8.0	9.7	10.7
		COPd (declared COP)		7.8	8.3	7.9	8.6	8.7	9.1	9.2
	(12°C)	Pdh (declared heating cap)	kW	5.9	6.0	6.4	4.9	5.0		7.2
	TBivalent	COPd (declared COP)			.4	1.9	2.3	2.2	1.9	1.8
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2	27.9	31.0
	TO!	Tbiv (bivalent temperature)	°C			10	-10		10	1.0
	TOL	COPd (declared COP)	114/		.4	1.9	2.3	2.2	1.9	1.8
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2	27.9	31.0
C bti (A	A C 1:4:	Tol (temperature operating limit)	°C	2.7	2.6	2.4	-10		2.4	2.1
Space heating (Average climate) recommended	A Condition (-7°C)	COPd (declared COP)	kW	2.7	2.6	2.4 16.3		20.5	2.4	2.1
combination 3	(-/ C)	Pdh (declared heating cap)	KVV	12.1	14.2	10.5	18.2	20.5	24.7	27.4
Space heating (Average	R Condition	COPd (declared COP)		3.9	3.7	3.9	3	.5	3.7	3.6
climate) recommended	(2°C)	Pdh (declared heating cap)	kW	7.4	8.6	9.9	11.1	12.5	15.0	16.7
combination 3	C Condition	COPd (declared COP)		6.2	6.4	6.0	6.1	6.2	6.5	6.3
	(7°C)	Pdh (declared heating cap)	kW	4.9	5.5	6.4	7.1	8.0	9.7	10.7
	D Condition	COPd (declared COP)		7.8	8.1	7.8	8.5	8.6		3.7
	(12°C)	Pdh (declared heating cap)	kW	5.8	5.9	6.2		.9		5.9
	TBivalent	COPd (declared COP)	N. T.T	2.5	2.4	2.0	2.3	2.2	1.9	1.8
	. S. vuiciit	Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2	27.9	31.0
		Tbiv (bivalent temperature)	°C	15.7	10.0	10.4	-10	25.2	21.7	31.0
	TOL	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2	1.9	1.8
	IUL	Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2	27.9	31.0
		Tol (temperature operating limit)		15.7	10.0	10.4	-10	25.2	21.7	31.0
Capacity range		Tor (temperature operating inint)	НР	8	10	12	14	16	18	20
PED	Category		111	0	10	IZ.	Category II	10	10	20
110	Most critical	Name					Accumulator			
	part	Ps*V	Bar*l		325			15	Α.	.93
Maximum number of cor			Dai i		323		64 (3)	13	4	.93
Indoor index connection		i units		100.0	125.0	150.0	175.0	200.0	225.0	250.0
illuooi illuex collilectioli	Max.			260.0	325.0	390.0	455.0	520.0	585.0	650.0
Dimensions	Unit	Height	mm	200.0	323.0	370.0	1,685	320.0	363.0	0.00.0
Dillielisions	UIIIL	Width			930		1,000	1.	240	
		Depth	mm		730		765	1,4	240	
	Packed unit		mm mm				1,820			
	i ackeu uiiit	Width	mm		995		1,020	1:	305	
		Depth	mm		773		860	I,-	503	
Weight	Unit	рерии	kg		201			81	1 2	14
Weight	Packed unit		kg		219			02		35
Packing	Material		кy		219		Carton	02		00
racking	Weight		kg		4.7		Carton		5.7	
Packing 2	Material		, ky		4.7		Wood). <i>1</i>	
i acking 2			ka		12.1		vvoou	1/	4.7	
Packing 3	Weight Material		kg		12.1		Plastic	14	т.,	
i acking 3	Weight		kg		0.5		riasut).7	
Casing	Colour		кy		υ		lvory white			
cusing	Material					Daint	ed galvanized steel	nlate		
Heat exchanger	Туре					rallil	Cross fin coil	piate		
ac exchanger	Indoor side						Air			
Heat exchanger	Outdoor side						Air			
cut exchangel	Air flow rate		m³/h	9,720	10,500	11,100	13,380	15,600	15,060	15,660
	/III II/W TULE	Heating Rated	m³/h	9,720	10,500	11,100	13,380	15,600	15,060	15,660
Fan	Quantity	surg nuccu	/11	7,720	1	11,100	15,500		2	15,000
Tun	External	Max.	Pa		· · · · · · · · · · · · · · · · · · ·		78			
				I						
	static									
Fan motor	static pressure				1				2	
Fan motor	static pressure Quantity				1		DC motor		2	
Fan motor	static pressure Quantity Type		W				DC motor			
	static pressure Quantity Type Output		W		550		DC motor	7.	50	
	static pressure Quantity Type Output Quantity		W			Hermeti		7.		
Compressor	static pressure Quantity Type Output Quantity Type	Min.			550	Hermetid	cally sealed scroll co	7.	50	
Compressor	static pressure Quantity Type Output Quantity	Min. Max	°CDB		550	Hermetid	cally sealed scroll co –5.0	7.	50	
	static pressure Quantity Type Output Quantity Type Cooling	Max.	°CDB		550	Hermetid	cally sealed scroll co -5.0 43.0	7.	50	
Fan motor Compressor Operation range	static pressure Quantity Type Output Quantity Type	Max. Min.	°CDB °CDB		550	Hermetid	-5.0 43.0 -20.0	7.	50	
Compressor Operation range	static pressure Quantity Type Output Quantity Type Cooling Heating	Max. Min. Max.	°CDB °CDB °CWB	78.0 (4)	550		-5.0 43.0 -20.0	7.	2	870 (A)
Compressor	static pressure Quantity Type Output Quantity Type Cooling	Max. Min.	°CDB °CDB	78.0 (4) 79.6 (4)	550	Hermetid 83.4 (4) 83.5 (4)	-5.0 43.0 -20.0	7.	50	87.9 (4) 89.8 (4)

Specifications

Technical Specific	cations				RXYQ8UD	RXYQ10UD	RXYQ12UD	RXYQ14UD	RXYQ16UD	RXYQ18UD	RXYQ20UD				
Refrigerant	Type							R-410A		,					
-	GWP							2,087.5							
	Charge			kg	5.9	6.0	6.3	10.3	11.3	11.7	11.8				
Refrigerant oil	Type						Syn	thetic (ether) oil FV	C68D						
Piping connections	Liquid	Type						Braze connection							
		OD		mm	9	.52		12.7		1:	5.9				
	Gas	Type						Braze connection							
		OD		mm	19.1	22.2			28.6						
	Total piping length	System	Actual	m				1,000 (6)							
Defrost method								Reversed cycle							
Capacity control	Method							Inverter controlled	no						
Indication if the heater is	equipped with	n a suppleme	entary heater					no							
Supplementary heater	Back-up capacity	Heating	elbu	kW				0.0							
Power consumption in	Crankcase	Cooling	PCK	kW				0.000							
other than active mode	heater mode	Heating	PCK	kW		0.052		0.	077	0.	089				
	Off mode	Cooling	POFF	kW		0.041		0.	074	0.	075				
		Heating	POFF	kW		0.052		0.0	077	0.	089				
	Standby	Cooling	PSB	kW		0.041		0.	074	0.	075				
	mode	Heating	PSB	kW		0.052			077	0.	089				
	Thermo- stat-off mode	Cooling	PTO PTO	kW		0.005			0.	010					
Power consumption in other than active mode	Thermo- stat-off mode	Heating	PTO	kW		0.056	0.097 0.098								
Cooling	Cdc (Degrada	ation cooling	1)					0.25							
Heating	Cdh (Degrad	ation heatin	g)					0.25							
Safety devices	Item	01						High pressure switc	h						
		02					Fan	driver overload prot	ector						
		03					Inv	verter overload protector							
		04						PC board fuse							
		05					Le	akage current detec	tor						

Standard accessories: Operation manual; Quantity: 1;

Standard accessories: Connection pipes; Quantity: 1;

Electrical Specif	Phase Frequency Voltage				RXYQ8UD	RXYQ10UD	RXYQ12UD	RXYQ14UD	RXYQ16UD	RXYQ18UD	RXYQ20UD
Power supply	Name							Y1			
	Phase							3N~			
	Frequency			Hz				50			
	Voltage			V				380-415			
Power supply intake							Botl	indoor and outdoo	runit		
Voltage range	Min.			%				-10			
	Max.			%				10			
Current - 50Hz	Nominal	Combina-	Cooling					-			
	running	tion A									
	current	Combina-	Cooling					-			
	(RLA)	tion B									
	Starting curi	ent (MSC) - r	emark					See note 7			
	Zmax	List						No requirements			
	Minimum Ss	c value		kVa	4,050 (7)	5,535 (7)	6,038 (7)	6,793 (7)	7,547 (7)	8,805 (7)	9,812 (7)
	Minimum cir	rcuit amps (M	ICA)	Α	16.1 (8)	22.0 (8)	24.0 (8)	27.0 (8)	31.0 (8)	35.0 (8)	39.0 (8)
	Maximum fu	ise amps (MF	A)	Α	20 (9)	25 (9)	32	(9)	40	(9)	50 (9)
	Full load	Total		Α	1.2 (10)	1.3 (10)	1.5 (10)	1.8 (10)		2.6 (10)	
	amps (FLA)										
Power Performance	Power factor	r Combina-	35°C ISO - Full load					-			
		tion B	46°C ISO - Full load					-			
Wiring connections	For power	Quantity						5G			
- 50Hz	supply										
	For connec-	Quantity						2			
	tion with	Remark						F1,F2			
	indoor										

⁽¹⁾Cooling: indoor temp. 20°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m |
(2)Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m |
(3)Actual number of connectable indoor units depends on the indoor unit type (VRV indoor, Hydrobox, RA indoor, etc.) and the connection ratio restriction for the system (50% <= CR <= 130%) |
(4)Sound power level is an absolute value that a sound source generates. |
(5)Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. |

⁽⁸⁾MCA must be used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). |

Specifications

(10)FLA means the nominal running current of the fan |
MSC means the maximum current during start up of the compressor. This unit uses only inverter compressors. Starting current is always ≤ max. running current. |
Maximum allowable voltage range variation between phases is 2%. |

Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits.

The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Pump operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature) | The STANDARD ESEER value corresponds with normal VRV4 Heat Pump operation, not taking into account advanced energy saving operation functionality |

Sound values are measured in a semi-anechoic room. |

Soundpressure system [dBA] = $10^*\log[10^*(A/10)+10^*(B/10)+10^*(C/10)]$, with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA |

EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and \leq 75A per phase |
Ssc: Short-circuit power |
For detailed contents of standard accessories, see installation/operation manual |

Multi combination (22~54HP) data is corresponding with the standard multi combination

Technical specific	ations Sy	stem			RXYQ22UD	RXYQ24UD	RXYQ26UD	RXYQ28UD	RXYQ30UD	RXYQ32UD	RXYQ34UD	RXYQ36UD	RXYQ38UD
System	Outdoor un	it module 1			RXYQ10U	RXYQ8U		RXYQ12U			RXYQ16U		RXYQ8U
	Outdoor un	it module 2			RXYQ12U	RXYQ16U	RXYQ14U	RXYQ16U	RXYQ18U	RXYQ16U	RXYQ18U	RXYQ20U	RXYQ10U
	Outdoor un	it module 3							-				RXYQ20U
Recommended combinat	ion				6 x	4 x	7 x	6 x	9 x	8 x	3 x	2 x	6 x
					FXFQ50AVEB	FXFQ50AVEB	FXFQ50AVEB	FXFQ50AVEB	FXFQ50AVEB	FXFQ63AVEB	FXFQ50AVEB	FXFQ50AVEB	FXFQ50AVEB
					+ 4 x	+ 4 x	+ 5 x	+ 4 x	+ 5 x	+ 4 x	+ 9 x	+ 10 x	+ 10 x
					FXFQ63AVEB	FXFQ63AVEB	FXFQ63AVEB	FXFQ63AVEB	FXFQ63AVEB	FXFQ80AVEB	FXFQ63AVEB	FXFQ63AVEB	FXFQ63AVEB
						+ 2 x		+2x			+2x	+2x	
						FXFQ80AVEB		FXFQ80AVEB			FXFQ80AVEB	FXFQ80AVEB	
Recommended combinat	ion 2				6 x	4 x	7 x	6 x	9 x	8 x	3 x	2 x	6 x
					1	FXSQ50A2VEB							
					+ 4 x	+ 4 x	+ 5 x	+ 4 x	+ 5 x	+ 4 x	+ 9 x	+ 10 x	+ 10 x
					FXSQ63A2VEB	FXSQ63A2VEB	FXSQ63A2VEB	1	FXSQ63A2VEB	FXSQ80A2VEB			FXSQ63A2VEB
						+2x		+2x			+2x	+2x	
						FXSQ80A2VEB		FXSQ80A2VEB			-	FXSQ80A2VEB	
Recommended combinat	ion 3				6 x FXMQ50P7VEB + 4 x				9 x FXMQ50P7VEB + 5 x		3 x FXMQ50P7VEB + 9	2 x FXMQ50P7VEB + 10	
					FXMQ63P7VEB	x FXMQ63P7VEB + 2x	FXMQ63P7VEB	x FXMQ63P7VEB + 2 x	FXMQ63P7VEB	FXMQ80P7VEB	x FXMQ63P7VEB + 2x	x FXMQ63P7VEB + 2 x	x FXMQ63P7VEB
C. P	D			114/	(1.5 (1)	FXMQ80P7VEB	72.5 (4)	FXMQ80P7VEB	02.0 (1)	00.0 (1)	FXMQ80P7VEB	FXMQ80P7VEB	102.4 (4)
Cooling capacity	Prated,c	COCI410		kW	61.5 (1)	67.4 (1)	73.5 (1)	78.5 (1)	83.9 (1)	90.0 (1)	95.4 (1)	97.0 (1)	102.4 (1)
Heating capacity	Nom.	6°CWB		kW	61.5 (2)	67.4 (2)	73.5 (2)	78.5 (2)	83.9 (2)	90.0 (2)	95.4 (2)	101.0 (2)	106.4 (2)
	Prated,h	COCI410		kW	61.5 (2)	67.4 (2)	73.5 (2)	78.5 (2)	83.9 (2)	90.0 (2)	95.4 (2)	101.0 (2)	106.4 (2)
	Max.	6°CWB		kW	69.0 (2)	75.0 (2)	82.5 (2)	87.5 (2)	94.0 (2)	100.0 (2)	106.5 (2)	113.0 (2)	119.5 (2)
Power input - 50Hz	Heating	Nom.	6°CWB	kW	17.23 (2)	17.94 (2)	20.33 (2)	22.19 (2)	23.87 (2)	25.08 (2)	26.76 (2)	30.02 (2)	30.45 (2)
COP at nom. capacity	6°CWB			kW/kW	3.57 (2)	3.76 (2)	3.61 (2)	3.54 (2)	3.51(2)	3.59 (2)	3.56 (2)	3.36 (2)	3.49 (2)
ESEER - Automatic					7.07	6.81	6.89	6.69	6.60	6.50	6.44	6.02	6.36
ESEER - Standard					5.58	5.42	5.39	5.23	5.17	5.05	5.01	4.68	5.03
SCOP					4.4	4.3		1.2	4.3		.2	4.1	4.3
SCOP recommended com					4.4	4.3		1.2	4.3	4.2	4.3	4.2	4.3
SCOP recommended com	bination 3				4.3		4.2	I	4.3	4.1	4.2	4.1	4.2
SEER					6.9	6.8	6.7	(5.5		.4	6.3	6.9
SEER recommended comb					6.7	6.6	6.5		T	6.3	1 .		6.8
SEER recommended comb	oination 3				6.9	6.7	6.6	6.4	6.5	6.2		.3	6.9
ης,ς				%	274.5	269.9	264.2	257.8	256.8	251.7	253.3	250.8	272.4
ηs,h				%	171.2	167.0	164.6	166.0	169.8	163.1	166.2	162.4	167.5
Space cooling	A Condition				2.6	2.5	2.6	2.3	2.1	2.3		2.1	2.4
	(35°C - 27/1			kW	61.5	67.4	73.5	78.5	83.9	90.0	95.4	97.0	102.4
	B Condition				4.8		.6	4.4		.3	4.2	4.1	4.5
	(30°C - 27/1			kW	45.3	49.7	54.2	57.8	61.8	66.3	70.3	71.5	75.5
	C Condition				8.5	8.6	8.2	8.1	8.2		8.1	7.9	8.5
	(25°C - 27/1			kW	29.1	31.9	34.8	37.2	39.7	42.6	45.2	45.9	48.5
	D Condition				16.0	15.2	14.2	14.3	16.8	14.3	16.8	16.7	17.9
	(20°C - 27/1			kW	18.8	15.8	16.2	16.5	21.0	19.0	20.1	20.4	21.6
Space cooling recom-	A Condition				2.6	2.4	2.6	2.3	2.1	2.2		2.1	2.3
mended combination 2	(35°C - 27/1			kW	61.5	67.4	73.5	78.5	83.9	90.0	95.4	97.0	102.4
	B Condition				4.6	4.5	4.4	4.3		4.2		4.1	4.5
	(30°C - 27/1			kW	45.3	49.7	54.1	57.8	61.8	66.3	70.3	71.5	75.4
	C Condition				8.2	8.4	7.9	7.8	7.9	8.0	8.1	7.9	8.4
	(25°C - 27/1	9) Pdc		kW	29.1	31.9	34.8	37.2	39.7	42.6	45.2	45.9	48.5
Space cooling recom-	D Condition				15.6	14.7	13.6	13.8	16.1	14.0	1	5.5	17.8
mended combination 2	(20°C - 27/1			kW	18.4	15.4	15.7	16.5	20.5	18.9	20.1	20.4	21.6
Space cooling recom-	A Condition					2.5		2.3	2.1	2.2	2	2.1	2.4
mended combination 3	(35°C - 27/19	9) Pdc		kW	61.5	67.4	73.5	78.5	83.9	90.0	95.4	97.0	102.4
	B Condition	EERd			4.8	4	.5	4	1.3	4	l.1	4.0	4.5
	(30°C - 27/1	9) Pdc		kW	45.3	49.7	54.2	57.8	61.8	66.3	70.3	71.5	75.5
	C Condition	EERd			8.5	8.4	8.1	8.0	8.2	7.8	8.0	7.8	8.5
	(2000 27/1	0) D4c		kW	29.1	31.9	34.8	37.2	39.7	42.6	45.2	45.9	48.5
	(25°C - 27/1	7) PUC											
	D Condition				15.8	15.2	14.0	14.1	16.6	13.8	16.6	16.5	17.9

SpecificationsSpecifications

Technical specific Space heating (Average		COPd (declared COP)		RXYQ22UD 2.3	RXYQ24UD 2.5	RXYQ26UD 2.3	RXYQ28UD 2.2	RXYQ30UD 2.1	RXYQ32UD 2.4	RXYQ34UD 2.2	RXYQ36UD 2.1	RXYQ38U I 2.2
space neating (Average climate)	IBIValent	Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3	46.4	51.1	54.2	60.7
illilate)		Tbiv (bivalent temperature)	°C	34.4	30.9	39.0	41.0	-10	40.4	31.1	34.2	00.7
	TOL	COPd (declared COP)		2.3	2.5	2.3	2.2	2.1	2.4	2.2	2.1	2.2
	102	Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3	46.4	51.1	54.2	60.7
		Tol (temperature operating limit)	°C	3	30.5	33.0		-10		J	J2	00.0
	A Condition	COPd (declared COP)		2.6	2.8		2.6		2.7	2.6	2	.5
	(-7°C)	Pdh (declared heating cap)	kW	30.4	32.6	34.5	36.8	4	1.0	45.2	47.9	53.7
	B Condition	COPd (declared COP)		4.0	3.7	3	3.8	3.9	3.6	3	3.7	3.9
	(2°C)	Pdh (declared heating cap)	kW	18.5	19.9	21.0	22.4	24.9	25.0	27.5	29.2	32.7
	C Condition	COPd (declared COP)		6	i.3	6.1	6.2	6.5	6.3	6.5	6.4	6.5
	(7°C)	Pdh (declared heating cap)	kW	11.9	13.0	13.5	14.4	16.0	16.1	17.7	18.8	21.3
	D Condition	COPd (declared COP)		8.2	8.9	8.8		9.0		8.8	8.6	8.7
	(12°C)	Pdh (declared heating cap)	kW	6.0	5.7	6.0	6.4		7.1	7.9	8.3	13.1
pace heating (Average	A Condition	COPd (declared COP)		2.6	2.7		2.6		2.7	2.6	2	.5
limate) recommended	(-7°C)	Pdh (declared heating cap)	kW	30.4	32.6	34.5	36.8	4	1.0	45.2	47.9	53.7
ombination 2	B Condition	COPd (declared COP)		4.1	3.7	3	3.8	3.9	3.6	3.8	3.7	3.9
	(2°C)	Pdh (declared heating cap)	kW	18.5	19.9	21.0	22.4	24.9	25.0	27.5	29.2	32.7
	C Condition	COPd (declared COP)			5.3	6.1	6.3	6.6	6.3	6.6		.5
	(7°C)	Pdh (declared heating cap)	kW	11.9		3.1	14.4	16.0	16.1	17.7	18.8	21.3
	D Condition			8.4	9.0	8.9		9.1		8.9		.8
	(12°C)	Pdh (declared heating cap)	kW	6.0	5.7	6.0	6.4	7.2	7.1	7.9	8.3	13.2
	TBivalent	COPd (declared COP)	1147	2.2	2.4		2.2	2.1	2.4		2.2	2.3
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3	46.4	51.1	54.2	60.7
	TOL	Tbiv (bivalent temperature)	°C	1 22	3.4	_	1.2	-10	3.4		1.2	
	TOL	COPd (declared COP)	1.147	2.2	2.4		2.2	2.1	2.4		2.2	2.3
b t' (A	TOL	Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3	46.4	51.1	54.2	60.7
pace heating (Average limate) recommended	TOL	Tol (temperature operating limit)	°C					-10				
ombination 2												
pace heating (Average	A Condition	COPd (declared COP)		2.6	2.7	7	2.6	2.5	2.7	2.6	2.4	2.5
limate) recommended	(-7°C)	Pdh (declared heating cap)	kW	30.4	32.6	34.5	36.8		1.0	45.2	47.9	53.7
ombination 3	B Condition	COPd (declared COP)	KVV	4.0	3.7		30.0	3.9	3.6	3.7	3.6	3.8
ombinación 5	(2°C)	Pdh (declared heating cap)	kW	18.5	19.9	21.0	22.4	24.9	25.0	27.5	29.2	32.7
	• •	COPd (declared COP)	KW	6.2	6.3	6.1	6.2		5.3	6.4		.3
	(7°C)	Pdh (declared heating cap)	kW	11.9	12.9	13.5	14.4	16.0	16.1	17.7	18.8	21.2
		COPd (declared COP)		8.2	8.9	8.8	9.0	8.6	9.0	8.9	8.3	8.5
	(12°C)	Pdh (declared heating cap)	kW	6.0	5.7	6.0	6.4		7.1	7.9	8.3	12.9
	TBivalent	COPd (declared COP)		2.3	2.4		2.2	2.1	2.4	2.2	2.1	2.2
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3	46.4	51.1	54.2	60.7
		Tbiv (bivalent temperature)	°C					-10				
	TOL	COPd (declared COP)		2.3	2.4	2	2.2	2.1	2.4	2.2	2.1	2.2
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3	46.4	51.1	54.2	60.7
		Tol (temperature operating limit)	°C					-10				
Capacity range			HP	22	24	26	28	30	32	34	36	38
PED	Category							Category II				
Naximum number of con	nectable indo	or units						64 (3)				
ndoor index connection	Min.			275.0	300.0	325.0	350.0	375.0	400.0	425.0	450.0	475.0
	Max.			715.0	780.0	845.0	910.0	975.0	1,040.0	1,105.0	1,170.0	1,235.0
leat exchanger	Indoor side							Air				
	Outdoor side							Air				
	Air flow rate		m³/h	21,600	25,320	24,480	26,700	26,160	31,200	30,660	31,260	35,880
		Heating Rated	m³/h	21,600	25,320	24,480	26,700	26,160	31,200	30,660	31,260	35,880
ound power level	Cooling	Nom.	dBA	84.8 (4)	86.3 (4)	85.3 (4)	87.6 (4)	86.6 (4)	88.6 (4)	87.8 (4)	89.9 (4)	88.8 (4
	Heating	Prated,h	dBA	85.4 (4)	87.3 (4)	86.3 (4)	88.3 (4)	87.5 (4)	89.5 (4)	88.9 (4)	91.5 (4)	90.7 (4
ound pressure level	Cooling	Nom.	dBA	62.5 (5)	64.0 (5)	63.5 (5)	65.1 (5)	64.5 (5)	66.0 (5)	65.5 (5)	67.1 (5)	66.2 (5
efrigerant	Туре							R-410A				
	GWP							2,087.5				
efrigerant oil	Туре	_		1				etic (ether) oil f				
iping connections	Liquid	Туре				1		Braze connectio				
		0D	mm	15	5.9				19.1			
	Gas	Туре		1				Braze connection	n		1	
		OD	mm	28.6			3	4.9			4	1.3
	Total piping	System Actual	m					1,000 (6)				
. 15 . 15 . 15 . 1 . 1 . 1	length			-								
		n a supplementary heater	1147	-				no o o				
upplementary heater	Back-up	Heating elbu	kW					0.0				
	capacity			1								

SpecificationsSpecifications

2 - 1

Technical specific	ations Sys	stem			RXYQ22UD	RXYQ24UD	RXYQ26UD	RXYQ28UD	RXYQ30UD	RXYQ32UD	RXYQ34UD	RXYQ36UD	RXYQ38UD
Power consumption in	Crankcase	Cooling	PCK	kW					0.000				
other than active mode	heater	Heating	PCK	kW	0.103		0.129 0.141 0.154 0.166						0.192
	mode												
	Off mode	Cooling	POFF	kW	0.081		0.115		0.116	0.149	0.1	50	0.157
		Heating	POFF	kW	0.103		0.129		0.141	0.154	0.192		
	Standby	Cooling	PSB	kW	0.081		0.115		0.116	0.149	0.1	50	0.157
	mode	Heating	PSB	kW	0.103		0.129		0.141	0.154	0.1	66	0.192
	Thermo-	Cooling	PT0	kW	0.009		0.0)14			0.0)19	
	stat-off	Heating	PT0	kW	0.113		0.154		0.155	0.195	0.1	96	0.211
	mode												
Cooling	Cdc (Degrad	ation cooling	1)						0.25				
Heating	Cdh (Degrac	lation heatin	g)						0.25				

Technical specific					1		RXYQ44UD	i e	RXYQ48UD		RXYQ52UD	
System	Outdoor uni					Q10U	RXYQ12U	RXYQ14U		RXYQ16U		RXYQ18U
	Outdoor uni				RXYQ12U			RXYQ16U				Q18U
	Outdoor uni	t module 3			RXYQ18U			Q16U			RXYQ18U	
Recommended combina	tion				9 x FXFQ50AVEB			1x FXFQ50AVEB			6 x FXFQ50AVEB	
					+ 9 x	FXFQ63AVEB +	+ 8 x	+ 13 x	FXFQ63AVEB+	+ 13 x	+ 14 x	+ 15 x
					FXFQ63AVEB	4 x FXFQ80AVEB	FXFQ63AVEB +			FXFQ63AVEB +		FXFQ63AVEB
								4 x FXFQ80AVEB			2 x FXFQ80AVEB	_
Recommended combina	tion 2				9 x	12 x	6 X	1x	12 x	3 x	6 X	9 X
					FXSQ50A2VEB	FXSQ63A2VEB	FXSQ50A2VEB	FXSQ50A2VEB	FXSQ63A2VEB	FXSQ50A2VEB	FXSQ50A2VEB	FXSQ50A2VEB
					+ 9 x FXSQ63A2VEB	+ 4 x FXSQ80A2VEB	+ 8 x FXSQ63A2VEB	+ 13 x FXSQ63A2VEB	+ 6 x FXSQ80A2VEB	+ 13 x FXSQ63A2VEB	+ 14 x FXSQ63A2VEB	+ 15 x FXSQ63A2VEB
					FASQUSAZVED	FASQOUAZVED	+4x	+4x	FASQOUAZVED	+4x	+2x	FASQUSAZVED
							FXSQ80A2VEB	FXSQ80A2VEB		FXSQ80A2VEB	FXSQ80A2VEB	
Recommended combina	tion 3				9 x	12 x	6 X	1x	12 x	3 x	6 X	9 x
necommended combina	110113				FXM050P7VEB	FXMQ63P7VEB	FXMQ50P7VEB	FXMQ50P7VEB	FXMQ63P7VEB	FXMQ50P7VEB	FXMQ50P7VEB	FXMQ50P7VEB
					+ 9 x	+ 4 x	+8x	+13 x	+ 6 x	+ 13 x	+ 14 x	+ 15 x
					1	FXMQ80P7VEB		FXMQ63P7VEB	FXMQ80P7VEB		FXMQ63P7VEB	FXMQ63P7VEB
							+ 4 x	+ 4 x		+ 4 x	+ 2 x	
							FXMQ80P7VEB			FXMQ80P7VEB		
Cooling capacity	Prated,c			kW	111.9 (1)	118.0 (1)	123.5 (1)	130.0 (1)	135.0 (1)	140.4 (1)	145.8 (1)	151.2 (1)
Heating capacity	Nom.	6°CWB		kW	111.9 (2)	118.0 (2)	123.5 (2)	130.0 (2)	135.0 (2)	140.4 (2)	145.8 (2)	151.2 (2)
•	Prated,h			kW	111.9 (2)	118.0 (2)	123.5 (2)	130.0 (2)	135.0 (2)	140.4 (2)	145.8 (2)	151.2 (2)
	Max.	6°CWB		kW	125.5 (2)	131.5 (2)	137.5 (2)	145.0 (2)	150.0 (2)	156.5 (2)	163.0 (2)	169.5 (2)
Power input - 50Hz	Heating	Nom.	6°CWB	kW	31.45 (2)	32.66 (2)	34.73 (2)	35.77 (2)	37.62 (2)	39.30 (2)	40.98 (2)	42.66 (2)
COP at nom. capacity	6°CWB			kW/kW	3.56 (2)	3.61(2)	3.56 (2)	3.63 (2)	3.59 (2)	3.57 (2)	3.56 (2)	3.54 (2)
ESEER - Automatic					6.74	6.65	6.62	6.60	6.50	6.46	6.42	6.38
ESEER - Standard					5.29	5.19	5.17	5.13	5.05	5.02	4.99	4.97
SCOP					4.3	4	1.2	4	l.1	4.2	4	.3
SCOP recommended com	bination 2				4.4	4.3		4	.2		4	.3
SCOP recommended com	bination 3				4.3	4	1.2	4	l.1		4.2	
SEER					6.7	6.6	6.5			6.4		
SEER recommended com						.6	6.3	6.4	6	.3		.4
SEER recommended com	bination 3				6.7	6.5		.3	6.2	6.3		.4
ης,ς				%	263.5	261.2	255.9	254.9	251.7	252.8	253.7	254.1
ηs,h				%	170.0	165.5	164.5	162.0	162.8	165.2	167.2	169.4
Space cooling	A Condition				2.2		2.3	2.4	2.3	2.1	2.0	1.9
	(35°C - 27/19			kW	111.9	118.0	123.5	130.0	135.0	140.4	145.8	151.2
	B Condition				4.5		4.4		4.3		.2	4.1
	(30°C - 27/19			kW	82.5	86.9	91.0	95.8	99.5	103.4	107.4	111.4
	C Condition				8.3	8.2		I		.1	1	T
	(25°C - 27/19			kW	53.0	55.9	58.5	61.6	64.0	66.5	69.1	71.6
	D Condition				16.0	15.4	14.4		1.3	15.9	17.6	19.1
	(20°C - 27/19	·		kW	23.6	24.8	26.0	27.4	28.4	29.6	30.7	34.4
Space cooling recom-	A Condition			114/	2.2	440.0	2.3	420.0	2.2	2.1	2.0	1.9
mended combination 2	(35°C - 27/19			kW	111.9	118.0	123.5	130.0	135.0	140.4	145.8	151.2
	B Condition (30°C - 27/19			114/		.4		.3		.2		.1
	· ·	,		kW	82.4	86.9	91.0	95.8	99.5	103.5	107.4	111.4
	C Condition (25°C - 27/19			kW	8.1	8.2 55.9	7.9	8.1		.0		.1
Space cooling recom-	D Condition			KVV	53.0 15.9	15.3	58.5	61.6 14.0	63.9	66.5 15.6	69.0	71.6 18.9
mended combination 2	(20°C - 27/19			LAM			26.0	1	20.4		17.4	
Space cooling recom-	A Condition			kW	23.6	24.8	26.0	27.4	28.4	29.6 2.1	30.7 2.0	34.1 1.9
mended combination 3	(35°C - 27/19			kW	111.9	118.0	123.5	130.0	135.0	140.4	145.8	151.2
menueu combinativii 3	B Condition			r. VV	4.4		1.3	4.2	0.00		145.8 1	131.2
	(30°C - 27/19			kW	82.5	87.0	91.0	95.8	99.5	103.5	107.4	111.4
	C Condition			K VV	82.5	8.0		95.8 .9	7.8	7.9	8.0	8.2
				[,\A/								
	(25°C - 27/19 D Condition			kW	53.0 16.1	55.9 15.2	58.5 14.2	61.6	63.9 13.8	66.5 15.6	69.1 17.5	71.6 19.1
				Į, M								
	(20°C - 27/19	ruc		kW	23.6	24.8	26.0	27.4	28.4	29.6	30.7	34.7

SpecificationsSpecifications **2** 2 - 1

Technical specific	•				-	-	RXYQ46UD	-	-	-	-
Space heating (Average	TBivalent	COPd (declared COP)		2.2	2.4	2.3	2.4		2.3	2.2	2.1
climate)		Pdh (declared heating cap)	kW	62.3	62.4	64.8	67.0	69.6	74.3	79.0	83.7
		Tbiv (bivalent temperature)	°C	-		1	-10				
	TOL	COPd (declared COP)		2.2	2.4	2.3	2.4		2.3	2.2	2.1
		Pdh (declared heating cap)	kW	62.3	62.4	64.8	67.0	69.6	74.3	79.0	83.7
		Tol (temperature operating limit)	°C				-10)		1	
		COPd (declared COP)		2.6			2.7				.6
	(-7°C)	Pdh (declared heating cap)	kW	55.1	55.2	57.3	59.3	61.6	65.7	69.9	74.0
	B Condition	COPd (declared COP)		4.0		3.7	3.6		3.7	3.8	3.9
	(2°C)	Pdh (declared heating cap)	kW	33.5	33.6	34.9	36.1	37.5	40.0	42.5	45.1
	C Condition	COPd (declared COP)		6.5		i.3	6.2	6.3	6.5	6.6	6.8
	(7°C)	Pdh (declared heating cap)	kW		1.6	22.4	23.2	24.1	25.7	27.4	29.0
		COPd (declared COP)		8.7		3.6	8.7	8.8	8.9		.0
	(12°C)	Pdh (declared heating cap)	kW	13.1	9.9	10.0	10.3	10.7	12.0		1.2
Space heating (Average	A Condition	COPd (declared COP)		2.6			2.7		1		.6
climate) recommended	(-7°C)	Pdh (declared heating cap)	kW	55.1	55.2	57.3	59.3	61.6	65.7	69.9	74.0
combination 2		COPd (declared COP)		4.0		3.7	3.6		3.7	3.8	3.9
	(2°C)	Pdh (declared heating cap)	kW	33.5	33.6	34.9	36.1	37.5	40.0	42.6	45.1
		COPd (declared COP)		6.5	6.4		6.3		6.5	6.7	6.8
	(7°C)	Pdh (declared heating cap)	kW		1.6	22.4	22.8	24.1	25.7	27.4	29.0
		COPd (declared COP)		8.8		3.7	8.8	8.9	9.0		.1
	(12°C)	Pdh (declared heating cap)	kW	13.2		0.0	10.3	10.7	12.2		1.4
	TBivalent	COPd (declared COP)		2.2	2.4	2.3	2.4	!	2.3	2.2	2.1
		Pdh (declared heating cap)	kW	62.3	62.4	64.8	67.0	69.6	74.3	79.0	83.7
		Tbiv (bivalent temperature)	°C				-10)			
	TOL	COPd (declared COP)		2.2	2.4	2.3	2.4		2.3	2.2	2.1
		Pdh (declared heating cap)	kW	62.3	62.4	64.8	67.0	69.6	74.3	79.0	83.7
Space heating (Average climate) recommended combination 2	TOL	Tol (temperature operating limit)	°C				-10)			
Space heating (Average	A Condition	COPd (declared COP)		2.6	2.7	2.6	2.7	,	2	.6	2.5
climate) recommended	(-7°C)	Pdh (declared heating cap)	kW	55.1	55.2	57.3	59.3	61.6	65.7	69.9	74.0
combination 3	B Condition	COPd (declared COP)		3.9		3.7		3.6		3.7	3.8
	(2°C)	Pdh (declared heating cap)	kW	33.5	33.6	34.9	36.1	37.5	40.0	42.5	45.1
	C Condition	COPd (declared COP)		6.4	6.3	6	.2	6.3	6	.4	6.5
	(7°C)	Pdh (declared heating cap)	kW		1.6	22.4	23.2	24.1	25.7	27.3	29.0
	D Condition	COPd (declared COP)		8.4	8	3.6	8.7	8.8		8.7	
	(12°C)	Pdh (declared heating cap)	kW	12.8	9.9	10.0	10.3	10.7	11.8	13	3.7
	TBivalent	COPd (declared COP)		2.2	2.4	2.3	2.4		2	.2	2.1
		Pdh (declared heating cap)	kW	62.3	62.4	64.8	67.0	69.6	74.3	79.0	83.7
		Tbiv (bivalent temperature)	°C				-10)			
	TOL	COPd (declared COP)		2.2	2.4	2.3	2.4		2	.2	2.1
		Pdh (declared heating cap)	kW	62.3	62.4	64.8	67.0	69.6	74.3	79.0	83.7
		Tol (temperature operating limit)	°C				-10				
Capacity range			HP	40	42	44	46	48	50	52	54
PED	Category						Catego				
Maximum number of con		or units					64 (-			
ndoor index connection				500.0	525.0	550.0	575.0	600.0	625.0	650.0	675.0
	Max.			1,300.0	1,365.0	1,430.0	1,495.0	1,560.0	1,625.0	1,690.0	1,755.0
Heat exchanger	Indoor side			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	Ai		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	,
3 .	Outdoor side						Ai				
	Air flow rate		m³/h	36,660	41,700	42,300	44,580	46,800	46,260	45,720	45,180
		Heating Rated	m³/h	36,660	41,700	42,300	44,580	46,800	46,260	45,720	45,180
Sound power level	Cooling	Nom.	dBA	87.3 (4)	89.1 (4)	89.8 (4)	89.3 (4)	90.4 (4)	89.8 (4)	89.3 (4)	88.6 (4)
	Heating	Prated,h	dBA	88.4 (4)	90.1 (4)	90.5 (4)	90.4 (4)	91.3 (4)	90.9 (4)	90.5 (4)	90.1 (4)
ound pressure level	Cooling	Nom.	dBA	65.2 (5)	66.5 (5)	67.2 (5)	67.0 (5)	67.8 (5)	67.5 (5)	67.1 (5)	66.8 (5)
Refrigerant	Туре	· · ·		11.2 (5)			R-41				(5)
ien gerant	GWP						2,08				
Refrigerant oil	Туре			+			Synthetic (ethe				
riping connections	Liquid	Туре		1			Braze con	•			
.p.ng connections	Liquiu	OD OD	mm	+			19.				
	Gas		11111	+			Braze con				
	Jas	Type OD	mm	+			41.				
	Total ninin -		mm	+							
	Total piping	System Actual	m				1,000	(U)			
	lenath										
ndication if the heater is	length equipped with	a supplementary heater					nr				
ndication if the heater is Supplementary heater		a supplementary heater Heating elbu	kW				nc 0.0				

SpecificationsSpecifications

2 - 1

Technical specific	ations Sys	tem			RXYQ40UD	RXYQ42UD	RXYQ44UD	RXYQ46UD	RXYQ48UD	RXYQ50UD	RXYQ52UD	RXYQ54UD	
Power consumption in	Crankcase	Cooling	PCK	kW				0.0	000				
other than active mode	heater	Heating	PCK	kW	0.192	0.2	206	0.2	0.231 0.243 0.255				
	mode												
	Off mode	Cooling	POFF	kW	0.157	0.	190	0.2	223	0.224	0.225	0.226	
		Heating	POFF	kW	0.192	0.2	206	0.2	231	0.243	0.255	0.267	
	Standby	Cooling	PSB	kW	0.157	0.	190	0.2	223	0.224	0.225	0.226	
	mode	Heating	PSB	kW	0.192	0.2	206	0.2	231	0.243	0.255	0.267	
	Thermo-	Cooling	PT0	kW	0.019	0.0)24			0.029			
	stat-off	Heating	PT0	kW	0.211	0	251	0.2	292	0.293	0.2	294	
	mode												
Cooling	Cdc (Degrad	ation cooling)					0.	25				
Heating	Cdh (Degrad	lation heating	g)					0.	25				

Electrical specif	ications Sys	stem			RXYQ22UD	RXYQ24UD	RXYQ26UD	RXYQ28UD	RXYQ30UD	RXYQ32UD	RXYQ34UD	RXYQ36UD	RXYQ38UD
Power supply	Name					Y1							
	Phase				3N~								
	Frequency			Hz					50				
	Voltage V							380-415					
Power supply intake								Both ir	door and outdo	or unit			
Voltage range Min. %			%					-10					
	Max.			%					10				
Current - 50Hz	Nominal running	Combina- tion A	Cooling		-								
	current (RLA)	Combina- tion B	Cooling		-								
	Starting current (MSC) - remark			See note 7									
	Zmax List			No requirements									
	Minimum S	sc value		kVa	11,573 (7)	11,597 (7)	12,831 (7)	13,585 (7)	14,843 (7)	15,094 (7)	16,352 (7)	17,359 (7)	19,397 (7)
	Minimum ci	rcuit amps (M	CA)	Α	46.0	(8)	51.0 (8)	55.0 (8)	59.0 (8)	62.0 (8)	66.0 (8)	70.0 (8)	76.0 (8)
	Maximum fo	use amps (MF/	A)	Α		63	(9)			80	(9)		100 (9)
Power Performance	Power facto	r Combina-	35°C ISO - Full load		-								
		tion B	46°C ISO - Full load										
Wiring connections - 50Hz	For power supply	Quantity							5G				
	For connec- Quantity			2									
	tion with indoor	Remark							F1,F2				

Electrical specifications System					RXYQ40UD	RXYQ42UD	RXYQ44UD	RXYQ46UD	RXYQ48UD	RXYQ50UD	RXYQ52UD	RXYQ54UD
Power supply	Name							Υ	1			
	Phase				3N~							
	Frequency Hz			50								
	Voltage			V	380-415							
Power supply intake								Both indoor an	ıd outdoor unit			
Voltage range Min.			%				-1	10				
	Max.			%				1	0			
Current - 50Hz	Nominal	Combina-	Cooling						-			
	running	tion A										
	current	Combina-	Cooling		-							
	(RLA)											
	Starting current (MSC) – remark			See note 7								
	Zmax List			No requirements								
	Minimum Ss	Minimum Ssc value kVa			20,378 (7)	20,629 (7)	21,132 (7)	21,887 (7)	22,641 (7)	23,899 (7)	25,157 (7)	26,415 (7)
	Minimum ci	rcuit amps (M	CA)	A	81.0 (8)	84.0 (8)	86.0 (8)	89.0 (8)	93.0 (8)	97.0 (8)	101.0 (8)	105.0 (8)
	Maximum fu	use amps (MF/	١)	A		100	0 (9)			125	(9)	
Power Performance	Power facto	r Combina-	35°C ISO - Full load						-			
		tion B	46°C ISO - Full load									
Wiring connections	For power	Quantity			5G							
- 50Hz	supply											
	For connec- Quantity				2							
	tion with	Remark						F1,	,F2			
	indoor											

Options 3

3 - 1 Options

RXYQ-UD

No	ltem		RYY	Q8U* Q8U Q8U	RXYQ10-12U * RYYQ10-12U RXYQQ10-12U	RYYC	(14-18U * (14-18U Q14-18U	RXYQ20U * RYYQ20U RXYQQ20U	RYYQ22~54U RXYQ22~54U * RXYQQ22~42U	
I.	Refnet header						RQ22M29H			
						KH	RQ22M64H			
			-						Q22M75H	
II.	Refnet joint						RQ22M20T			
						KHF	RQ22M29T9	9		
			KHRQ22M64T							
			-					KHF	KHRQ22M75T	
III.	Outdoor multi-connection kit	See note ·2·.	-						BHFQ22P1007	
IV.	Outdoor multi-connection kit	See note ·2·.	-						BHFQ22P1517	
No	Item		8HP	10HP	12HP	14HP	16HP	18HP 20HP		
1a	Cool/heat selector (switch)	See note ·3·.			KRC:	19-26A				
1b	Cool/heat selector (PCB)				BRF	2A81				
1c	Cool/heat selector (fixing box)		KJB111A							
2	VRV configurator		EKPCCAB*							
3	Heater tape kit PCB		EKBPH012T		1012T7A	012T7A EKBPH02		20T7A		
4	Demand PCB	See	DTA104A61/62*							
5	Demand PCB mounting plate	See note ·4·.					KKSB26	B1*		

- Notes

 All options are kits
 - 2 Only for multi units
 - To mount option ·1a·, option ·1c· is required.
 - 4 To install the demand PCB on the large casing type, the demand PCB mounting plate is required.

Medium casing type \cdot VRV4 \cdot heat pump: modules \cdot 8~12 \cdot HP Large casing type ·VRV4· heat pump: modules ·14~20·HP

3D120006B

Combination table 4

Combination Table 4 - 1

RXYQ-UD

Unit combination restrictions: VRV4 outdoor units (all models) + 15-class indoor units

Units in scope: FXZQ15A and FXAQ15A.

- 1. In case the system contains these indoor units and the total connection ratio (CR) ≤ 100%: no special restrictions. Follow the restrictions that apply to regular VRV DX indoor units.
- 2. In case the system contains these indoor units and the total connection ratio (CR) > 100%: special restrictions apply.
 - A. When the connection ratio (CR1) of the sum of all FXZQ15A and/or FXAQ15A units in the system ≤ 70%, and ALL other VRV DX indoor units have an individual capacity class > 50: no special restrictions.
 - B. When the connection ratio (CR1) of the sum of all FXZQ15A and/or FXAQ15A units in the system ≤ 70%, and NOT ALL other VRV DX indoor units have an individual capacity class > 50: the restrictions below apply.
 - 100% < CR ≤ 105% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 70%.
 - 105% < CR ≤ 110% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 60%.
 - 110% < CR ≤ 115% \rightarrow CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 40%.
 - 115% < CR ≤ 120% \rightarrow CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 25%.
 - $120\% < CR \le 125\% \rightarrow CR1$ of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be $\le 10\%$.
 - 125% < CR ≤ 130% → FXZQ15A andFXAQ15A cannot be used

REMARK

Only the 15-class indoor units explicitly mentioned on this page are in scope. Other indoor units follow the rules that apply to regular VRV DX indoor units. 3D104665

RXYQ-UD

VRV4 Heat pump Multi-unit standard combinations table

_		8НР	10HP	12HP	14HP	16HP	18HP	20HP
	RXYQ8* / RYYQ8* / RXYQQ8*	1						
	RXYQ10* / RYYQ10* / RXYQQ10*		1					
g.	RXYQ12* / RYYQ12* / RXYQQ12*			1				
Heat pump	RXYQ14* / RYYQ14* / RXYQQ14*				1			
운	RXYQ16* / RYYQ16* / RXYQQ16*					1		
	RXYQ18* / RYYQ18* / RXYQQ18*						1	
	RXYQ20* / RYYQ20* / RXYQQ20*							1
2	RXYQ22* / RYYQ22* / RXYQQ22*		1	1				
Multi-combination with 2 outdoor units	RXYQ24* / RYYQ24* / RXYQQ24*	1				1		
outd	RXYQ26* / RYYQ26* / RXYQQ26*			1	1			
with 2	RXYQ28* / RYYQ28* / RXYQQ28*			1		1		
ation	RXYQ30* / RYYQ30* / RXYQQ30*			1			1	
ompie	RXYQ32* / RYYQ32* / RXYQQ32*					2		
Wulti-c	RXYQ34* / RYYQ34* / RXYQQ34*					1	1	
•	RXYQ36* / RYYQ36* / RXYQQ36*					1		1
	RXYQ38* / RYYQ38* / RXYQQ38*	1	1					1
runits	RXYQ40* / RYYQ40* / RXYQQ40*		1	1			1	
oopti	RXYQ42* / RYYQ42* / RXYQQ42*		1			2		
130	RXYQ44* / RYYQ44*			1		2		
ion wi	RXYQ46* / RYYQ46*				1	2		
Multi-combination with 3 outdoor units	RXYQ48* / RYYQ48*					3		
- E	RXYQ50* / RYYQ50*					2	1	
M	RXYQ52* / RYYQ52*					1	2	
	RXYQ54* / RYYQ54*						3	

- Remark
 RYVQ8-70 = Single continuous heating
 RYVQ8-72 = Single non-continuous heating
 RXVQ8-72 = Single non-continuous heating
 RXVQ8-72 = Single non-continuous heating
 RXVQ3-72 = Single non-continuous heating
 RXVQ3-72 = Single non-continuous heating replacement (VRV4-Q)
 RXVQ02-72 = Multi non-continuous heating replacement (VRV4-Q)
 RXVQ02-72 = Multi non-continuous heating replacement (VRV4-Q)
 1) For single unit installation RYVQ1 = write (continuous heating) and RXVQ1 = write (non-continuous heating)
 2) ***Continuous heating** multi-outdoor-unit combinations consist of RXVQ8-720 units (e.g. RXVQ36*=RXVQ16*+RXVQ20*).
 3) **Continuous heating** multi-outdoor-unit combinations consist of RXVMQ8-720 units (e.g. RXVQ36*=RXVQ16*+RXVQ20*).

- 2) "Non-continuous heating" multi-outdoor-unit combinations consist of RXY08-72 units (e.g. RXY038*-BXY016*+RXY020*).

 3) "Continuous heating" multi-outdoor-unit combinations consist of RXY08-72 units (e.g. RXY038*-BXY016**+RXY020*).

 3) "RYM02" units cann of be used in multi-outdoor-unit combinations and cannot be used as standalone units.

 4) RYV08-720 "Continuous heating" multi-outdoor-unit combinations.

 5) RYY08-720 "Continuous heating" multi-outdoor-unit combinations cannot contain RXY04" units.

 6) RXY08-720 "Non-continuous heating" multi-outdoor-unit combinations cannot contain RXY04" units.

 7) Multi "non-continuous heating" multi-outdoor-unit combinations cannot contain RXY04" units.

 8) RXY08-720 "Non-continuous heating" multi-outdoor-unit combinations cannot contain RXY04" units.

 9) T-series outdoor units cannot be combined with other units.

 9) T-series outdoor units and U-series outdoor units cannot be combining these units, make sur

3D120060

Combination table

4 - 1 Combination Table

RXYQ-UD

VRV4

Heat pump

Indoor unit combination restrictions

Indoor unit combination pattern	VRV* DX indoor unit	RA DX indoor unit	Hydrobox unit	Air handling unit (AHU)
VRV* DX indoor unit	0	0	0	0
RA DX indoor unit	0	0	X	Х
Hydrobox unit	0	X	0,	Х
Air handling unit (3)	0	X	X	02

O: Allowed X: Not allowed

Notes

VRV* DX indoor unit
 When combining VRV DX indoor units with other types of indoor units, respect the following combination patterns:
 Example
 Allowed: (VRV DX indoor unit + Hydrobox unit) or (VRV DX indoor unit) or (VRV DX indoor unit) or (VRV DX indoor unit + AHU)
 Not allowed: [VRV DX indoor unit + (RA DX indoor unit & (Hydrobox unit or AHU)]] or [VRV DX indoor unit + (Hydrobox unit & (RA DX indoor unit or AHU)]]

Only connect Hydrobox units to a VRV IV Heat Pump in combination with a VRV DX indoor unit.

→ Refer to the connection ratio restrictions (3D079540 & 3D117169).
→ Connection with only Hydrobox units: refer to the Dalkin Altherma solutions.
- Only connect Hydrobox units of the HXY* series.
→ HXHD* series Hydrobox units are not allowed.

- 3. O₂

 Combination of AHU only + control box EKEQFA (the combination with VRV DX indoor units is not allowed; maximum 54HP for 400 + 2x500 class EKEXV kit)

 -> X-control is possible (up to 3x [EKEXV+EKEQFA* boxes] can be connected to one outdoor unit (system)). No Variable Refrigerant Temperature control possible.

 -> Y-control is possible (up to 3x [EKEXV+EKEQFA* boxes] can be connected to one outdoor unit (system)). No Variable Refrigerant Temperature control possible.

 -> W-control is possible (up to 3x [EKEXV+EKEQFA* boxes] can be connected to one outdoor unit (system)). No Variable Refrigerant Temperature control possible.

 - Combination of AHU only + control box EKEQMA (not combined with VRV DX indoor units)
 - → Z-control is possible (the allowed number of [EKEXV + EKEQMA boxes] is determined by the connection ratio (90-110%) and the capacity of the outdoor unit.
- Combination of AHU and VRV DX indoor units
 → Z-control is possible (EKEQMA* boxes are allowed, but with a limited connection ratio).
- 5. The combination of AHU with Hydrobox units or RA DX indoor units is not allow
- 6. (3) The following units are considered AHUs:

 → EKEXV + EKEQ(MA/FA) + AHU coil

 - → Biddle air curtain
 → FXMQ_MF units

Information
- VKM units are considered to be regular VRV DX indoor units.

3D079543F

RXYQ-UD

VRV4

Heat pump

Indoor unit combination restrictions

Combination table	RYYQ*	RYYQ*	RXYQ* RXMLQ* RXYLQ*	RXYQ* RXMLQ* RXYLQ*
30.1.2.1.2.1.2.1.2	Single continuous heating	Multi continuous heating	Single non-continuous heating	Multi non-continuous heating
VRV* DX indoor unit	0	0	0	0
RA DX indoor unit	0	Х	0	Х
Hydrobox unit	0	0,	0	0,
Air handling unit (AHU) (2)	0	0	0	0

O: Allowed

X: Not allowed

Notes

- Available upon request through the SPN procedure.

- 2. (2) The following units are considered AHUs:
 - → EKEXV + EKEQ(MA/FA) + AHU coil
 - → Biddle air curtain
 - \rightarrow FXMQ_MF units

3D079543F

15

4 Combination table

4 - 1 Combination Table

RXYQ-UD

Compatibility list: ·VRV4· heat pump - ·RA DX· indoor unit

Wall mounted type	Emura	FTXJ20A
		FTXJ25A
		FTXJ35A
		FTXJ42A
		FTXJ50A
	Stylish	FTXA20
		FTXA25
		FTXA35
		FTXA42
		FTXA50
	FTXM	FTXM20R
		FTXM25R
		FTXM35R
		FTXM42R
		FTXM50R
		FTXM60R
		FTXM71R
Ceiling/wall mounted	Flex	FLXS25B
		FLXS35B
		FLXS50B
Florensky diverse		FLXS60B
Floor standing type	FVXM	FVXM25F
		FVXM35F
		FVXM50F
		FVXM25A
		FVXM35A
		FVXM50A
	A1	CVXM20A
	Nexura	FVXG25K FVXG35K
		FVXG50K FVXG50K

Remark

The limitations on the use of -RA DX- indoor units with the -VRV4- Heat Pump are subject to the rules set out in drawings -3D079543- and -3D079540-.

If you want to connect ·RA·/-SA· ·DX· cassette, ceiling-mounted, or duct indoor units, use their ·VRV DX· indoor unit equivalents instead.

3D082373H

5 - 1 Capacity Table Legend

In order to fulfill more your requirements on quick access of data in the format you require, we have developed a tool to consult capacity tables.

Below you can find the link to the capacity table database and an overview of all the tools we have to help you select the correct product:

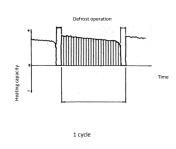
- <u>Capacity table database:</u> lets you find back and export quickly the capacity information you are looking for based upon unit model, refrigerant temperature and connection ratio.
- You can access the capacity table viewer here: https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

 An overview of <u>all software tools</u> that we offer can be found here: https://my.daikin.eu/denv/en_US/home/applications/software-finder.html

5 - 2 Capacity Correction Factor

RXYQ-UD

VRV4


Heat pump

Integrated heating capacity coefficient

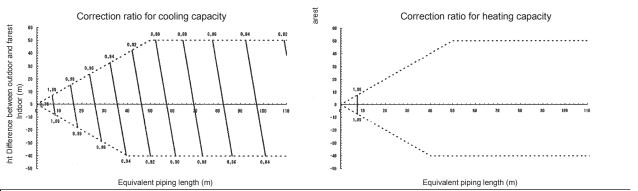
The heating capacity tables do not take into account the capacity reduction in case of frost accumulation or defrost operation. The capacity values that take these factors into account, or in other words, the integrated heating capacity values, can be calculated as follows:

- A = Integrated heating capacity
 B = Capacity characteristics value (see table)
 C = Integrated correction factor for frost accumulation (see table)
 A = B * C

	-7/-7,6 or less	-5/-5,6	-3/-3,7	0/-0,7	3/2,2	5/4,1	7/6
	rection factor for t	rost accumul	ation C				
8HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
10HP	0,95	0,93	0,87	0,79	0,80	0,88	1,00
12HP	0,95	0,92	0,87	0,75	0,76	0,85	1,00
14HP	0,95	0,92	0,86	0,72	0,73	0,84	1,00
16HP	0,95	0,92	0,86	0,72	0,72	0,83	1,00
18HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
20HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
22HP	0,95	0,92	0,87	0,77	0,78	0,86	1,00
24HP	0,95	0,92	0,87	0,75	0,76	0,85	1,00
26HP	0,95	0,92	0,86	0,73	0,74	0,84	1,00
28HP	0,95	0,92	0,86	0,73	0,74	0,84	1,00
30HP	0,95	0,93	0,87	0,80	0,81	0,88	1,00
32HP	0,95	0,92	0,86	0,71	0,72	0,83	1,00
34HP	0,95	0,92	0,87	0,78	0,79	0,87	1,00
36HP	0,95	0,92	0,87	0,78	0,79	0,87	1,00
38HP	0,95	0,93	0,88	0,83	0,84	0,89	1,00
40HP	0,95	0,93	0,87	0,80	0,81	0,88	1,00
42HP	0,95	0,92	0,86	0,73	0,74	0,84	1,00
44HP	0,95	0,92	0,86	0,72	0,73	0,84	1,00
46HP	0,95	0,92	0,86	0,72	0,72	0,83	1,00
48HP	0,95	0,92	0,86	0,71	0,72	0,83	1,00
50HP	0,95	0,92	0,87	0,76	0,77	0,86	1,00
52HP	0,95	0,93	0,87	0,80	0,81	0,88	1,00
54HP	0,95	0,93	0,88	0,84	0.85	0.90	1.00

The figure shows the integrated heating capacity for a single cycle (from one defrost operation to the next).

When there is an accumulation of snow against the outdoor unit heat exchanger, there will always be a temporary reduction in capacity depending on the outdoor temperature (°C DB), relative humidity (RH) and the amount of frosting which occurs.


The multi-combination data 22~54HP corresponds with the standard multi-combination of drawing 3D079534.

3D079898A

5 - 2 Capacity Correction Factor

RXYQ8UD

NOTES

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- Capacity of outdoor units from capacity table at installed connection ratio
- x | Correction ratio of piping to furthest indoor

When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased.

Model	Gas	Liquid
8HP	22.2	12.7

When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual)

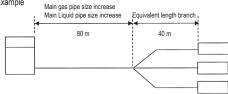
*Refer to the installation manual for allowed system setups and rules for deicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
8HP	19.1	9.5

Equivalent length used in the above figures is based upon the following equivalent length

Equivalent piping length


x Correction factor Equivalent length of main pipe

Equivalent length of branch pipes

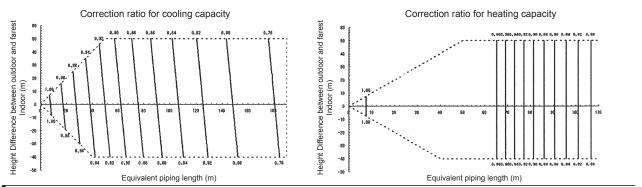
Choose the correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction	on factor	
	Standard size		
Cooling (gas pipe)	1.0	0.5	
Heating (liquid pipe)	1.0	0.5	

In the above case

(Cooling) Overall equivalent length = $80 \text{ m} \times 0.5 + 40 \text{ m} = 80 \text{ m}$

(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m
The rete of change in cooling capacity when height difference = 0 is thus approximately 0.86


heating capacity when height difference = 0 is thus approximately 1.0

5 - 2 Capacity Correction Factor

RXYQ10UD

NOTES

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
 Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- 2. With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- 3. Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

= Capacity of outdoor units from capacity table at the 100% connection ratio

Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor

4. When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	Gas	Liquid
RXYQ10P	25.4*	12.7

*If not available on site, do not increase. If not increased correction factor should be applied to the equivalent length (see note 6).

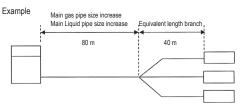
 When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types

Diameter of main pipes (standard size)

Model	Gas	Liquid
10 HP	22.2	9.5

6. Equivalent length used in the above figures is based upon the following equivalent length


Equivalent piping length

Equivalent length of main pipe x Correction factor

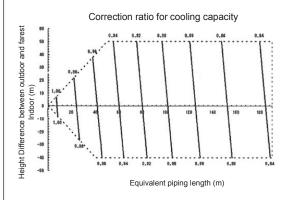
Equivalent length of branch pipes

Choose the correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

In the above case (0

(Cooling) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m


(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m

The rete of change in cooling capacity when height difference = 0 is thus approximately 0.87 heating capacity when height difference = 0 is thus approximately 0.90

5 - 2 Capacity Correction Factor

RXYQ12,14,24,36UD

Correction ratio for heating capacity

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units

= Capacity of outdoor units from capacity table at the 100% connection ratio

X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

= Capacity of outdoor units from capacity table at installed connection ratio

x Correction ratio of piping to furthest indoor

When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below

Model	Gas	Liquia
12 HP	28.6	15.9
14 HP	28.6	15.9
24 HP	34.9	19.1
36 HP	41.3	22.2

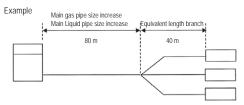
When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
12 HP	28.6	12.7
14 HP	28.6	12.7
24 HP	34.9	15.9
36 HP	41.3	19.1

Equivalent length used in the above figures is based upon the following equivalent length


Equivalent piping length

Equivalent length of main pipe x Correction factor

Equivalent length of branch pipes

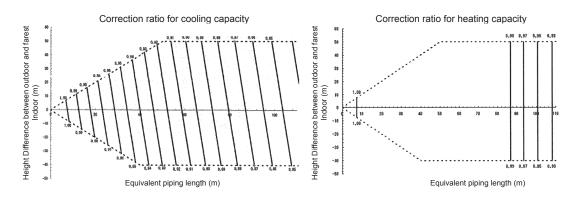
Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard	Size
	size	increase
Cooling (gas pipe)	1,0	
Heating (liquid pipe)	1,0	0,5

In the above case

(Cooling) Overall equivalent length = $80 \text{ m} \times 1.0 + 40 \text{ m} = 120 \text{ m}$

(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m
The rate of change in cooling capacity when height difference = 0 is thus approximately 0.89 heating capacity when height difference = 0 is thus approximately 1.0


3D079897A

21

5 - 2 Capacity Correction Factor

RXYQ16UD

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor
- When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	Gas	Liquid
16 HP	31.8*	15.9

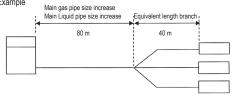
- *If not available on site, do not increase. If not increased correction factor should be applied to the equivalent length (see note 6).
- When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).
 - *Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
16 HP	28.6	12 7

Equivalent length used in the above figures is based upon the following equivalent length

Equivalent piping length Equivalent length of main pipe


x Correction factor

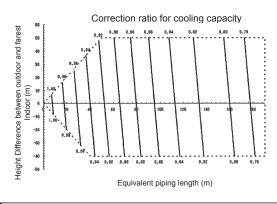
Equivalent length of branch pipes

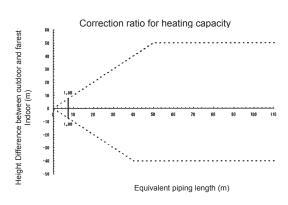
Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case


(Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 80 m (Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m


The rate of change in cooling capacity when height difference = 0 is thus approximately 0.88 heating capacity when height difference = 0 is thus approximately 0.99

5 - 2 Capacity Correction Factor

RXYQ18,26,28,30,38,40,42,44UD

NOTES

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor
- When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased.

For new diameters, see below.

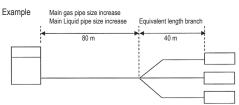
Model	Gas	Liquid
18 HP	31.8*	19.1
26~30 HP	38.1*	22.2
38~44 HP	41.3	22.2

*If not available on site, do not increase. If not increased correction factor should be applied to the equivalent length (see note 6).

When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types. Diameter of main pipes (standard size)

Model Liquid 18 HP 28.6 15.9 38~44 HP 41.3


Equivalent length used in the above figures is based upon the following equivalent length

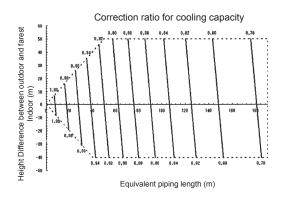
Equivalent piping length

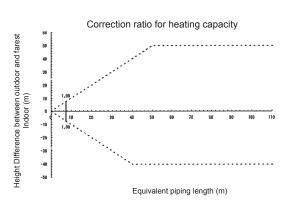
Equivalent length of main pipe x Correction factor

Choose the correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

In the above case (for RXYQ38-44) (Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 120 m


(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m cooling capacity when height difference = 0 is thus approximately 0.83 heating capacity when height difference = 0 is thus approximately 1.0 The rate of change in



5 - 2 Capacity Correction Factor

RXYQ20,32,34UD

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor
- When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased

For new diameters, see below.

Model	Gas	Liquid
20 HP	31.8*	19.1
32/34 HP	38.1*	22.2

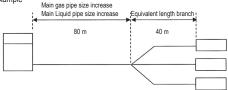
- *If not available on site, do not increase. If not increased correction factor should be applied to the equivalent length (see note 6).
- When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types

Diameter of main pipes (standard size)

Model	Gas	Liquid
20 HP	28.6	15.9
32/34 HD	3/10	10.1

Equivalent length used in the above figures is based upon the following equivalent length


Equivalent piping length

Equivalent length of main pipe x Correction factor

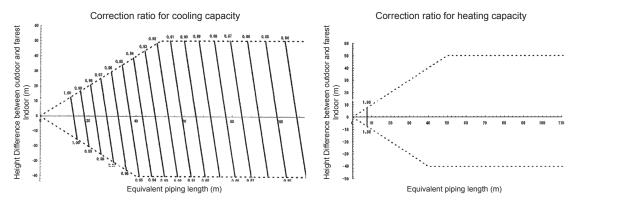
Equivalent length of branch pipes

Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

In the above case

(Cooling) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m


(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m

The rate of change in cooling capacity when height difference = 0 is thus approximately 0.88 heating capacity when height difference = 0 is thus approximately 1.0

5 - 2 Capacity Correction Factor

RXYQ22UD

NOTES

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
 Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- 2. With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- 3. Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

= Capacity of outdoor units from capacity table at the 100% connection ratio

X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

= Capacity of outdoor units from capacity table at installed connection ratio

x Correction ratio of piping to furthest indoor

4. When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased.

For new diameters, see below.

Model	Gas	Liquid
22 HP	31.8*	19 1

^{*} If not available on site, do not increase, if not increased, no correction factor should be applied to the equivalent length (see note 6).

When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

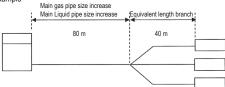
*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
22 HP	28.6	15.9

6. Equivalent length used in the above figures is based upon the following equivalent length

Overal equivalent length =


Equivalent length of main pipe x Correction factor

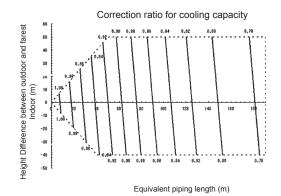
+
Equivalent length of branch pipes

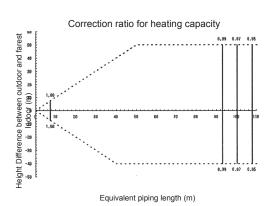
Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correct	Correction factor	
	Standard size	Size increase	
Cooling (gas pipe)	1.0	0.5	
Heating (liquid pipe)	1.0	0.5	

In the above case

(Cooling) Overall equivalent length = $80 \text{ m} \times 0.5 + 40 \text{ m} = 80 \text{ m}$


(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m


The rate of change in cooling capacity when height difference = 0 is thus approximately 0.88 heating capacity when height difference = 0 is thus approximately 1.0

5 - 2 Capacity Correction Factor

RXYQ46UD

NOTES

- . These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- 2. With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- . Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor

4. When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased.

For new diameters, see below

Model	Gas	Liquid
46 HP	41.3	22.2

When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
46 HP	41.3	19.1

6. Equivalent length used in the above figures is based upon the following equivalent length


Equivalent piping length

Equivalent length of main pipe x Correction factor

+ Equivalent length of branch pipes

Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	
Heating (liquid pipe)	1.0	0.5

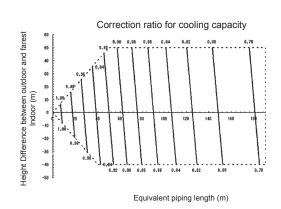
In the above case

(Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 120 m

 $(Heating)\ Overall\ equivalent\ length = 80\ m\times0.5+40\ m=80\ m$ The rate of change in $\ cooling\ capacity\ when\ height\ difference=0\ is\ thus\ approximately\ 0.83$

heating capacity when height difference = 0 is thus approximately 1.0

3D079897A



26

5 - 2 Capacity Correction Factor

RXYQ48UD

Correction ratio for heating capacity Height Difference between outdoor and farest $\widehat{\Xi}$

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor
- When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased

For new diameters, see below.

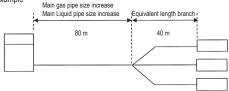
Model	Gas	Liquid
48 HP	41.3	22.2

- When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).
 - *Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
48 HP	41.3	19.1

Equivalent length used in the above figures is based upon the following equivalent length


Equivalent piping length

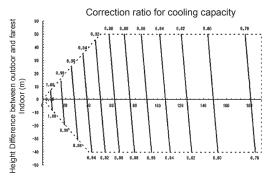
Equivalent length of main pipe x Correction factor

Equivalent length of branch pipes

Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	
Heating (liquid pipe)	1.0	0.5

In the above case


(Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 120 m (Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m

The rate of change in cooling capacity when height difference = 0 is thus approximately 0.83 heating capacity when height difference = 0 is thus approximately 0.97

5 - 2 Capacity Correction Factor

RXYQ50UD

Equivalent piping length (m)

Equivalent piping length (m)

NOTES

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
 Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- 2. With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- B. Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor
- 4. When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit branch sections) must be increased.

For new diameters, see below.

Model	Gas	Liquid
50 HP	41.3	22.2

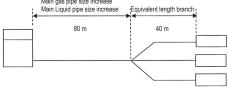
- When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).
 - *Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
50 HP	41.3	19.1

6. Equivalent length used in the above figures is based upon the following equivalent length

Equivalent piping length


Equivalent length of main pipe x Correction factor

Equivalent length of branch pipes

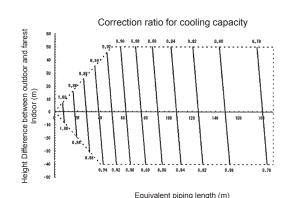
Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

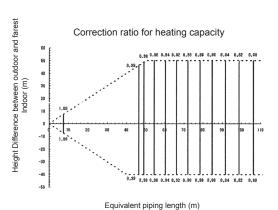
	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	
Heating (liquid pipe)	1.0	0.5

Exampl

In the above case

(Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 120 m


(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m


The rate of change in cooling capacity when height difference = 0 is thus approximately 0.83 heating capacity when height difference = 0 is thus approximately 0.92

5 - 2 Capacity Correction Factor

RXYQ52UD

NOTES

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
 Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- 2. With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- 3. Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at the 100% connection ratio
- X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x Correction ratio of piping to furthest indoor
- 4. When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit branch sections) must be increased.

For new diameters, see below.

Model	Gas	Liquid
52 HP	41.3	22.2

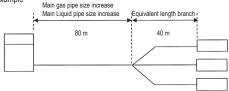
- When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).
 - *Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
52 HP	41.3	19.1

6. Equivalent length used in the above figures is based upon the following equivalent length

Equivalent piping length


Equivalent length of main pipe x Correction factor

Equivalent length of branch pipes

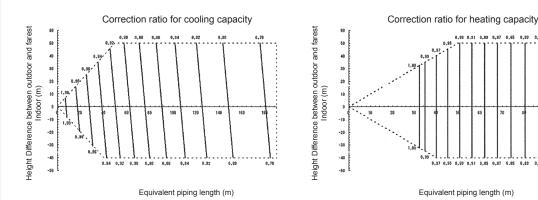
Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	
Heating (liquid pipe)	1.0	0.5

Example

In the above case

(Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 120 m


(Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m

The rate of change in cooling capacity when height difference = 0 is thus approximately 0.83 heating capacity when height difference = 0 is thus approximately 0.88

5 - 2 Capacity Correction Factor

RXYQ54UD

- These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown it the above figures.
- With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
- Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

Condition: Indoor connection ratio does not exceed 100%.

= Capacity of outdoor units from capacity table at the 100% connection ratio Maximum capacity of outdoor units

X Correction ratio of piping to furthest indoor

Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units

- = Capacity of outdoor units from capacity table at installed connection ratio
- x | Correction ratio of piping to furthest indoor

When level difference is 50 m or more (see installation manual and 3D079540 / 3D079543) and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased.

For new diameters, see below.

Model	Gas	Liquid
54 HP	41.3	22.2

When the pipe length after the first refrigerant branch kit is more than 40 m, pipe size between first and final branch kit must be increased (only for VRV DX indoor units; details see installation manual).

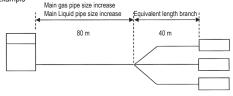
*Refer to the installation manual for allowed system setups and rules for dedicated indoor connection types.

Diameter of main pipes (standard size)

Model	Gas	Liquid
54 HP	41.3	19.1

Equivalent length used in the above figures is based upon the following equivalent length

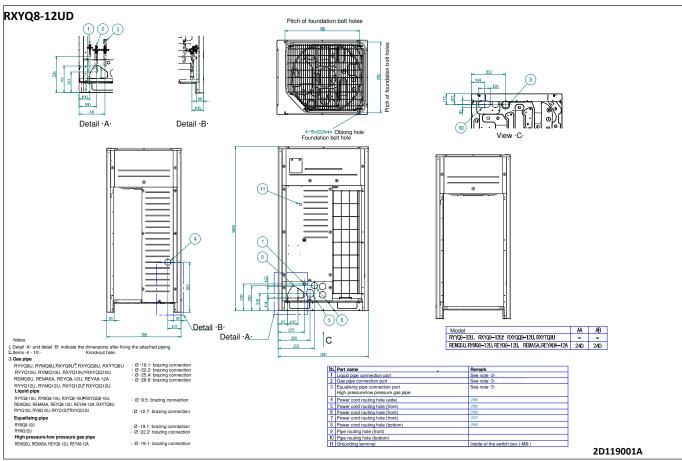
Equivalent piping length

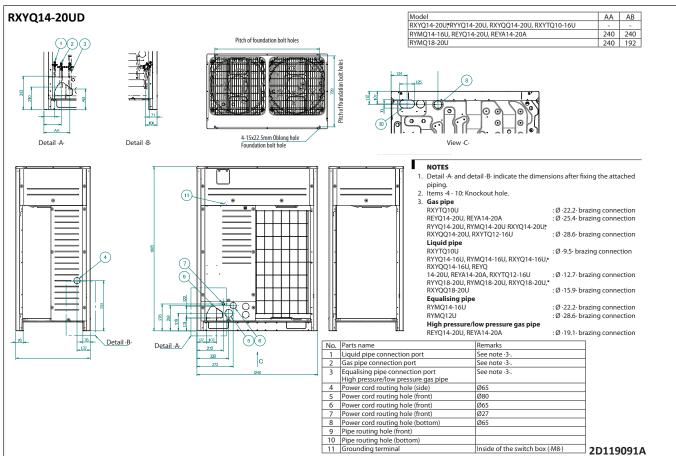

x Correction factor Equivalent length of main pipe

Equivalent length of branch pipes

Choose a correction factor from the following table. When cooling capacity is calculated: gas pipe size When heating capacity is calculated: liquid pipe size

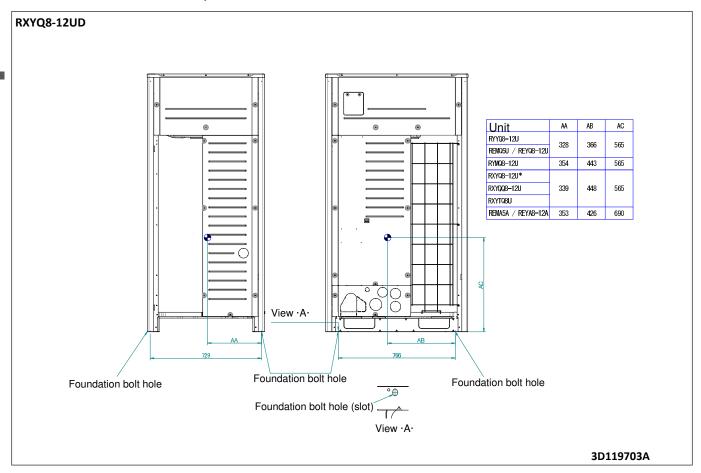
	Correct	Correction factor	
	Standard size	Size increase	
Cooling (gas pipe)	1.0		
Heating (liquid pipe)	1.0	0.5	


In the above case (Cooling) Overall equivalent length = 80 m x 1.0 + 40 m = 120 m (Heating) Overall equivalent length = 80 m x 0.5 + 40 m = 80 m

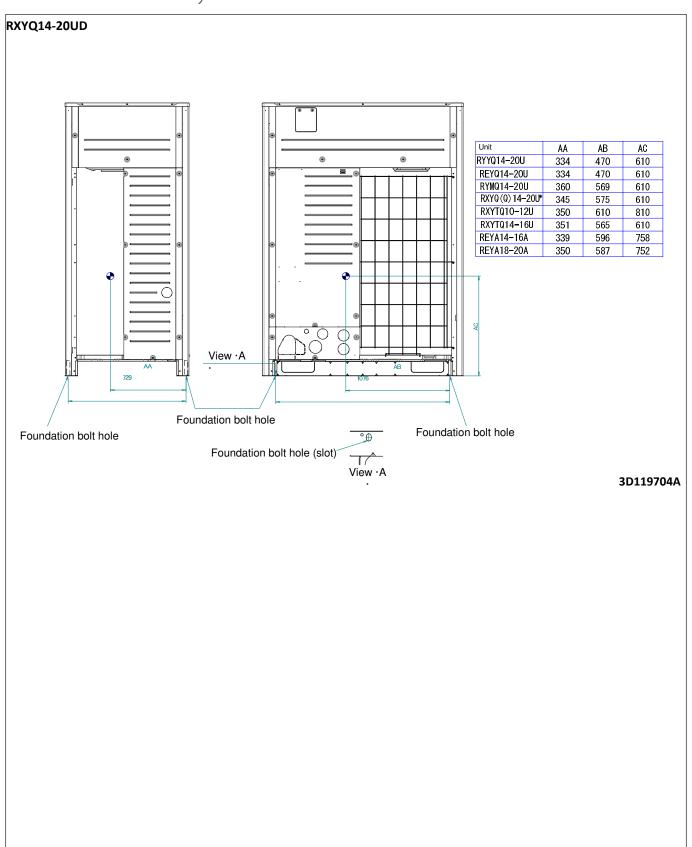

The rate of change in cooling capacity when height difference = 0 is thus approximately 0.83 heating capacity when height difference = 0 is thus approximately 0.83

6 Dimensional drawings

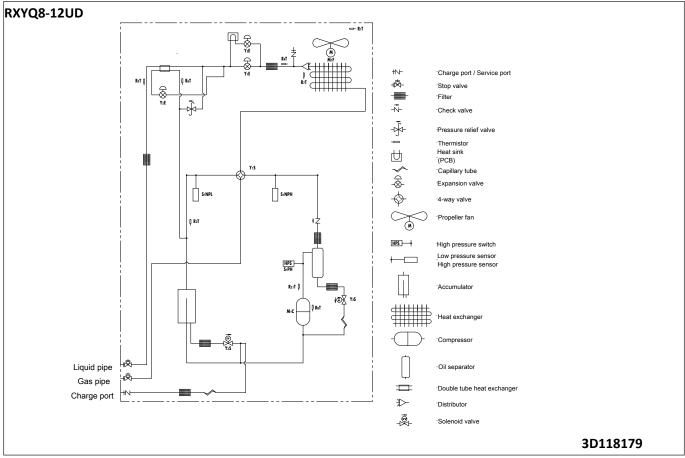
6 - 1 Dimensional Drawings

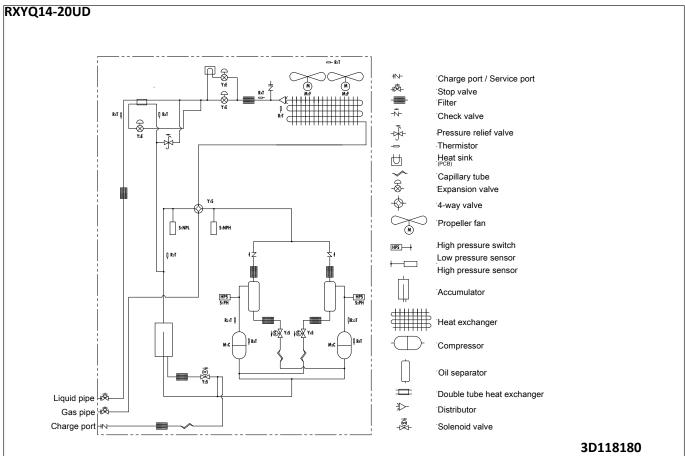


7 Centre of gravity


7 - 1 Centre of Gravity

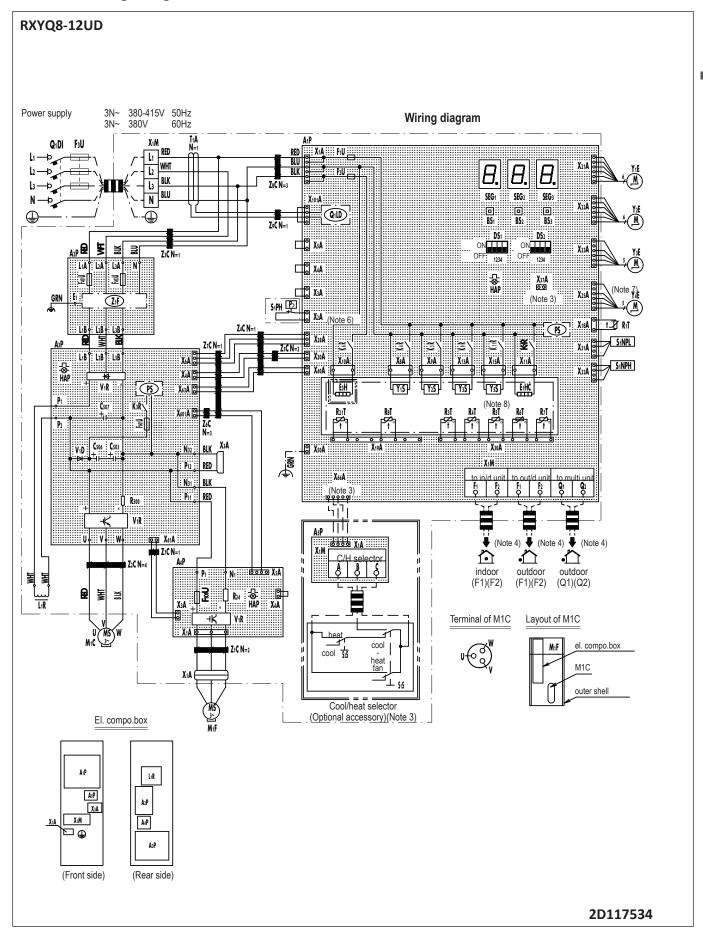
7 Centre of gravity


7 - 1 Centre of Gravity



8 Piping diagrams

8 - 1 Piping Diagrams



9 Wiring diagrams

9 - 1 Wiring Diagrams - Three Phase

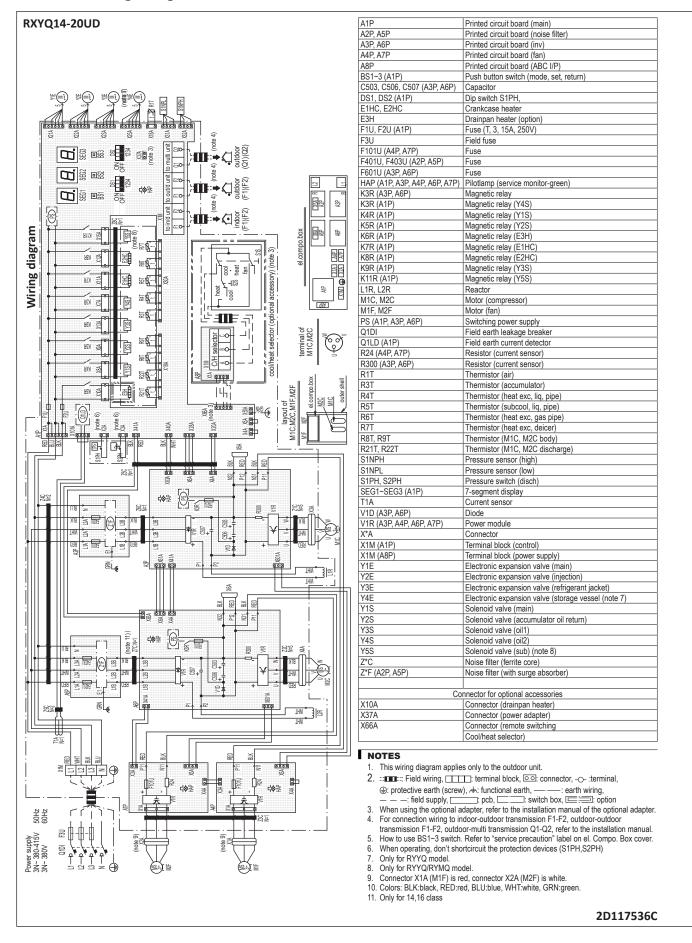
9 Wiring diagrams

9 - 1 Wiring Diagrams - Three Phase

RXYQ8-12UD

A1P	Printed Circuit Board (Main)	R3T	Thermistor (Accumulator)
A2P	Printed Circuit Board (Noise Filter)	R4T	Thermistor (Heat Exc,Liq,Pipe)
A3P	Printed Circuit Board (Inv)	R5T	Thermistor (Subcool,Liq,Pipe)
A4P	Printed Circuit Board (Fan)	R6T	Thermistor (Heat Exc,Gas Pipe)
A5P	Printed Circuit Board (ABC I/P)(Option)	R7T	Thermistor (Heat Exc, Deicer)
BS1~3 (A1P)	Push Button Switch (Mode,Set,Return)	R8T	Thermistor (M1C body)
C503,C506,C507 (A3P)	Capacitor	R21T	Thermistor (M1C discharge)
DS1,DS2 (A1P)	DIP Switch	S1NPH	Pressure Sensor (High)
E1HC	Crankcase Heater	S1NPL	Pressure Sensor (Low)
E3H	Drainpan Heater (Option)	S1PH	Pressure Switch (Disch)
F1U,F2U (A1P)	Fuse (T,3,15A,250V)	SEG1~SEG3 (A1P)	7-Segment Display
F3U	Field Fuse	T1A	Current Sensor
F101U (A4P)	Fuse	V1D (A3P)	Diode
F401U,F403U (A2P)	Fuse	V1R (A3P,A4P)	Power Module
F601U (A3P)	Fuse	X*A	Connector
HAP (A1P,A3P, A4P)	Pilotlamp (Service Monitor-Green)	X1M (A1P)	Terminal Block (Control)
K3R (A3P)	Magnetic Relay	X1M (A5P)	Terminal Block (Power Supply)(Option)
K4R (A1P)	Magnetic Relay (Y1S)	Y1E	Electronic Expansion Valve(Main)
K5R (A1P)	Magnetic Relay (Y2S)	Y2E	Electronic Expansion Valve (Injection)
K6R (A1P)	Magnetic Relay (E3H)	Y3E	Electronic Expansion Valve (Refrigerant Jacket)
K7R (A1P)	Magnetic Relay (E1HC)	Y4E	Electronic Expansion Valve (Storage Vessel)
K9R (A1P)	Magnetic Relay (Y3S)	Y1S	Solenoid Valve (Main)
K11R (A1P)	Magnetic Relay (Y5S)	Y2S	Solenoid Valve (Accumulator Oil Return)
L1R	Reactor	Y3S	Solenoid Valve (Oil1)
M1C	Motor (Compressor)	Y5S	Solenoid Valve (Sub)
M1F	Motor (Fan)	Z*C	Noise Filter (Ferrite Core)
PS (A1P,A3P)	Switching Power Supply	Z*F (A2P)	Noise Filter (With Surge Absorber)
Q1DI	Field Earth Leakage Breaker	Connector For Optional Accessories	
Q1LD (A1P)	Field Earth Current Detector	X10A	Connector (Drainpan Heater)
R24 (A4P)	Resistor (Current Sensor)	X37A	Connector (Power Adapter)
R300 (A3P)	Resistor (Current Sensor)	VCCA	Connector (Remote Switching
R1T	Thermistor (Air)	X66A	Cool/Heat Selector)

NOTES

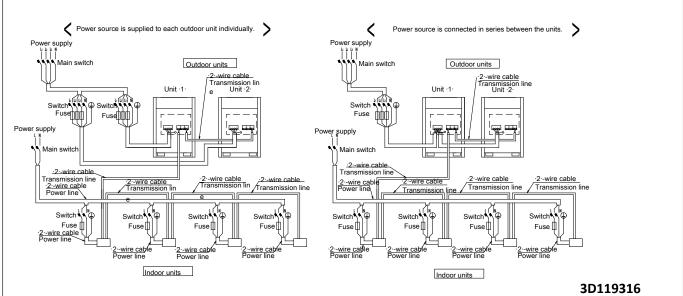

- 1. This wiring diagram applies only to the outdoor unit.
- 2. ::Interminal wiring, : terminal block, : terminal, : protective earth (screw), : functional earth, : earth wiring, -: field supply, : PCB, : switch box, : option
- 3. When using the optional adapter, refer to the installation manual of the optional adapter.
- 4. For connection wiring to indoor-outdoor transmission F1-F2, outdoor-outdoor transmission F1-F2, outdoor-multi transmission Q1-Q2, refer to the installation manual.
- 5. How to use BS1~3 switch. Refer to "service precaution" label on el. compo. box cover.
- 6. When operating, don't shortcircuit the protection devices (S1PH).
- 7. Only for RYYQ model.
- 8. Only for RYYQ/RYMQ model.
- 9. Colors: BLK: Black, RED: Red, BLU: Blue, WHT: White, GRN: Green.

2D117534

9 Wiring diagrams

9 - 1 Wiring Diagrams - Three Phase

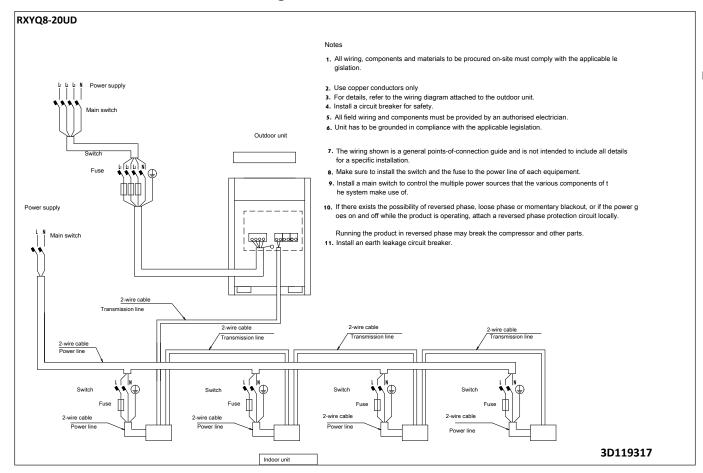
External connection diagrams

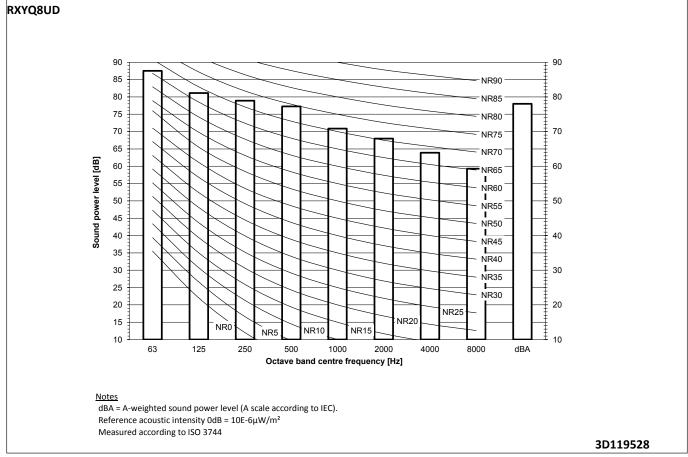

External Connection Diagrams 10 - 1

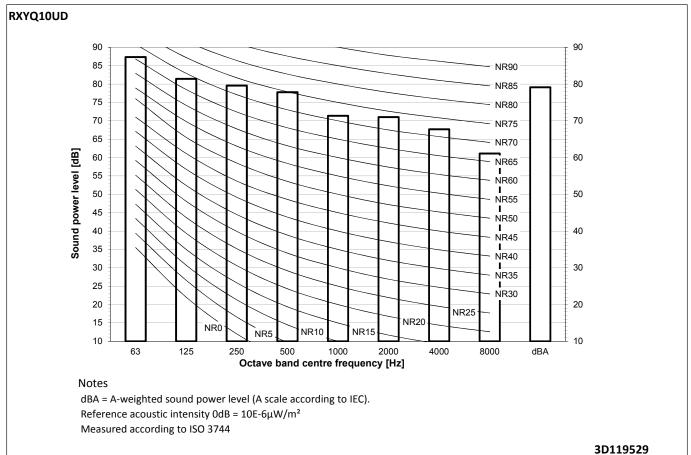
RXYQ8-20UD Notes 1. All wiring, components and materials to be procured on-site must comply with the applicable legislation 3. For details, refer to the wiring diagram attached to the outdoor unit. 4. Install a circuit breaker for safety 5. All field wiring and components must be provided by an authorised electrician 6. Unit has to be grounded in compliance with the applicable legislation. 7. The wiring shown is a general points-of-connection guide and is not intended to include all details for a specific installation 8. Make sure to install the switch and the fuse to the power line of each equipement 9. Install a main switch to control the multiple power sources that the various components of the system make use of. 10. The capacity of UNIT1 must be larger than that of UNIT2 when the power source is connected in series between the units. The capacity of UNIT 2 must be larger than that of UNIT3 when the power source is connected in series between the units. 11. If there exists the possibility of reversed phase, loose phase or momentary blackout, or if the power goes on and off while the product is operating, attach a reversed phase protection circuit locally. Running the product in reversed phase may break the compressor and other parts. 12. Install an earth leakage circuit breaker. Power source is supplied to each outdoor unit individually. Power source is connected in series between Outdoor units Outdoor units Unit 3 Unit 3 Indoor units 3D119200

RXYQ8-20UD

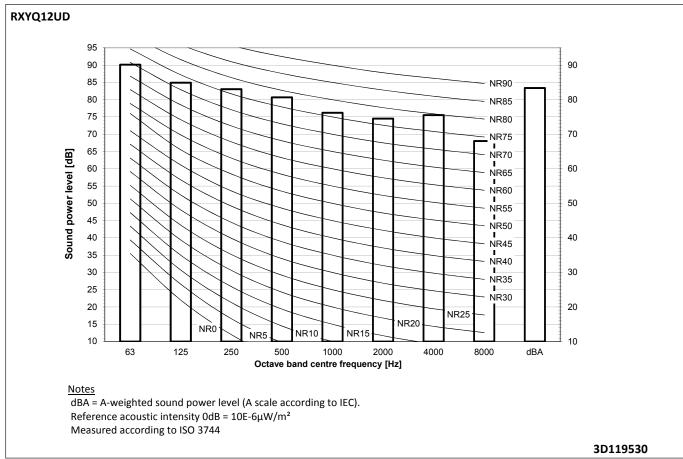
- 1. All wiring, components and materials to be procured on-site must comply with the applicable legislation.
- 2. Use copper conductors only
- 3. For details, refer to the wiring diagram attached to the outdoor unit.
- 4. Install a circuit breaker for safety.
- 5. All field wiring and components must be provided by an authorised electrician.
- 6. Unit has to be grounded in compliance with the applicable legislation.
- The wiring shown is a general points-of-connection guide and is not intended to include all details for a specific installation.
 Make sure to install the switch and the fuse to the power line of each equipement.

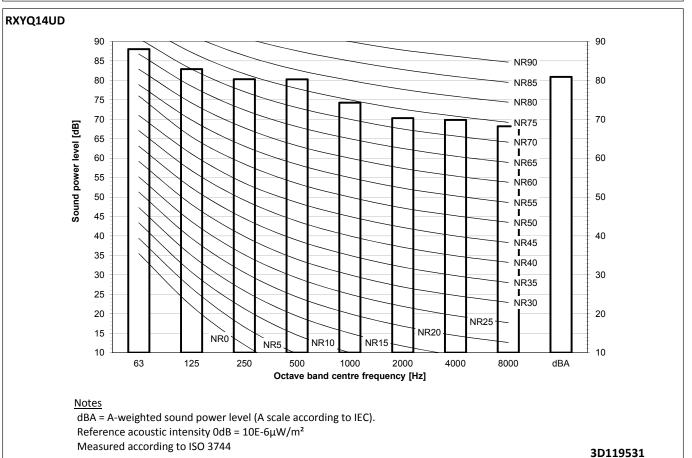

- 9. Install a main switch to control the multiple power sources that the various components of the system make use of.
 10. The capacity of UNIT1 must be larger than that of UNIT2 when the power source is connected in series between the units.
 11. If there exists the possibility of reversed phase, loose phase or momentary blackout, or if the power goes on and off while the product is operating, attach a reversed phase protection circuit locally.
- Running the product in reversed phase may break the compressor and other parts 12. Install an earth leakage circuit breaker.


10 External connection diagrams

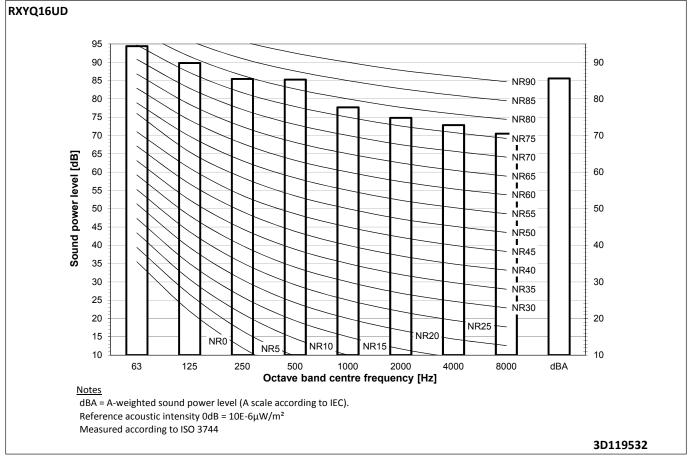

10 - 1 External Connection Diagrams

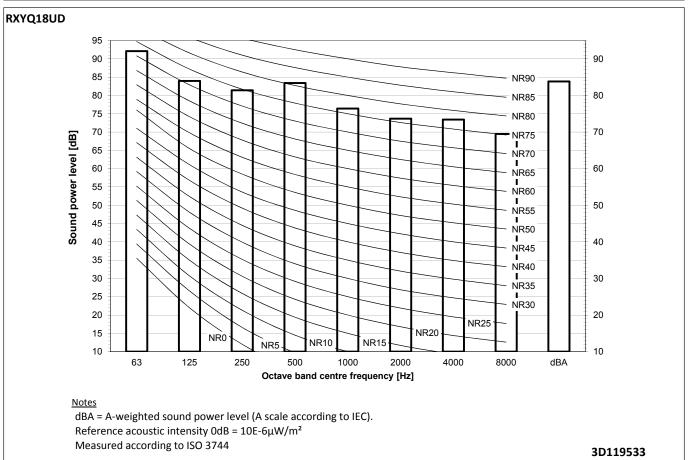
Sound Power Spectrum 11 - 1



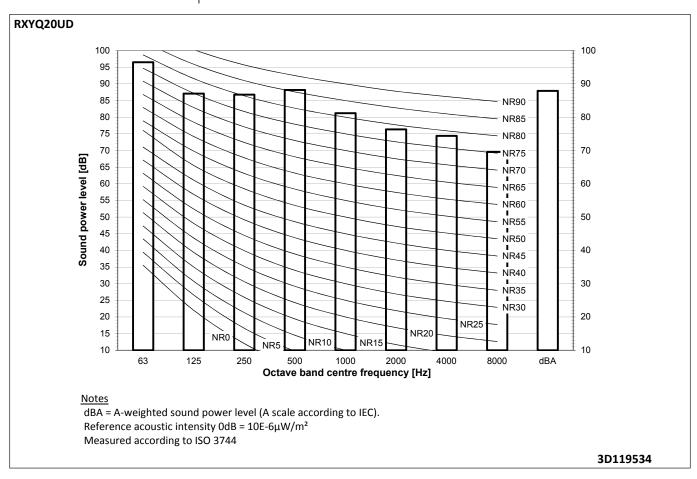


40

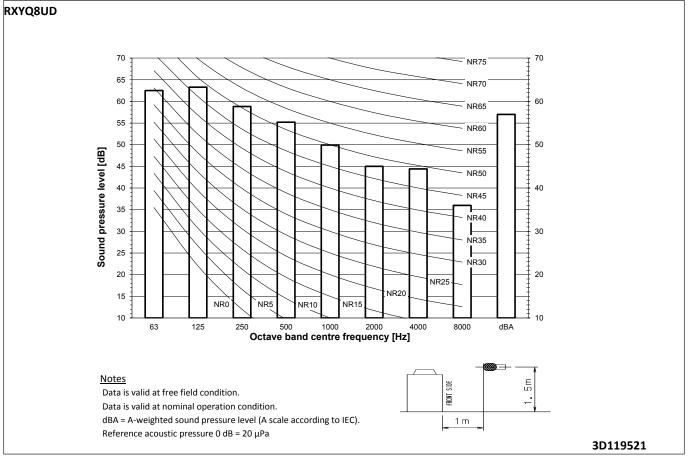

11 - 1 Sound Power Spectrum

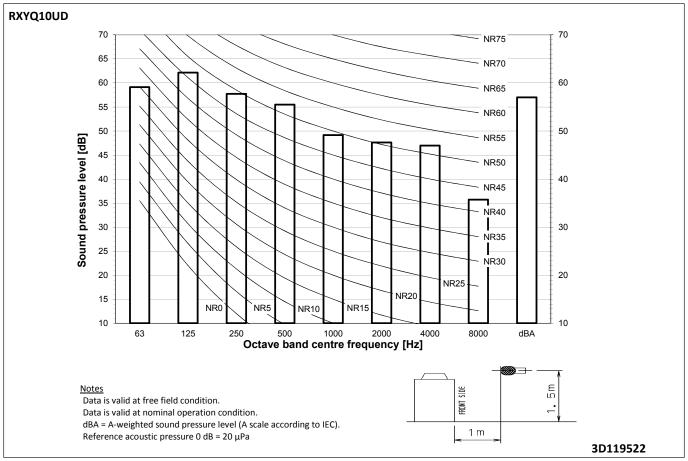


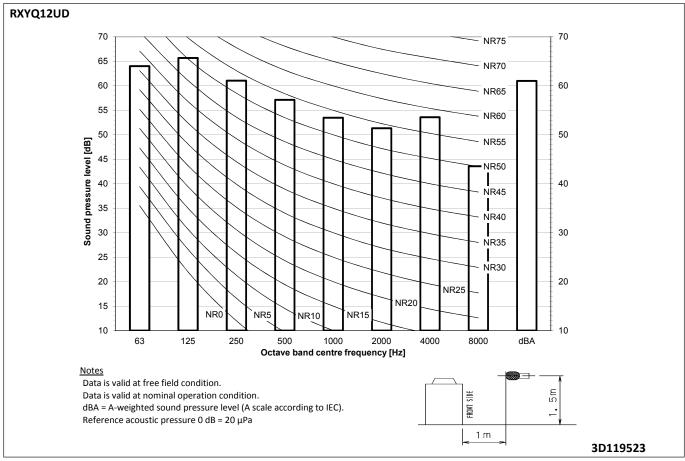
Sound Power Spectrum 11 - 1

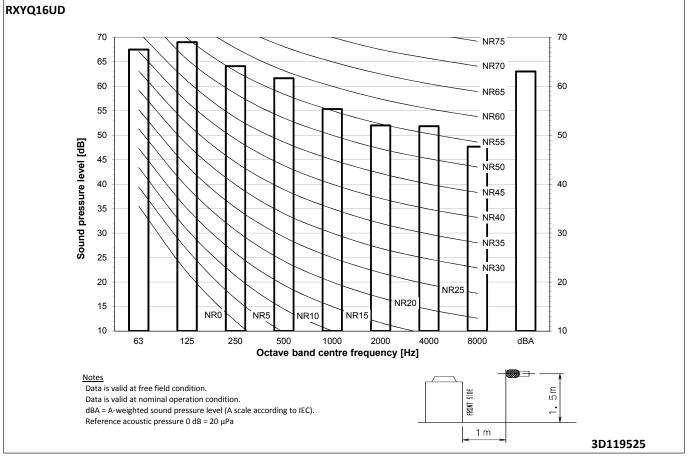


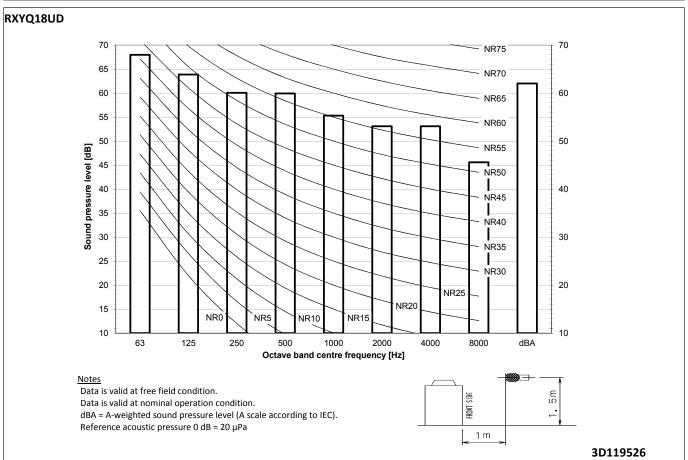
42

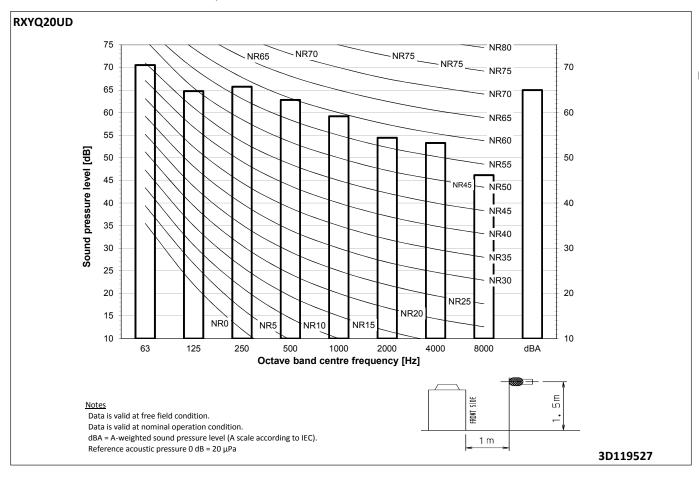


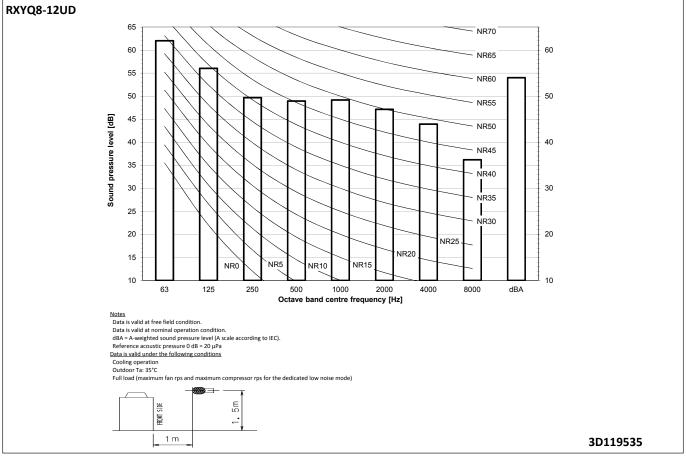

11 - 1 Sound Power Spectrum

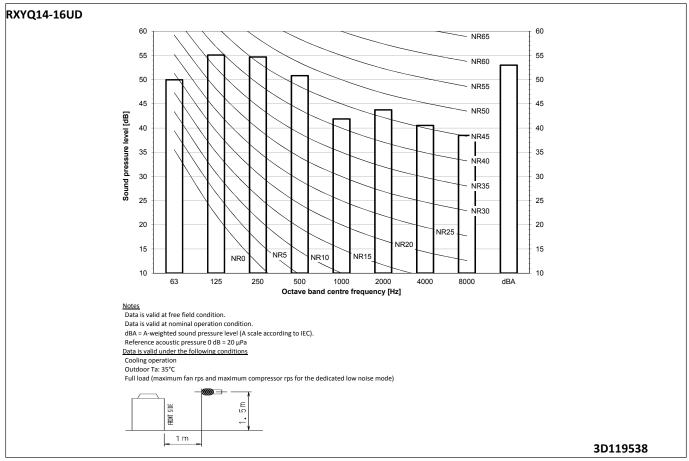

Sound Pressure Spectrum 11 - 2

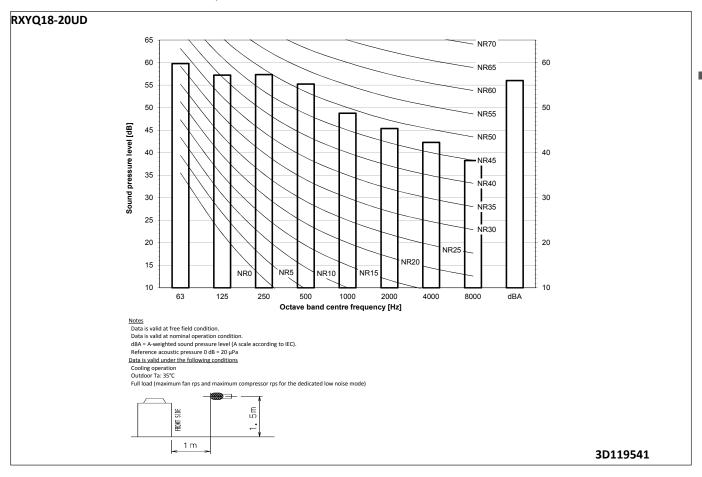

11 - 2 Sound Pressure Spectrum

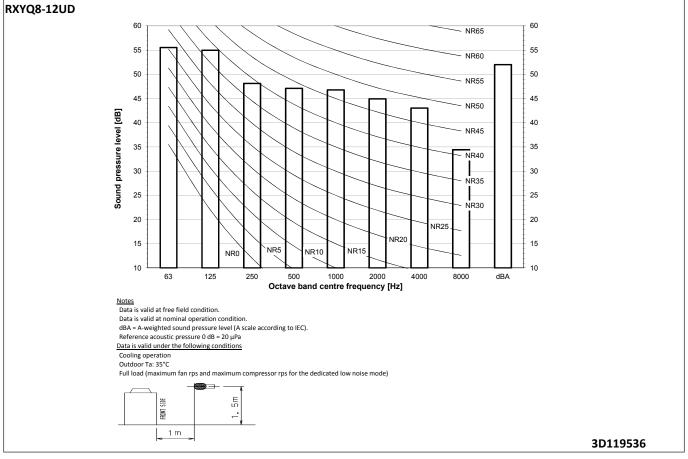


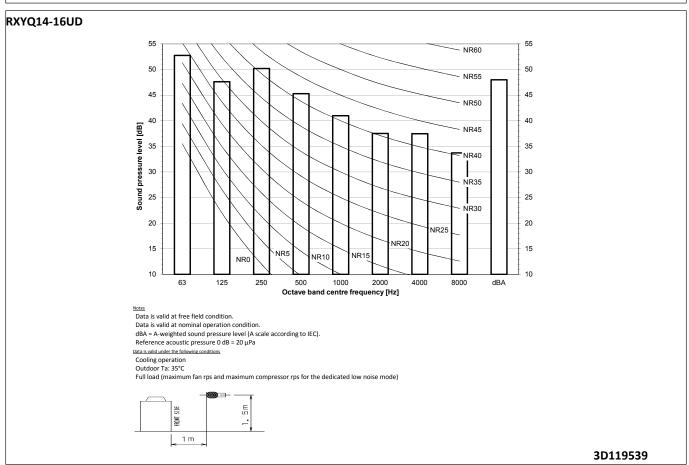

Sound Pressure Spectrum



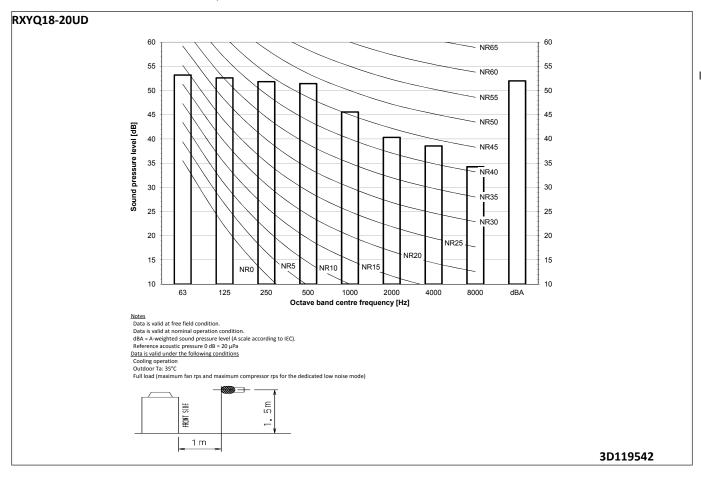

11 - 2 Sound Pressure Spectrum


11 - 3 Sound Pressure Spectrum Quiet Mode Level 1

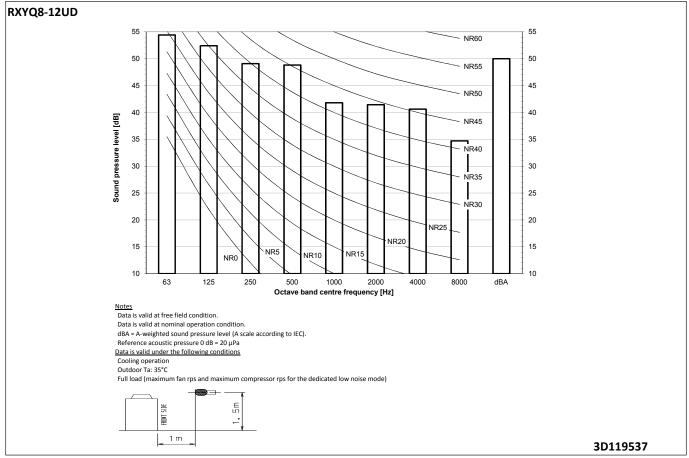


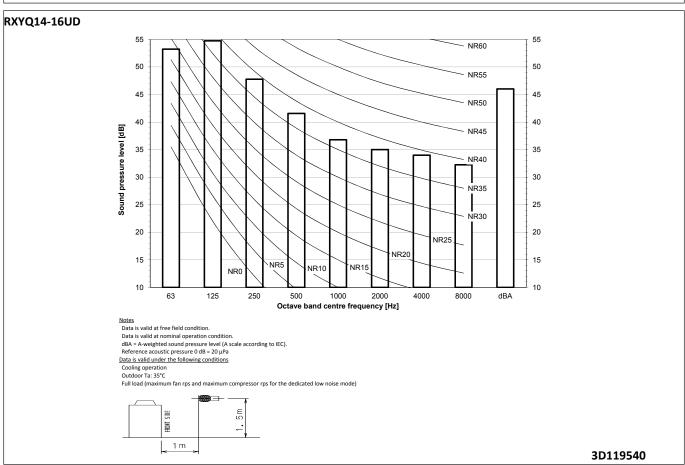

11 - 3 Sound Pressure Spectrum Quiet Mode Level 1

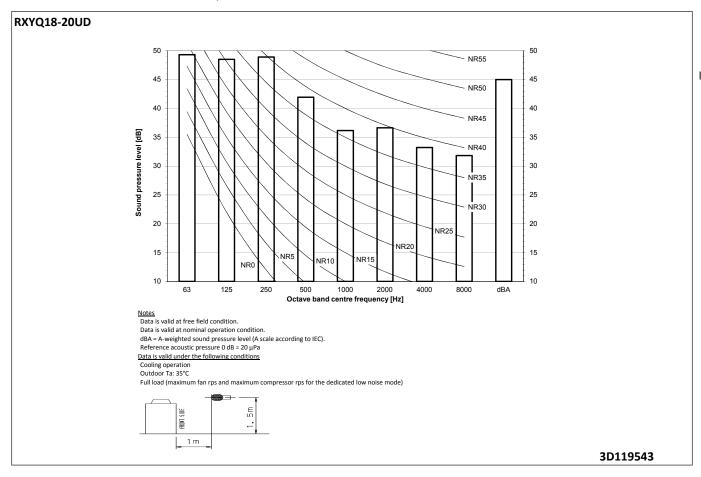
11 - 4 Sound Pressure Spectrum Quiet Mode Level 2

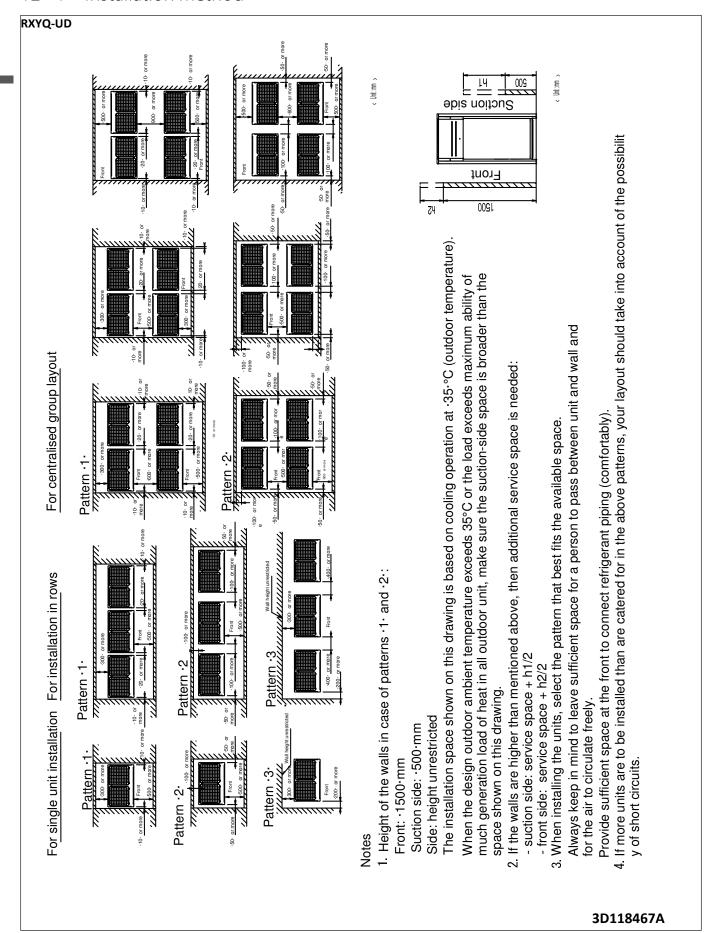


50

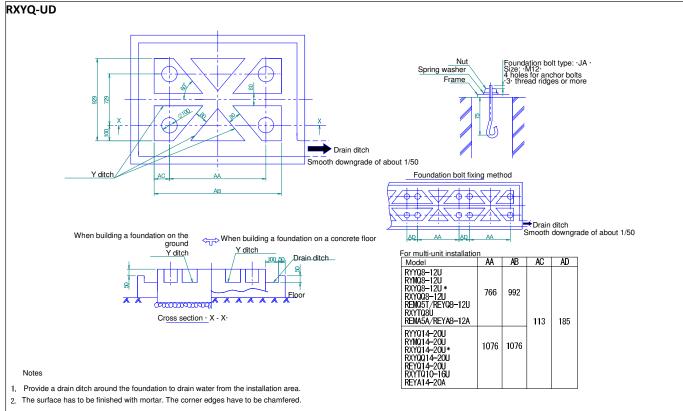



11 - 4 Sound Pressure Spectrum Quiet Mode Level 2


11 - 5 Sound Pressure Spectrum Quiet Mode Level 3



11 - 5 Sound Pressure Spectrum Quiet Mode Level 3



12 - 1 Installation Method

12 - 2 Fixation and Foundation of Units

- 3. Build the foundation on a concrete floor or, if not possible, make sure the foundation surface has a rough finish.
- 4. Use a cement/sand/gravel ratio of 1/2/4 for the concrete, and a diameter of 10 mm for the reinforcement bars (approximately, 300mm intervals).

5. When installing the equipment on a roof, make sure to check the strength of the floor and take adequate water proofing measures.

3D118459A

12 - 3 Refrigerant Pipe Selection

RXYQ-UD

VRV4 Heat pump Piping restrictions 1/3

1 15111 6 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1								
For the reference drawing, see page 2/3.		Maximum piping length			Maximum height difference			Total piping length
		Longest pipe	After first branch	After first branch (for multi-outdoor)	Indoor-to-outdoor ⁽³⁾	Indoor-to-indoor	Outdoor-to-outdoor	Total pipilig length
		(A+[B,G,E,J]) (B,G,E,J) (D)		(H1)	(H2)	(H3)		
		Actual / (Equivalent) Actual Actual / (Equivalent) Ou		Outdoor above indoor / (indoor above outdoor)				
Standard								
VRV DX indoor units only		165/(190)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	1000m
Standard multi-combination							<u></u>	
All multi-outdoor-unit combinations except standard multi-outdoor-unit combinations		135/(160)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	500m
Hydrobox connection		135/(160)m	40m	10/(13)m	50/(40)m	15m	5m	300-500m ⁽⁵⁾
RA connection		100/(120)m	50m ⁽²⁾	-	50/(40)m	15m	-	250m
	Pair	50/(55)m ⁽⁴⁾	-	-	40/(40)m	-	-	-
AHU connection	Multi (6)	165/(190)m	40m	10/13m	40/(40)m	15m	5m	1000m
	Mix (7)	165/(190)m	40m	10/13m	40/(40)m	15m	5m	1000m

Remark

For standard multi-outdoor-unit combinations, see 3D079534.

- (1) If all conditions below are met, the limitation can be extended up to 90 \mbox{m}
 - a. The piping length between all indoor units and the nearest branch kit is ≤ 40m.
 - b. It is necessary to increase the size of the gas and liquid piping if the pipe length between the first and the farthest indoor unit is >40m.

If the increased pipe size is larger than the pipe size of the main pipe, also increase the size of the main pipe.

 $\ensuremath{\text{c}}.$ When the piping size is increased, the piping length has to be counted as double.

The total piping length has to be within limitations.

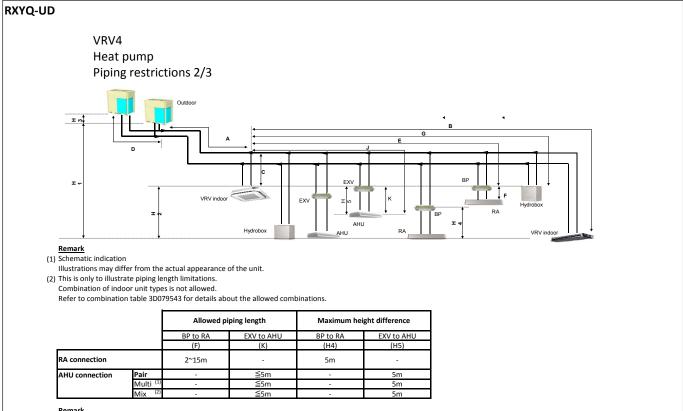
- d. The piping length difference between the nearest indoor unit from the first branch to the outdoor unit and the farthest indoor unit to the outdoor unit is ≤ 40 m.
- If the piping length between the first branch and the BP box or VRV indoor unit is more than 20m, increase the length of the gas and liquid piping between the first branch and the BP box or VRV indoor unit.
- (3) An extension to up to 90 m is possible without an additional option kit. Respect the following conditions:
 - $\mbox{->}$ If the outdoor units are positioned higher than the indoor units:
 - a. Size up the liquid piping
 - b. A dedicated setting on the outdoor unit is required.
 - -> If the outdoor units are positioned lower than the indoor units:
 - a. 40~60m Minimum connection ratio: 80%

60~65m Minimum connection ratio: 90%

65~80m Minimum connection ratio: 100%

80~90m Minimum connection ratio: 110%

b. Size up the liquid piping


A dedicated setting on the outdoor unit is required.

- (4) The allowable minimum length is 5 m.
- (5) In case of multi-outdoor-unit combinations.
- (6) Multiple air handling units (AHU)(EKEXV + EKEQ kits).
- (7) Mix of AHU units and VRV DX indoor
- (8) If the equivalent piping length between is > 90m, size up the main liquid and gas piping.

3D079540E

Refrigerant Pipe Selection 12 - 3

- Remark
 (1) Multiple air handling units (AHU)(EKEXV + EKEQ kits).
 (2) Mix of AHU units and VRV DX indoor

3D079540E

12 - 3 Refrigerant Pipe Selection

RXYQ-UD

VRV4 Heat pump Piping restrictions 3/3

System pattern Allowed connection ratio (CR)	To	otal	Allowed capacity				
Other combinations are not allowed.	Capacity	Indoor unit quantity (VRV, RA, AHU, Hydrobox)	VRV DX indoor unit	RA DX indoor unit	Hydrobox unit	Air handling unit (AHU)	
VRV DX indoor units only	50~130%	Max.64	50~130%	Ē	E	=	
VRV DX indoor unit + RA DX	80~130%	Max.32 ⁽¹⁾	0~130%	0~130%	-	-	
RA DX indoor unit	80~130%	Max.32 ⁽¹⁾	=	80~130%	-	-	
VRV DX indoor unit + LT hydrobox	50~130%	Max.32	50~130%	-	0~80%	-	
VRV DX indoor unit + AHU	50~110% ⁽³⁾	Max.64 ⁽²⁾	50~110%	-	-	0~110%	
AHU only Pair + multi (4)	90~110% ⁽³⁾	Max.64 ⁽²⁾	-	-	-	90~110%	

Remark

- (1) There is no restriction on the number of connectable BP boxes.
- (2) For connection with AHU

EKEXV kits are also considered indoor units.

- (3) Restrictions regarding the air handling unit capacity ${\bf r}$
- (4) Pair AHU = system with 1 air handling unit connected to one outdoor unit

 Multi AHU = system with multiple air handling units connected to one outdoor unit

About ventilation applications

- I. FXMQ_MF units are considered air handling units, following air handling unit limitations.
 - Maximum connection ratio when combined with VRV DX indoor units: <30%.

Maximum connection ratio when only air handling units are connected: <100%.

For information on the operation range, refer to the documentation of the ${\sf FXMQ_MF}$ unit.

II. Biddle air curtains are considered air handling units, following air handling unit limitations:

For information on the operation range, refer to the documentation of the Biddle unit.

III. [EKEXV + EKEQ] units combined with an air handling unit are considered air handling units, following air handling unit limitations.

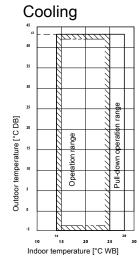
For information on the operation range, refer to the documentation of the EKEXV-EKEQ unit.

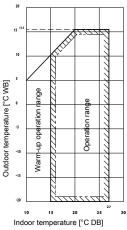
IV. VKM units are considered to be regular VRV DX indoor units.

For information on the operation range, refer to the documentation of the VKM unit.

V. Because there is no refrigerant connection with the outdoor unit (only communication F1/F2), VAM units do not have connection limitations.

However, since there is communication via F1/F2, count them as regular indoor unit when calculating the maximum allowed number of connectable indoor units.


3D079540E


Operation range

13 - 1 Operation Range

RXYQ-UD

Heating

Notes

1. These figures assume the following operation conditions

Indoor and outdoor units Equivalent piping length: 5m

Level difference: 0m

- 2. Depending on operation and installation conditions, the indoor unit can change over to freeze-up operation (indoor de-icing).
- 3. To reduce the freeze-up operation (indoor de-icing) frequency, it is recommended to install the outdoor unit in a location not exposed to wind.
- 4. Operation range is valid in case direct expansion indoor units are used.

3D118465

Appropriate Indoors

14 - 1 Appropriate Indoors

RXYQ-UD

Recommended indoor units for ·RXYQ*U* / RYYQ*U* / RYMQ*U*· outdoor units

·· HP	8	10	12	14	16	18	20
4xFXMQ50	4xFXMQ63	6xFXMQ50	1xFXMQ50	4XFXMQ63	3xFXMQ50	2xFXMQ50	
			5XFXMQ63	2xFXMQ80	5XFXMQ63	6xFXMQ63	

For multi outdoor units >16HP·, the recommended amount of indoor units is the sum of the indoor units defined for a single outdoor unit. For details about the allowed combinations, see the engineering databook.

Appropriate indoor units for $\cdot RXYQ^*U^*$ / $RYYQ^*U^*$ / $RYMQ^*U^*$ outdoor units

Covered by •ENER LOT21• FXFQ20-25-32-40-50-63-80-100-125 FXZQ15-20-25-32-40-50 FXCQ20-25-32-40-50-63-80-125 FXKQ25-32-40-63 FXDQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63-80-100-125-140 FXMQ50-63-80-100-125-200-250 FXAQ15-20-25-32-40-50-63 FXHQ32-63-100 FXUQ71-100 FXNQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63

Covered by ·ENER LOT10·

FTXJ25-35-50 FTXA20-25-35-42-50 FLXS25-35-50-60 FVXM25F-35F-50F FVXG25-35-50 FTXM20R-25R-35R-42R-50R-60R-71R CVXM20A FVXM25A-35A-50A

Outside the scope of ·ENER LOT21·

EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 VKM50-80-100 CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250 EKVDX32-50-80-100 + VAMJ8

3D118461E

Daikin Europe N.V.	Naamloze Vennootschap · Za	andvoordestraat 300 · 8400 C	EEDEN23	01/2023	I - BE 0412 120 336 - RPR Oostende (Responsible Editor) The present leaflet is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V. Daikin Europe N.V. has compiled the content of this leaflet to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this leaflet. All content is copyrighted by Daikin Europe N.V.