

VRV IV water cooled series Air Conditioning Technical Data RWEYQ-T9

RWEYQ8T9Y1B RWEYQ10T9Y1B RWEYQ12T9Y1B RWEYQ14T9Y1B RWEYQ16T9Y1B RWEYQ18T9Y1B RWEYQ20T9Y1B RWEYQ22T9Y1B RWEYQ24T9Y1B RWEYQ26T9Y1B RWEYQ28T9Y1B RWEYQ30T9Y1B RWEYQ32T9Y1B RWEYQ34T9Y1B RWEYQ36T9Y1B RWEYQ38T9Y1B RWEYQ40T9Y1B RWEYQ42T9Y1B

TABLE OF CONTENTS RVEYQ-T9

1	Features RWEYQ-T9	4 4
2	Specifications	5
3	Options	15
4	Combination table	16
5	Capacity tables Capacity Table Legend Capacity Correction Factor	18 18 19
6	Dimensional drawings	29
7	Centre of gravity	30
8	Piping diagrams	31
9	Wiring diagrams Wiring Diagrams - Three Phase Notes & Legend	32 32 33
10	External connection diagrams	34
11	Sound data Sound Power Spectrum Sound Pressure Spectrum	35 35 37
12	Installation Installation Method Refrigerant Pipe Selection	39 39 40
13	Operation range	46
14	Appropriate Indoors	47

1

Features 1 **RWEYO-T9** 1 - 1

- to the use of geothermal energy as a renewable energy source
- and typical lower refrigerant levels making it ideal to comply with EN378
- > Covers all thermal needs of a building via a single point of contact: accurate temperature control, ventilation, air handling units, Biddle air curtains and hot water
- > Unique zero heat dissipation principle obviates the need for ventilation or cooling in the technical room, maximising installation flexiblity
- > Wide range of indoor units: possibility to combine VRV with stylish indoor units (Daikin Emura, Perfera)
- > Incorporates VRV IV standards & technologies: Variable Refrigerant Temperature, VRV configurator, 7-segment display and full inverter compressors
- > Customize your VRV for best seasonal efficiency & comfort with the weather dependant Variable Refrigerant Temperature function. Increased seasonal efficiency and no more cold draft by supply of high outblow temperatures

- > Environmental conscious solution: reduced CO2 emmisions thanks -> Developed for easy installation and servicing: choice between top or front connection for refrigerant piping and rotating switch box for easy access to serviceable parts
 - > Compact & lightweight design can be stacked for maximum space saving: 42HP can be installed in less than 0,5m² floorspace
 - 2-stage heat recovery: first stage between indoor units, second > stage between outdoor units thanks to the storage of energy in the water circuit
 - > Unified model for heat pump and heat recovery version and geothermal and standard operation
 - > Variable Water Flow control option increases flexibility and control
 - > 2 analogue input signals allowing external control of ON-OFF, operation mode, error signal, ...
 - > Easy compliance with F-gas regulation thanks to automated refrigerant containment check
 - > The ability to control each conditioned zone individually keeps VRV system running costs to an absolute minimum
 - > Spread your installation cost by phased installation
 - > Keep your system in top condition via the Daikin Cloud Service: 24/7 monitoring for maximum efficiency, extented lifetime and immediate service support thanks to failure prediction

1 - 1 RWEYQ-T9

Technical Spe		ns		RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9	
Recommended con	nbination			4 x FXMQ50P7VEB	4 x FXMQ63P7VEB	6 x FXMQ50P7VEB	1 x FXMQ50P7VEB + 5 FXMQ63P7VEB	
Cooling capacity	Prated,c		kW	22.4 (1)	28.0 (1)	33.5 (1)	40.0 (1)	
cooning cupucity	Nom.	30°C inlet Nom. Waterflow	Btu/h	73,000 (4)	92,000 (4)	110,000 (4)	131,000 (5)	
	Nom.	water	kW	21.30 (4)	27.00 (4)	32.10 (4)	38.40 (5)	
		temp.	KVV	21.30 (4)	27.00 (4)	52.10 (4)	36.40 (3)	
		ID27/19						
		AHRI						
		30°C inlet Nom. Waterflow	Btu/h	72 420 (2)	02,000 (2)	100,400 (2)	121 510 (2)	
				73,430 (2)	92,080 (2)	109,480 (2)	131,510 (3)	
		water	kW	21.51 (2)	26.99 (2)	32.09 (2)	38.54 (3)	
		temp.						
		ID27/19						
1	Destable	ISO	kW	25.0	21.5	275	45.0	
leating capacity	Prated,h	COCIMID		25.0	31.5	37.5	45.0	
	Max.	6°CWB	kW	25.0 (6)	31.5 (6)	37.5 (6)	45.0 (6)	
ower input - 50Hz	Cooling	Nom. 30°C inlet water	kW	4.52 (4)	5.59 (4)	7.59 (4)	9.01 (5)	
		temp. ID27/19						
		AHRI						
		30°C inlet water	kW	4.45 (2)	5.47 (2)	7.45 (2)	8.96 (3)	
		temp. ID27/19 ISO						
ER at nom.		Nom. Waterflow	Btu/	16.10 (4)	16.50 (4)	14.50 (4)	14.50 (5)	
capacity	water		h/W					
	temp.	Nom. Waterflow	kW/kW	4.71 (4)	4.83 (4)	4.23 (4)	4.26 (5)	
	ID27/19							
	AHRI							
	30°C inlet	Nom. Waterflow	Btu/	16.49 (2)	16.83 (2)	14.71 (2)	14.69 (3)	
	water		h/W					
	temp.	Nom. Waterflow	kW/kW	4.83 (2)	4.93 (2)	4.31 (2)	4.30 (3)	
	ID27/19							
	ISO							
SCOP				13.3	11.8	11.1	10.1	
SEER				8.4	7.9	9.2	8.5	
ιs,c			%	326.8	307.8	359.0	330.7	
s,h			%	524.3	465.9	436.0	397.1	
pace cooling	A Condition	EERd	%	5.6	4.6	5.4	4.2	
	(35°C - 27/19),	Pdc	kW	22.4	28.0	33.5	40.0	
	cooling tower							
	(inlet/outlet)							
	30/35							
	B Condition	EERd	%	6.9	6.3	7.0	6.3	
	(30°C - 27/19),	Pdc	kW	16.5	20.6	24.7	29.5	
	cooling tower							
	(inlet/outlet)							
	26/*							
	C Condition	EERd	%	10.1	9.1	10.5	9.4	
	(25°C - 27/19),	Pdc	kW	10.6	13.3	15.9	18.9	
	cooling tower	Tuc .		10.0	15.5	15.9	10.9	
	(inlet/outlet)							
	22/* D Condition	EERd	%	11.9	12.3	14.9	15.6	
	(20°C - 27/19),	Pdc	% kW	7.		8.2	8.4	
pace heating		COPd (declared COP)	IX V V	7.2	6.1		5.8	
Average climate)	rorvalent	Pdh (declared heating cap)	kW	25.0	31.5	37.5	45.0	
nverage climate)				23.0			43.0	
		Tbiv (bivalent temperature)	°C	70	-1		E 0	
	TOL	COPd (declared COP)		7.2	6.1		5.8	
		Pdh (declared heating cap)	kW	25.0	31.5	37.5	45.0	
		Tol (temperature operating	°C		-1	U		
		limit)						
		COPd (declared COP)		8.1	7.1	6.6	5.8	
	dition	Pdh (declared heating cap)	kW	22.1	27.9	33.2	39.6	
	(-7°C)							
		COPd (declared COP)		13.0	11.4	10.7	9.5	
		Pdh (declared heating cap)	kW	13.5	17.0	20.2	24.3	
pace heating		COPd (declared COP)		19.1	16.8	15.5	14.3	
Average climate)		Pdh (declared heating cap)	kW	8.9	10.9	13.0	15.8	
	D Con-	COPd (declared COP)		19.1	20.1	19.3	23.8	
	dition	Pdh (declared heating cap)	kW	8.9	8.	8	9.2	
	(12°C)							
apacity range			HP	8	10	12	14	
ED	Category				Categ	ory II		
	Most	Name			Liquid r	eceiver		
	critical	Ps*V	Bar*l		48	34		
			I					

1 - 1 RWEYQ-T9

Indoor index	cificatio	ns		1	RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9			
	Min.				100.0	125.0	150.0	175.0			
connection	Max.				300.0	375.0	450.0	525.0			
Dimensions	Unit	Height		mm		98					
		Width		mm		76					
	Dackad	Depth		mm		56					
	Packed unit	Height Width		mm mm		1,13					
	unit	Depth		mm		66					
Weight	Unit	Deptil		kg	195 197						
Weight	Packed ur	nit		kg	207 208						
Packing	Material			Kg	2	Cart					
y	Weight			kg		3.1					
Packing 2	Material					Woo					
5	Weight			kg		8.3	3				
Packing 3	Material					Plas	tic				
	Weight			kg		0.2	2				
Casing	Colour					lvory v	vhite				
	Material					Painted galvaniz	zed steel plate				
leat exchanger	Туре					Brazed					
	Indoor sid					Ai					
	Outdoor s					wat					
			er pressure	bar		37.0		/->			
	Water	Cooling	Rated	m³/h	4.4 (8)	5.5 (8)	6.6 (8)	8.3 (8)			
	flow rate	Heating	Rated	m³/h	6.1 (8)	7.6 (8)	8.9 (8)	10.3 (8)			
Compressor	Quantity					1 Hermetically sealed scro	linverter compresser				
	Type Crankcase	heator		W		Hermetically sealed scro					
Operation range	Inlet	Cooling	Min.	°CDB		3310					
peration range	water	Cooling	WIIII.	CDB		10					
	tempera-										
	ture										
Dperation range Ir w	Inlet	Cooling	Max.	°CDB		45	5				
	water	Heating	Min.	°CWB		10					
	tempera-	5	Max.	°CWB		45					
	ture										
	Temper-	Min.		°CDB		0					
	ature	Max.		°CDB		40)				
	around										
	casing				80						
	Humidity		Max.	%							
	around	Heating	Max.	%		80)				
ound nower lovel	casing Cooling	Nom		dBA	65.0.(0)	71.0 (0)	72.0 (0)	74.0 (0)			
	Cooling	Nom.		dBA	65.0 (9) 48.0 (10)	71.0 (9)	72.0 (9) 56.0 (10)	74.0 (9)			
ound pressure	Cooling	Nom. Nom.		dBA dBA	65.0 (9) 48.0 (10)	71.0 (9) 50.0 (10)	72.0 (9) 56.0 (10)	74.0 (9) 58.0 (10)			
ound pressure evel	Cooling Cooling					50.0 (10)	56.0 (10)				
ound pressure evel	Cooling Cooling Type					50.0 (10) R-41	56.0 (10) 0A				
ound pressure evel	Cooling Cooling Type GWP			dBA	48.0 (10)	50.0 (10) R-41 2,08	56.0 (10) 0A 7.5	58.0 (10)			
ound pressure evel	Cooling Cooling Type				48.0 (10)	50.0 (10) R-41	56.0 (10) 0A 7.5 20				
ound pressure evel Refrigerant	Cooling Cooling Type GWP Charge			dBA TCO2Eq	48.0 (10)	50.0 (10) R-41 2,08 5.5	56.0 (10) 0A 7.5 20 9	58.0 (10)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type			dBA TCO2Eq	48.0 (10)	50.0 (10) R-41 2,08 5.5 29	56.0 (10) 0A 7.5 20 9 r) oil FVC68D	58.0 (10)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type	Nom.		dBA TCO2Eq	48.0 (10) 10 7	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe	56.0 (10) 0A 7.5 20 9 r) oil FVC68D	58.0 (10) 0.0 .6			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type	Nom.		dBA TCO2Eq kg	48.0 (10) 10 7	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con	56.0 (10) 0A 7.5 20 9 r) oil FVC68D nection 12.	58.0 (10) 0.0 .6			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type Liquid	Nom. Type OD		dBA TCO2Eq kg	48.0 (10) 10 7	50.0 (10) R-41 2,08 5.5 79 Synthetic (ethe Braze con 52	56.0 (10) 0A 7.5 20 9 r) oil FVC68D nection 12.	58.0 (10) 0.0 .6 70			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type Liquid	Nom. Type OD Type OD Type		dBA TCO2Eq kg mm	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con	56.0 (10) 0A 7.5 20 9 rr) oil FVC68D nection 12 nection 28.6 nection	58.0 (10) 0.0 6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type Liquid Gas HP/LP gas	Nom. Type OD Type OD Type OD		dBA TCO2Eq kg mm	48.0 (10) 16 7 9	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13)	56.0 (10) 0A 7.5 20 9 vr) oil FVC68D nection 12. nection 28.6 nection 19.1 (12) / 28.6 (13)	58.0 (10) 0.0 6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge S Liquid Gas HP/LP	Nom. Type OD Type OD Type OD Size		dBA Free constraints of the second se	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/	56.0 (10) 0A 7.5 20 9 er) oil FVC68D nection 12. nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID	58.0 (10) 0.0 6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type s Liquid Gas HP/LP gas Drain	Nom. Type OD Type OD Type OD Size Type		dBA Free constraints of the second se	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 39 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P	56.0 (10) 0A 7.5 20 9 er) oil FVC68D nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID VC hose	58.0 (10) 0.0 6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type Liquid Gas HP/LP gas	Nom. Type OD Type OD Type OD Size	Туре	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 39 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External	56.0 (10) 0A 7.5 20 9 er) oil FVC68D nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID VC hose thread	58.0 (10) .0 .6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type s Liquid Gas HP/LP gas Drain	Nom. Type OD Type OD Type OD Size Type Inlet	Size	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 .9 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-0	56.0 (10) 0A 7.5 20 9 er) oil FVC68D nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID VC hose thread GI 1/4 B	58.0 (10) .0 .6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Charge Type S Liquid Gas HP/LP gas Drain	Nom. Type OD Type OD Type OD Size Type	Size Type	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 9 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-6 External	56.0 (10) 0A 7.5 20 9 9 r) oil FVC68D nection 12. nection 28.6 nection 19.1 (12) / 28.6 (13) 10mm ID VC hose thread G1 1/4 B thread	58.0 (10) 0.0 6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Type s Liquid Gas HP/LP gas Drain Water	Nom. Type OD Type OD Type OD Size Type Inlet Outlet	Size Type Size	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 79 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-0 External ISO 228-0	56.0 (10) 0A 7.5 20 9 r) oil FVC68D nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID VC hose thread G1 1/4 B thread G1 1/4 B	58.0 (10) .0 .6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling GWP Charge Charge Liquid Gas HP/LP gas Drain Water Total	Nom. Type OD Type OD Type OD Size Type Inlet	Size Type	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 9 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-6 External	56.0 (10) 0A 7.5 20 9 r) oil FVC68D nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID VC hose thread G1 1/4 B thread G1 1/4 B	58.0 (10) .0 .6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil	Cooling Cooling Type GWP Charge Type Liquid Gas HP/LP gas Drain Water Total piping	Nom. Type OD Type OD Type OD Size Type Inlet Outlet	Size Type Size	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 79 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-0 External ISO 228-0	56.0 (10) 0A 7.5 20 9 r) oil FVC68D nection 12. nection 19.1 (12) / 28.6 (13) 10mm ID VC hose thread G1 1/4 B thread G1 1/4 B	58.0 (10) .0 .6 70 5 (11)			
Sound pressure evel Refrigerant Refrigerant oil Piping connections	Cooling Cooling Type GWP Charge Type s Liquid Gas HP/LP gas Drain Water Total piping length	Nom. Type OD Type OD Type OD Size Type Inlet Outlet	Size Type Size	dBA Frequencies of the second	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-0 External ISO 228-0 500 (10)	56.0 (10) 0A 7.5 20 9 9 9 9 9 9 9 9 9 9 9 9 9	58.0 (10) 0.0 .6 70			
Sound pressure evel Refrigerant Refrigerant oil Piping connections	Cooling Cooling GWP Charge Charge Type Liquid Gas HP/LP gas Drain Water Total piping length Method	Nom. Type OD Type OD Size Type Inlet Outlet System	Size Type Size Actual	dBA	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 22.2 (13) 14mm OD/ Flexible P External ISO 228-0 500 (INVERTE CO	56.0 (10) 0A 7.5 20 9 9 9 9 9 9 9 9 9 9 9 9 9	58.0 (10) .0 .6 70 5 (11)			
Sound power level Sound pressure evel Refrigerant Refrigerant oil Piping connections	Cooling Cooling GWP Charge Charge Type Liquid Gas HP/LP gas Drain Water Total piping length Method	Nom. Type OD Type OD Size Type Inlet Outlet System pped with	Size Type Size Actual	dBA	48.0 (10) 10 7 9 19.1 (11)	50.0 (10) R-41 2,08 5.5 29 Synthetic (ethe Braze con 52 Braze con 22.2 (11) Braze con 19.1 (12) / 22.2 (13) 14mm OD/ Flexible P External ISO 228-0 External ISO 228-0 500 (10)	56.0 (10) 0A 7.5 20 9 9 9 9 9 9 9 9 9 9 9 9 9	58.0 (10) .0 .6 70 5 (11)			

1 - 1 RWEYO-T9

Technical Spe	cificatio	ns			RWEYQ8T9 RWEYQ10T9 RWEYQ12T9 RWEYQ						
Power consump-	Crank-	Cooling	РСК	kW		0.0	000				
tion in other than	case	Heating	PCK	kW		0.0	000				
active mode	heater										
	mode										
	Off mode	Cooling	POFF	kW	0.046						
		Heating	POFF	kW		0.0)50				
	Standby	Cooling	PSB	kW		0.0)46				
-	mode	Heating	PSB	kW		0.0)50				
	Thermo-	Cooling	PTO	kW		0.0	013				
	stat-off										
	mode										
Power consump-	Thermo-	Heating	PTO	kW		0.0)67				
tion in other than	stat-off										
active mode	mode										
Cooling	Cdc (Degi	radation c	ooling)		0.25						
Heating	Cdh (Deg	radation h	eating)			0.	25				
Safety devices	ltem	01				High press	sure switch				
		02				Inverter over	oad protector				
		03				PC boa	ard fuse				

Standard accessories: Installation manual;Quantity: 1;

Standard accessories: Operation manual;Quantity: 1;

Standard accessories: Connection pipes; Quantity: 1;

Standard accessories: Water supply piping with strainer; Quantity: 1;

Electrical Sp	ecificatio	ns		RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9			
Power supply	Name				Y	1				
,	Phase				3N	~				
	Frequenc	у	Hz	50						
	Voltage		V	380-415						
Power supply inta	ake			Both indoor and outdoor unit						
Voltage range	Min.		%		-1(0				
	Max.		%							
Current	Nominal running	Cooling	A	6.5 (15)	9.0 (15)	10.0 (15)	12.6 (15)			
	current (RLA)									
Current - 50Hz	Nominal running	Combina- Cooling tion A		-						
	current (RLA)	Combina- Cooling tion B			-					
	Starting o	urrent (MSC) - remark			See no	ote 16				
	Zmax	List		No requirements						
	Minimum	Ssc value	kVa	1,780 (16)						
	Minimum	circuit amps (MCA)	A	15.5 (17) 16.4 (17) 19.5 (17)						
	Maximum	n fuse amps (MFA)	A	20 (18) 25 (18)						
	Total over	rcurrent amps (TOCA)	A	25.0 (19)						
Power Perfor-	Power	Combina- 35°C ISO - Full	load		-					
mance	factor	tion B 46°C ISO - Full	load		-					
Wiring connec-	For	Quantity			50	5				
tions - 50Hz	power									
	supply									
	For	Quantity			2					
	connec- tion with indoor	Remark			F1,F	F2				

(I)Cooling: indoor temp. 27°CDB, 19°CWB; Inlet water temperature: 30°C; equivalent refrigerant piping: 7.5m; level difference: 0m. | (2)Cooling T3: Indoor temp 29°CDB/19°CWB Water inlet temp 30°C Nom. waterflow Equivalent piping length 7,6m Level difference piping 0m Power input indoors included According to teststandard ISO 13256: 1998

(3) Cooling T3: Indoor temp 29°CDB/19°CWB Water inlet temp 30°C Nom. waterflow Equivalent piping length 7,5m Level difference piping 0m Power input indoors included According to teststandard ISO 13256: 1998 I (4)Cooling TI: Indoor temp 27°CDB/I9°CWB Water inlet temp 30°C Nom. waterflow Equivalent piping length 7,6m Level difference piping 0m Power input indoors included According to teststandard AHRI 1230:

2010 |

(5)Cooling TI: Indoor temp 27°CDB/I9°CWB Water inlet temp 30°C Nom. waterflow Equivalent piping length 15,5m Level difference piping 0m Power input indoors included According to teststandard AHRI 1230: 2010 |

(6) Heating: indoor temp. 20°CDB; inlet water temperature: 20°C; equivalent piping length: 7.5m; level difference: 0m | (7) Actual number of connectable indoor units depends on the indoor unit type (VRV indoor, Hydrobox, RA indoor, etc.) and the connection ratio restriction for the system (50% <= CR <= 130%) |

(9)Noter flow rate for performance testing according to standard rating conditions of EN 14511-2. [(9)Sound power level is an absolute value that a sound source generates.]

(10)Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. | (11)In case of heat pump system, gas pipe is not used |

(12)In case of heat recovery system |

(13)In case of heat pump system | (14)Refer to refrigerant pipe selection or installation manual |

(15)RLA is based on following conditions: indoor temp. 27°CB, 19°CWB; inlet water temp. 30°C | (16)In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply with Ssc \geq minimum Ssc value | (17)MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. |

(18)MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker).

1 - 1 RWEYQ-T9

(19)TOCA means the total value of each OC set. |

MSC means the maximum current during start up of the compressor. This unit uses only inverter compressors. Starting current is always < max. running current. | Maximum allowable voltage range variation between phases is 2%. |

Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits.

Sound values are measured in a semi-anechoic room.

Sound pressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)], with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA |

EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase |

Ssc: Short-circuit power

2

For detailed contents of standard accessories, see installation/operation manual | Multi combination (10~54HP) data is corresponding with the standard multi combination

RWEYQ16T9 RWEYQ18T9 RWEYQ20T9 RWEYQ24T9 **Technical specifications System** RWEYQ22T9 RWEYQ10T System Outdoor unit module 1 RWEYQ8T RWEYQ12T **RWFYO8T** RWFYO10T Outdoor unit module 2 RWFY012T Recommended combination 4 x FXMQ63P7VEB + 4 x FXMQ50P7VEB + 8 x FXMQ63P7VEB 6 x FXMQ50P7VEB + 12 x FXMQ50P7VEB 2 x FXMQ80P7VEB 4 x FXMQ63P7VEB 4 x FXMQ63P7VEB kW 44.8 (1) 50.4 (1) 56.0 (1) 61.5 (1) 67.0 (1) Cooling capacity Prated,c Heating capacity Prated,h kW 50.0 56.5 62.5 69.0 75.0 Max 6°CWB kW 50.0 (6) 56.5 (6) 62.5 (6) 69.0 (6) 75.0 (6) SCOP 11.4 11.1 11.7 12.5 11.9 SFFR 79 77 80 88 % 307.6 308.7 298.1 311.3 342.6 ηs,c 434.5 % 459.2 491.1 466.8 447.9 ns,h Space cooling EERd % A Condition 5.1 5.0 5.0 5.4 4.6 (35°C - 27/19), kW 44.8 50.4 56.0 61.5 67.0 Pdc cooling tower (inlet/outlet) 30/35 EERd **B** Condition % 6.3 7.0 6.5 6.6 (30°C - 27/19), Pdc kW 33.0 37.1 41.3 45.3 49.4 cooling tower (inlet/outlet) 26/* EERd C Condition % 9.0 9.5 9.1 9.8 10.5 (25°C - 27/19). Pdc kW 21.2 23.9 26.5 29.1 31.7 cooling tower (inlet/outlet) 22/* D Condition FFRd % 11.0 101 99 94 11 5 (20°C - 27/19), kW 9.4 10.6 11.8 13.0 14.1 Pdc Space heating TBivalent COPd (declared COP) 6.1 6.6 6.2 6.0 5.8 (Average climate) kW Pdh (declared heating cap) 50.0 56.5 63.0 69.0 75.0 Tbiv (bivalent temperature) °C -10 TOL COPd (declared COP) 6.1 6.6 6.2 6.0 5.8 Pdh (declared heating cap) kW 63.0 69.0 75.0 50.0 56.5 Tol (temperature operating °C -10 limit) A Con-COPd (declared COP) 6.9 7.5 7.1 6.8 6.6 dition kW Pdh (declared heating cap) 44.2 50.0 55.7 61.0 66.3 (-7°C) B Condi-COPd (declared COP) 11.4 12.1 114 11.0 10.7 tion (2°C) Pdh (declared heating cap) kW 26.9 30.4 33.9 37.2 40.4 C Condi- COPd (declared COP) 16.3 17.8 16.8 16.1 15.5 tion (7°C) Pdh (declared heating cap) kW 17.5 19.8 21.8 23.9 26.0 COPd (declared COP) 17.7 D Con-17.8 18.3 17.0 16.7 dition Pdh (declared heating cap) kW 8.6 8.7 9.6 10.6 11.5 (12°C) Capacity range HP 16 18 20 22 24 PED Category II Category Most Name Liquid receiver critical Ps*V Bar*l 484 part Maximum number of connectable indoor units 64 (7) Indoor index 200.0 225.0 275.0 300.0 Min. 250.0 connection Max. 600.0 675.0 750.0 825.0 900.0 Heat exchanger Indoor side Air Outdoor side water m³/h 12.2 (8) 13.3 (8) Water Cooling Rated 8.9 (8) 9.9 (8) 11.0 (8) flow rate Heating m³/h 12.1 (8) 13.6 (8) 15.1 (8) 17.7 (8) Rated 16.4 (8) 75.0 (9) Sound power level Cooling Nom dBA 68.0 (9) 72.0 (9) 74.0 (9) Sound pressure Cooling dBA 51.0 (10) 52.0 (10) 53.0 (10) 57.0 (10) 59.0 (10) Nom. level Refrigerant Туре R-410A GWP 2,087.5 Refrigerant oil Synthetic (ether) oil FVC68D Туре

Technical spe	cificatio	ns Syst	em		RWEYQ16T9	RWEYQ18T9	RWEYQ20T9	RWEYQ22T9	RWEYQ24T9			
Piping connection	is Liquid	Туре					Braze connection					
		OD		mm	12.70		15	.90				
	Gas	Туре					Braze connection					
		OD		mm		28.6	6 (11)		34.9 (11)			
	HP/LP	Туре				Braze connection						
	gas	OD		mm	22.2 (12)	/ 28.6 (13)	28.6 (12) / 34.9 (13					
	Drain	Size					14mm OD/ 10mm ID					
		Туре		mm			Flexible PVC hose					
	Water	Inlet	Type									
			Size		ISO 228-G1 1/4 B							
		Outlet	Туре		External thread							
			Size ISO 228-G11/4 B									
	Total	System	Actual	m			500 (14)					
	piping											
	length											
Capacity control	Method				Inverter controlled							
ndication if the he	lication if the heater is equipped with a supplementary heater				no							
Supplementary						0.0						
neater	capacity											
ower consump-	Crank-	Cooling	РСК	kW	0.000							
ion in other than	case	Heating	РСК	kW			0.000					
active mode	heater											
	mode											
	Off mode	Cooling	POFF	kW			0.092					
		Heating	POFF	kW	0.100							
	Standby	Cooling	PSB	kW			0.092					
	mode	Heating	PSB	kW			0.100					
	Thermo-	Cooling	PTO	kW			0.026					
	stat-off	Heating	PTO	kW			0.134					
	mode											
Cooling	Cdc (Deg	radation c	ooling)				0.25					
leating	Cdh (Deg	radation h	neating)				0.25					
afety devices	ltem	01					High pressure switch	ı				
		02				Inv	erter overload prote	ctor				
		03			PC board fuse							
Technical spe	cificatio	ne Svet	om		RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T9			
System		unit modu			RWEYQ12T	RWEYQ14T	RWEIQ3019	RWEYQ10T	RWEIQ5415			
ystelli		unit modu unit modu				YQ14T	DW/E	YQ10T	RWEYQ12T			
					RVVE				-			
	Jutaoor	unit modu	iie 3			-	RWEYQ10T	RWE	YQ12T			

	Outdoor	unit module 2		RWE	YQ14T	RWE	/Q10T	RWEYQ12T
	Outdoor	unit module 3			-	RWEYQ10T	RWE	YQ12T
Recommended co	mbination			7 x FXMQ50P7VEB +	2 x FXMQ50P7VEB +	12 x FXMQ63P7VEB	6 x FXMQ50P7VEB +	12 x FXMQ50P7VEE
				5 x FXMQ63P7VEB	-		8 x FXMQ63P7VEB	+ 4 x FXMQ63P7VE
Cooling capacity	Prated,c		kW	73.5 (1)	80.0 (1)	84.0 (1)	89.5 (1)	95.0 (1)
Heating capacity	Prated,h		kW	82.5	90.0	94.5	100.5	106.5
	Max.	6°CWB	kW	82.5 (6)	90.0 (6)	94.5 (6)	100.5 (6)	106.5 (6)
SCOP				10.4	9.9	11.9	11.6	11.4
SEER				8.3	7.	.9	8.2	8.8
ηs,c			%	322.5	306.1	308.3	318.2	342.5
ηs,h			%	406.9	387.9	467.2	456.1	447.0
Space cooling	A Condition	EERd	%	4.9	4.5	4.6	4.9	5.1
	(35°C - 27/19),	Pdc	kW	73.5	80.0	84.0	89.5	95.0
	cooling tower							
	(inlet/outlet)							
	30/35							
	B Condition	EERd	%	6.6	6	.3	6.5	6.7
	(30°C - 27/19),	Pdc	kW	54.2	58.9	61.9	66.0	70.0
	cooling tower							
	(inlet/outlet)							
	26/*							
	C Condition	EERd	%	9.9	9.4	9.1	9.6	10.1
	(25°C - 27/19),	Pdc	kW	34.8	37.9	39.8	42.4	45.0
	cooling tower							
	(inlet/outlet)							
	22/*							
	D Condition	EERd	%	10.8	10.2	11.6	11.2	13.5
	(20°C - 27/19),	Pdc	kW	15.5	16.8	17.7	18.8	20.0

Technical spe					RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T9	
Space heating	TBivalent		clared COP)		5.3	4.9	6.2	6.1	5.9	
(Average climate)			ared heating cap)	kW	82.5	90.0	94.5	100.5	106.5	
			alent temperature)	°C		1	-10		1	
	TOL		clared COP)		5.3	4.9	6.2	6.1	5.9	
			ared heating cap)	kW	82.5	90.0	94.5	100.5	106.5	
		Tol (temp limit)	erature operating	°C			-10			
	A Con-	COPd (de	clared COP)		6.1	5.7	7.1	6.9	6.7	
	dition (-7°C)	Pdh (decl	ared heating cap)	kW	73.0	79.6	83.6	88.9	94.2	
	B Condi-	COPd (de	clared COP)		10.0	9.5	11.4	11.1	10.9	
	tion (2°C)	Pdh (decl	ared heating cap)	kW	44.4	48.5	50.9	54.1	57.3	
			clared COP)		14.8	14.3	16.8	16.3	15.9	
			ared heating cap)	kW	28.6	31.2	32.7	34.8	36.9	
	D Con-		clared COP)		15.8	16.0		0.4	19.3	
	dition (12°C)		ared heating cap)	kW	12.7	13.9	17	7.7	17.6	
Capacity range	(12 C)			HP	26	28	30	32	34	
PED	Category				20	20	Category II	52	51	
	Most critical	Name					Liquid receiver			
PED	part Most	Ps*V		Bar*l			484			
	critical part	15 V		Dai i			TOT			
Maximum number	-	able indo	or units				64 (7)			
ndoor index	Min.				325.0	350.0	375.0	400.0	425.0	
connection	Max.				975.0	1,050.0	1,125.0	1,200.0	1,275.0	
Heat exchanger	Indoor sid	le				.,	Air	.,	.,	
ieur exenangei	Outdoor						water			
	Water	Cooling	Rated	m³/h	14.9 (8)	16 '	5 (8)	17.7 (8)	18.8 (8)	
	flow rate		Rated	m³/h	19.2 (8)	20.6 (8)	22.7 (8)	24.0 (8)	25.3 (8)	
Sound power level		Nom.	nated	dBA	76.0 (9)	77.0 (9)	22.7 (0)	76.0 (9)	25.5 (0)	
Sound pressure	Cooling	Nom.		dBA	60.0 (10)	61.0 (10)	55.0 (10)	58.0 (10)	60.0 (10)	
level Refrigerant	Туре						R-410A			
henigerant	GWP						2,087.5			
Refrigerant oil						Sum.	thetic (ether) oil FVC	(0D		
	Type	Tuno				Jyn		060		
Piping connections	Liquia	Type OD					Braze connection			
	Gas			mm			19.10			
	GdS	Type OD					Braze connection			
				mm			34.9 (11)			
	HP/LP	Туре					Braze connection			
	gas	OD		mm			28.6 (12) / 34.9 (13)			
	Drain	Size					14mm OD/ 10mm ID			
		Туре	_	mm			Flexible PVC hose			
	Water	Inlet	Туре				External thread			
		0.11	Size				ISO 228-G1 1/4 B			
		Outlet	Туре				External thread			
	-	-	Size				ISO 228-G1 1/4 B			
	Total piping	System	Actual	m			500 (14)			
Capacity control	length Method						Inverter controlled			
Indication if the hea Supplementary	Back-up	pped with Heating		heater kW			no 0.0			
heater Power consump-	capacity	Cooling	РСК	kW			0.000			
Power consump- tion in other than	Crank- case		PCK	kW kW			0.000			
active mode	heater mode	Heating	FUN	ĸvv			0.000			
	Off mode	Cooling	POFF	kW	0.0	092		0.138		
	Sinnoue	Heating	POFF	kW		100		0.150		
	Standby		PSB	kW		092		0.138		
	mode	Heating	PSB	kW		100		0.150		
	Thermo-		РТО	kW						
	stat-off	Heating	PTO	kW	0.026 0.039 0.134 0.201					
	mode	radation co	ooling)				0.25			
Cooling	Cac (Degi				0.25					
Cooling Heating		radation h	eating)				0.25			
		radation h 01	eating)				0.25 High pressure switch			
Heating	Cdh (Deg		eating)							

Technical spe				RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9
System		unit module 1			RWEYQ12T		RWEYQ14T
		unit module 2			YQ12T		YQ14T
		unit module 3		RWEYQ12T		RWEYQ14T	1
Recommended co	mbination			18 x FXMQ50P7VEB	13 x FXMQ50P7VEB + 5 x FXMQ63P7VEB	8 x FXMQ50P7VEB + 10 x FXMQ63P7VEB	3 x FXMQ50P7VEB + 15 FXMQ63P7VEB
Cooling capacity	Prated,c		kW	100.5 (1)	107.0 (1)	113.5 (1)	120.0 (1)
Heating capacity	Prated,h		kW	112.5	120.0	127.5	135.0
	Max.	6°CWB	kW	112.5 (6)	120.0 (6)	127.5 (6)	135.0 (6)
SCOP				11.2	10.7	10.3	10.0
SEER				9.0	8	.7	8.5
ղs,c			%	352.3	338.8	341.4	332.9
s,h			%	438.5	419.4	404.4	391.2
Space cooling	A Condition	EERd	%	5.4	5.0	4.7	4.5
	(35°C - 27/19), cooling tower (inlet/outlet) 30/35	Pdc	kW	100.5	107.0	113.5	120.0
	B Condition	EERd	%	7.0	6.7	6.5	6.3
-	(30°C - 27/19), cooling tower (inlet/outlet) 26/*	Pdc	kW	74.1	78.8	83.6	88.4
	C Condition	EERd	%	10.5	10.1	9.7	9.4
	(25°C - 27/19), cooling tower (inlet/outlet) 22/*	Pdc	kW	47.6	50.7	53.8	56.8
	D Condition	EERd	%	13.1	12.8	15	5.4
	(20°C - 27/19),	Pdc	kW	21.2	22.5	24.5	25.3
pace heating	TBivalent	COPd (declared COP)		5.8	5.4	5.1	4.9
Average climate)		Pdh (declared heating cap)	kW	112.5	120.0	127.5	135.0
,		Tbiv (bivalent temperature)	°C			10	
	TOL	COPd (declared COP)		5.8	5.4	5.1	4.9
	IOL	Pdh (declared heating cap)	kW	112.5	120.0	127.5	135.0
		Tol (temperature operating limit)	°C	112.0		10	155.0
	A Con-	COPd (declared COP)		6.6	6.3	6.0	5.7
	dition (-7°C)	Pdh (declared heating cap)	kW	99.5	106.2	112.8	119.4
	B Condi-	COPd (declared COP)		10.7	10.2	9.8	9.5
	tion (2°C)	Pdh (declared heating cap)	kW	60.6	64.6	68.6	72.7
		COPd (declared COP)		15.5	15.0	14.6	14.3
		Pdh (declared heating cap)	kW	38.9	41.5	44.1	46.7
	D Con-	COPd (declared COP)		19.3	18.8	18.9	18.4
	dition (12°C)	Pdh (declared heating cap)	kW	17.6	18.5	19.6	20.8
Capacity range	/		HP	36	38	40	42
PED	Category				Cated	gory II	
	Most critical part	Name			Liquid	receiver	
PED	Most critical part	Ps*V	Bar*l		4.	84	
Aaximum number		table indoor units				(7)	1
ndoor index	Min.			450.0	475.0	500.0	525.0
onnection	Max.			1,350.0	1,425.0	1,500.0	1,575.0
leat exchanger	Indoor sid					lir Iter	
	Water	Cooling Rated	m³/h	19.9 (8)	21.5 (8)	23.1 (8)	24.8 (8)
	flow rate		m³/h	26.6 (8)	28.0 (8)	29.4 (8)	30.9 (8)
ound power level		Nom.	dBA	77.0 (9)) (9)	79.0 (9)
ound pressure evel	Cooling	Nom.	dBA	61.0 (10)	1	0 (10)	63.0 (10)
Refrigerant	Туре					110A 87.5	<u> </u>
	GWP						
Refrigerant oil	Туре				Synthetic (eth	er) oil FVC68D	

1 - 1 RWEYQ-T9

Technical spee			em		RWE	EYQ36T9	9	RWEYQ			YQ40T	9	RWEYQ	42T9
Piping connections	Liquid	Туре							Braze co					
		OD		mm					19.					
	Gas	Туре							Braze co					
		OD		mm					41.3					
	HP/LP	Туре							Braze co					
	gas	OD		mm	28.6 (1	2) / 41.3 (13	3)				3) / 34.9 (12	2)		
	Drain	Size				14mm OD/ 10mm ID								
		Туре		mm	Flexible PVC hose									
	Water	Inlet	Туре		External thread ISO 228-G1 1/4 B									
			Size											
		Outlet	Туре						Externa					
		_	Size						ISO 228-					
	Total	System	Actual	m					500	(14)				
	piping													
	length													
Capacity control	Method								Inverter c					
Indication if the hea									n					
Supplementary heater	Back-up capacity	Heating	elbu	kW					0.	0				
Power consump-	Crank-	Cooling	РСК	kW					0.0	00				
tion in other than active mode	case heater	Heating	РСК	kW					0.0	00				
	mode													
	Off mode		POFF	kW	-				0.1					
		Heating	POFF	kW					0.1					
		Cooling	PSB	kW					0.1					
	mode	Heating	PSB	kW					0.1					
	Thermo-		PTO	kW					0.0					
	stat-off	Heating	РТО	kW	0.201									
	mode		· · ·											
Cooling	Cdc (Degi					0.25								
Heating	Cdh (Deg		eating)		0.25 High pressure switch									
Safety devices	ltem	01												
	02							Inv	erter overl		ctor			
		03							PC boa	rd fuse				
F														
Electrical speces Power supply	Name	ns syste	em		1				Y	1				
i onei suppi)	Phase								3N					
	Frequenc	v		Hz					5					
	Voltage	<i>y</i>		V					380					
Power supply intake				v				Both	indoor an		runit			
Voltage range	Min.			%				Doti	-1		unit			
voltage lange	Max.			%					1					
Current	Nominal	Cooling		A	13.0 (15)	15.5 (15)	18.0 (15)	19.0 (15)	20.0 (15)		25.2 (15)	27.0 (15)	28.0 (15)	29.0 (1
current	running	cooning		~	15.0 (15)	13.3 (13)	10.0 (15)	15.0 (15)	20.0 (13)	22.0 (13)	23.2 (13)	27.0 (15)	20.0 (13)	20.0 (1
	current													
	(RLA)													
Current - 50Hz	Nominal	Combina	- Cooling			1		1				1		1
	running	tion A												
	current	Combina	- Cooling											
	(RLA)	tion B	<u> </u>											
			SC) - remark						See n	ote 16				
	Zmax	List							No requi	rements				
	Minimum	Ssc value		kVa				3,560 (16)					5,340 (16))
	Minimum		ips (MCA)	A	31.0 (17)	31.9 (17)	32.7 (17)	1	38.9 (17)	41.7 (17)	44.6 (17)	49.1 (17)	52.2 (17)	1
	Maximum		1 1 7	A		(18)	35 (18)	1	(18)	(,	50 (18)		1	(18)
			nps (TOCA)	A	1		/	50.0 (19)			,		75.0 (19)	. ,
Power Perfor-	Power		- 35°C ISO - Full lo											
mance	factor	tion B	46°C ISO - Full Ic		1									
Wiring connec-	For	Quantity			1				5	G				
tions - 50Hz	power	Zuantity								-				
	supply				1									
	For	Quantity			1				2)				
		Remark							F1,					
	connec-				1				· ',					
	connec- tion with				1									
	tion with													

Electrical sp	pecifications System		RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9			
Power supply	Name		Y1						
	Phase		3N~						
	Frequency	Hz		50					
	Voltage	V	380-415						

Electrical sp	ecificatio	ns System		RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9			
Power supply inta					Both indoor ar	nd outdoor unit	·			
Voltage range	Min.		%		2	10				
	Max.		%	10						
Current	Nominal running	Cooling	A	30.0 (15)	32.6 (15)	35.2 (15)	37.8 (15)			
	current (RLA)									
Current - 50Hz	Nominal	Combina- Cooling				-				
	running	tion A								
	current	Combina- Cooling				-				
	(RLA)	tion B								
	Starting o	current (MSC) - remark			See n	ote 16				
	Zmax	List		No requirements						
	Minimum	n Ssc value	kVa	5,340 (16)						
	Minimum	n circuit amps (MCA)	A	58.3 (17)	61.2 (17)	64.0 (17)	66.9 (17)			
	Maximun	n fuse amps (MFA)	A	63 (18) 80 (18)						
	Total ove	rcurrent amps (TOCA)	A	75.0 (19)						
Power Perfor-	Power	Combina- 35°C ISO - Full	load			-				
mance	factor	tion B 46°C ISO - Full	load			-				
Wiring connec-	For	Quantity			5	G				
tions - 50Hz	power									
	supply									
	For	Quantity		2						
	connec-	Remark			F1	,F2				
	tion with									
	indoor									

2 Specifications 1 - 1 RWEYQ-T9

Options 3

3 - 1 Options

RWEYQ-T9

Item				le unit	Multi ·2· unit	Multi ·3· unit		
	RWEYQ8 RWEYQ10 RWEYQ12 RWEYQ14							
Cool/heat selector (PCB)		See note ·1·.		BRP2				
Cool/heat selector (switch) See note ·1·.				KRC19				
Cool/heat selector (fixing box) See note 1				KJB1				
External control adapter Outdoor unit			DTA104A62					
				KHRQ2				
	Heat pump				KHRQ22M64H			
Refnet header					KHRQ2	2M75H		
Reillet fleadel				KHRQ2				
	Heat recovery				KHRQ23M64H			
					KHRQ2	3M75H		
				KHRQ22M2OT				
	Heat pump			KHRQ22M64T				
Refnet joint					KHRQ22M75T			
Renet joint	Heat recovery		KHRQ23M20T					
			KHRQ23M29T9					
	ricurrecovery				KHRQ23M64T			
						23M75T		
Outdoor multi-connection kit	Heat pump	See note ·3·.	_		BHFQ22P1007			
Outdoor multi-connection kit	Tieat pump	Gee Hote 5.			BHFQ2	2P1517		
	Heat recovery	See note ·3·.			BHFQ23P907			
	Theat recovery				BHFQ23P1357			
Communication cable			EKPCCAB2					
			BS1Q10A7V1B					
Single ·BS· unit			BS1Q16A7V1B					
			BS1Q25A7V1B					
Multi ·BS· unit			BS4Q14AV1					
				BS6Q				
			BS8Q14AV1					
			BS10Q14AV1					
					14AV1			
					B\$16Q14AV1			

Notes

1. In case of a heat recovery system, the cool/heat selector cannot be connected.

It is not allowed to combine P-series BS units (single/multi) with -A-series BS units (single/multi).
 For installations without special requirements towards fire regulations, the standard multi-connection kits can be used.

For installations with special requirements towards fire regulations, the insulation material can be replaced by using kits •EKHBFQ1• and •EKHBFQ2•. $\label{eq:constraint} The \cdot 4 \cdot kits \ contain \ alternative \ insulation \ material \ that \ complies \ with \ \cdot EN13501-1:B-S3, dO\cdot \ and \ with \ \cdot BS476-7 \cdot \ (class \ \cdot 1 \cdot).$

To replace the insulation material, determine the required number of ·EKBHFQ· kits according to the table below.

EKBHFQ1	EKBHFQ2
1	1
2	2
2	1
4	2
	EKBHFQ1 1 2 2 4

2D108935D

3

DAIKIN

4 Combination table

4 - 1 Combination Table

RWEYQ-T9

·VRV· water-cooled heat pump Multi-unit standard combinations table

	ВНР	10HP	12HP	14HP
RWEYQ8	1			
RWEYQ10		1		
RWEYQ12			1	
RWEYQ14				1
RWEYQ16	2			
RWEYQ18	1	1		
RWEYQ20		2		
RWEYQ22		1	1	
RWEYQ24			2	
RWEYQ26			1	1
RWEYQ28				2
RWEYQ30		3		
RWEYQ32		2	1	
RWEYQ34		1	2	
RWEYQ36			3	
RWEYQ38			2	1
RWEYQ40			1	2
RWEYQ42				3

Notes

- 1) It is allowed to have other combinations than those described above.
- 2) Never combine more than $\cdot 3 \cdot$ units to create a multi-combination.

3D108944B

4 Combination table

4 - 1 Combination Table

RWEYQ-T9

4

Unit combination restrictions: ·VRV4· outdoor units (all models) + ·15·-class indoor units

Units in scope: ·FXZQ15A· and ·FXAQ15A·.

- 1. In case the system contains these indoor units and the total connection ratio (-CR-) \leq -100-%: no special restrictions. Follow the restrictions that apply to regular -VRV DX- indoor units.
- In case the system contains these indoor units and the total connection ratio (·CR·) > ·100·%: special restrictions apply.
 A. When the connection ratio (·CR1·) of the sum of all ·FXZQ15A· and/or ·FXAQ15A· units in the system ≤ ·70·%, and ALL other ·VRV DX· indoor units have an individual capacity class > ·50·: no special restrictions.
 - B. When the connection ratio (-CR1-) of the sum of all -FXZQ15A- and/or -FXAQ15A- units in the system ≤ -70-%, and NOT ALL other -VRV DX- indoor units have an individual capacity class > -50-: the restrictions below apply.

° 100% < CR ≤ 105% ->	·CR1· of the sum of all ·FXZQ15A· and/or ·FXAQ15A· indoor units in the system must be \leq ·70·%.
° 105% < CR ≤ 110% ->	·CR1· of the sum of all ·FXZQ15A· and/or ·FXAQ15A· indoor units in the system must be \leq ·60·%.
° 110% < CR ≤ 115% ->	·CR1· of the sum of all ·FXZQ15A· and/or ·FXAQ15A· indoor units in the system must be \leq ·40·%.
° 115% < CR ≤ 120% ->	·CR1· of the sum of all ·FXZQ15A· and/or ·FXAQ15A· indoor units in the system must be \leq ·25·%.
° 120% < CR ≤ 125% ->	·CR1· of the sum of all ·FXZQ15A· and/or ·FXAQ15A· indoor units in the system must be \leq ·10·%.

° 125% < CR \leq 130% -> •FXZQ15A· and •FXAQ15A· cannot be used.

Remark

Only the ·15·-class indoor units explicitly mentioned on this page are in scope. Other indoor units follow the rules that apply to regular ·VRV DX· indoor units.

3D104665A

RWEYQ-T9

Compatibility list: ·VRV4· heat pump - ·RA DX· indoor unit

	6	FT)(120.4
Wall mounted type	Emura	FTXJ20A
		FTXJ25A
		FTXJ35A
		FTXJ42A
		FTXJ50A
	Stylish	FTXA20
		FTXA25
		FTXA35
		FTXA42
		FTXA50
	FTXM	FTXM20R
		FTXM25R
		FTXM35R
		FTXM42R
		FTXM50R
		FTXM60R
		FTXM71R
Ceiling/wall mounted	Flex	FLXS25B
		FLXS35B
		FLXS50B
		FLXS60B
Floor standing type	FVXM	FVXM25F
		FVXM35F
		FVXM50F
		FVXM25A
		FVXM35A
		FVXM50A
		CVXM20A
	Nexura	FVXG25K
		FVXG35K
	1	FVXG50K

<u>Remark</u>

The limitations on the use of RA DX indoor units with the VRV4 Heat Pump are subject to the rules set out in drawings ·3D079543 and ·3D079540.

If you want to connect $\cdot RA \cdot / \cdot SA \cdot DX \cdot$ cassette, ceiling-mounted, or duct indoor units, use their $\cdot VRV$ DX \cdot indoor unit equivalents instead.

3D082373H

5 - 1 Capacity Table Legend

In order to fulfill more your requirements on quick access of data in the format you require, we have developed a tool to consult capacity tables.

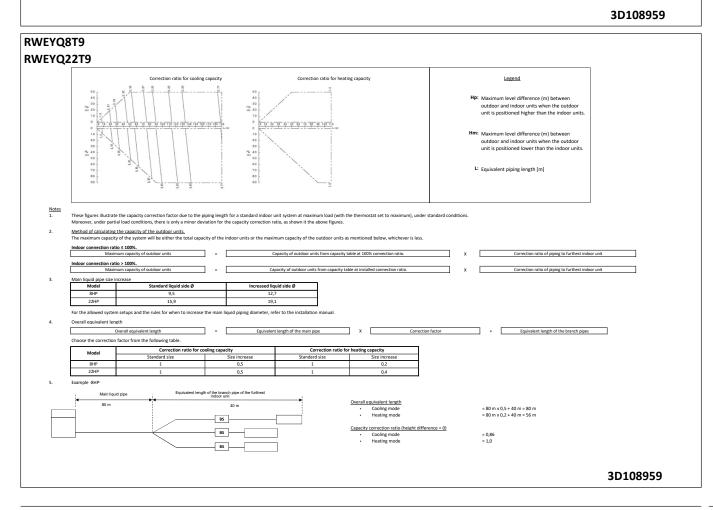
Below you can find the link to the capacity table database and an overview of all the tools we have to help you select the correct product:

<u>Capacity table database</u>: lets you find back and export quickly the capacity information you are looking for based upon unit model, refrigerant temperature and connection ratio.
 You can access the capacity table viewer here:

https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

 An overview of <u>all software tools</u> that we offer can be found here: <u>https://my.daikin.eu/denv/en_US/home/applications/software-finder.html</u>

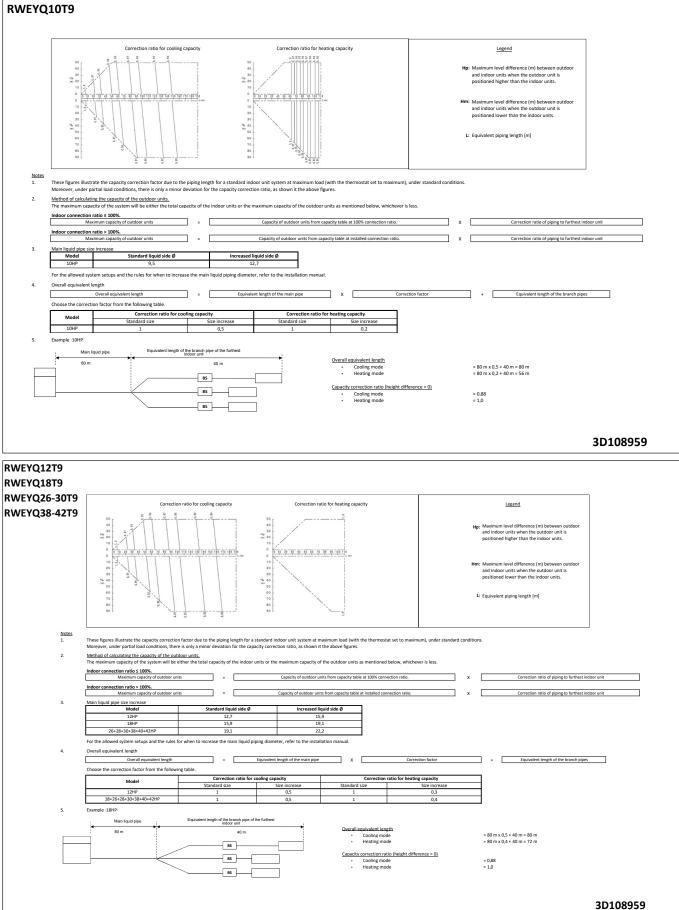
5 - 2 Capacity Correction Factor

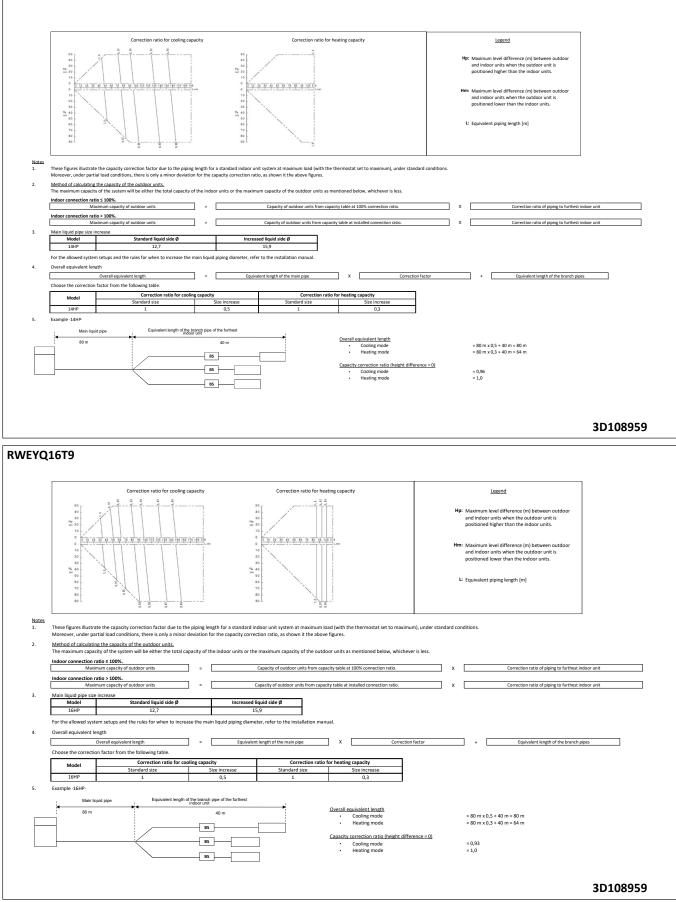

RWEYQ-T9

WC VRV Heat recovery Correction factor

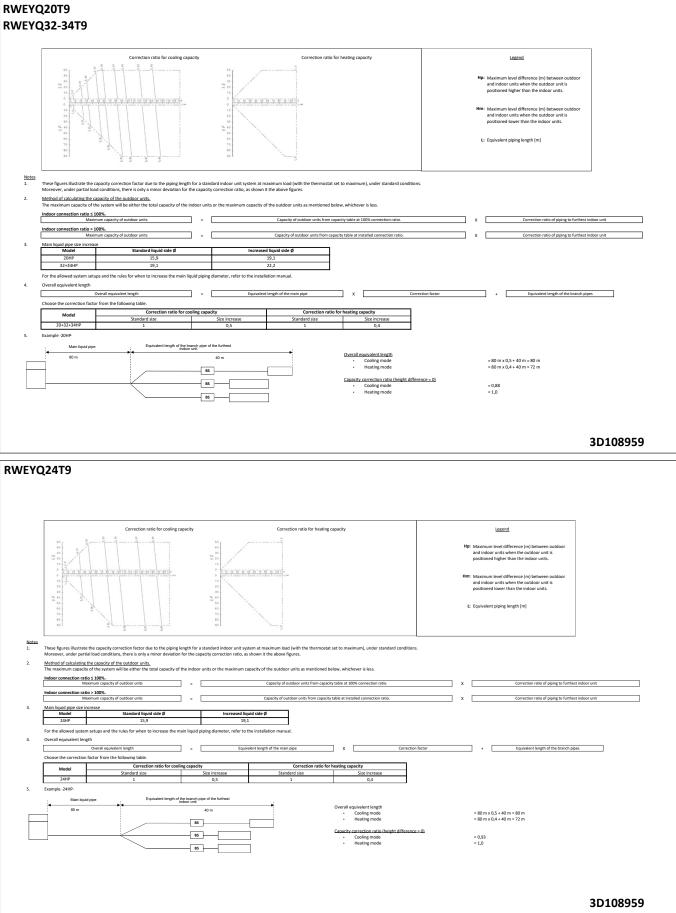
	Model	Page
Ŀ:	8HP	2
n	10HP	3
Single unit	12HP	4
Sir	14HP	5
	16HP	6
	18HP	4
	20HP	8
	22HP	2
	24HP	7
t	26HP	4
uni	28HP	4
Multi unit	30HP	4
Ĩ	32HP	8
	34HP	8
	36HP	9
	38HP	4
	40HP	4
	42HP	4

Notes

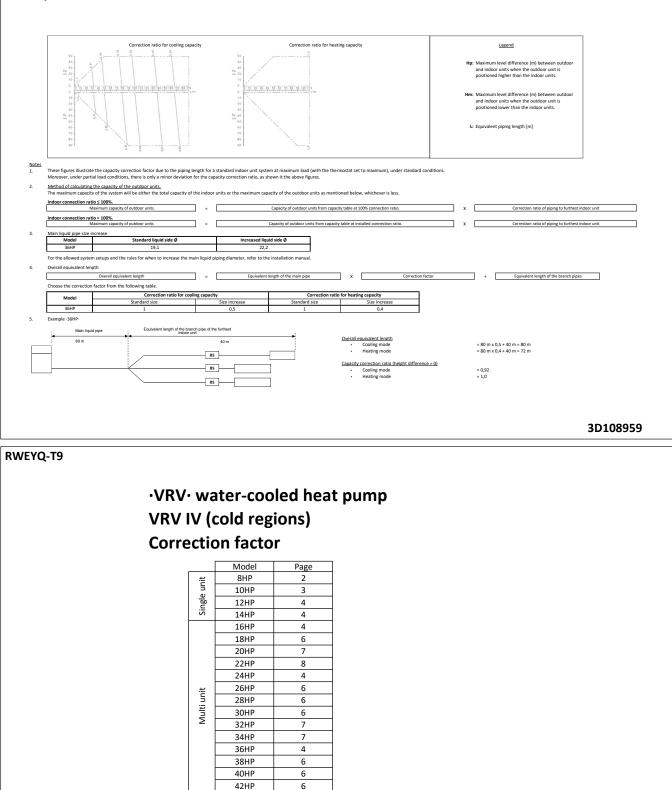

The multi-combination data corresponds with the standard multi-combinations described on \cdot 3D108944 \cdot .


5 - 2 Capacity Correction Factor

5 - 2 Capacity Correction Factor


RWEYQ14T9

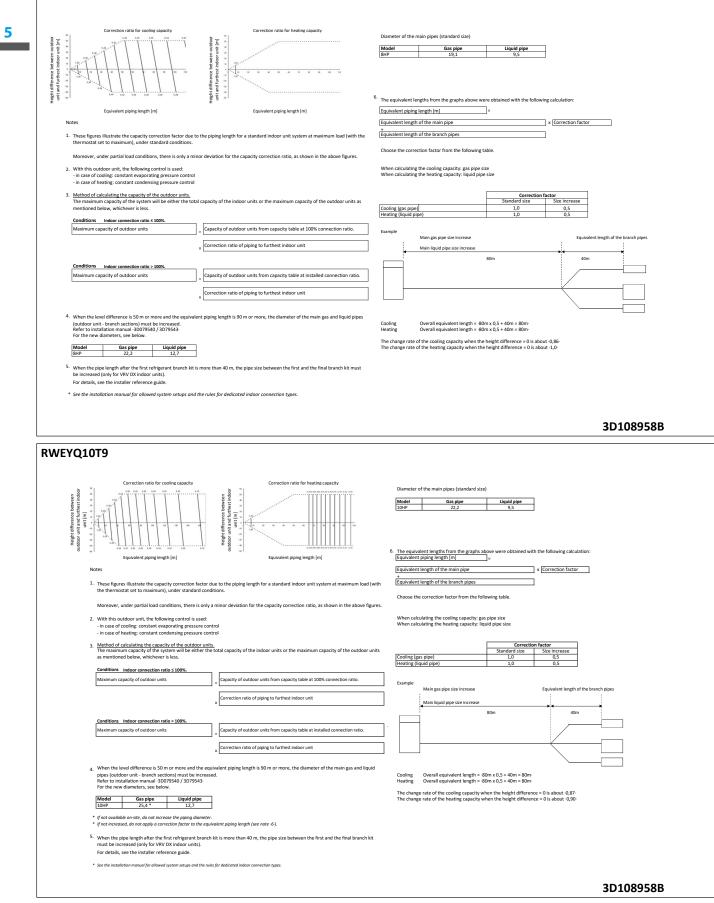
5 - 2 Capacity Correction Factor



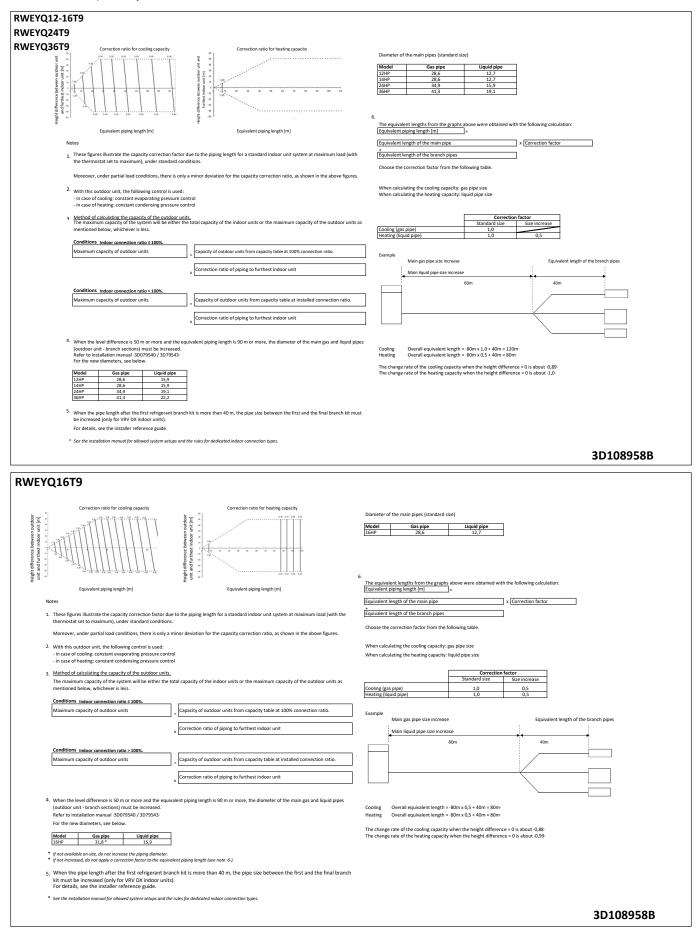
5 - 2 Capacity Correction Factor

RWEYQ36T9

Notes


The multi-combination data corresponds with the standard multi-combinations described on ·3D117167·.

3D108958B



5 - 2 Capacity Correction Factor

RWEYQ8T9

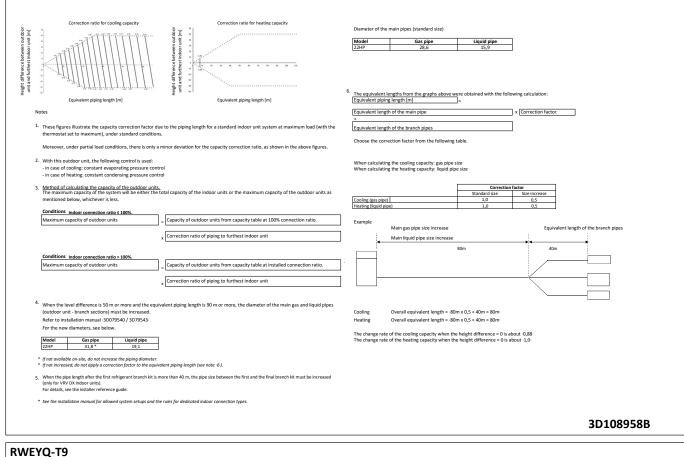
5 - 2 Capacity Correction Factor

DAIKIN

Capacity tables Capacity Correction Factor 5

5 - 2

RWEYQ18T9 RWEYQ26-30T9	
RWEYQ38-42T9	
Criterion ratio for rouging capacity Transformation for hosting capacity Transforma	Model Gas pipe Liguid pipe 1889 28,6 15,9 26-3209 34,9 19,1 38-42109 41,3 19,1
Equivalent piping length [m]	The equivalent lengths from the graphs above were obtained with the following calculation: [Equivalent piping length [m]] ⁼
Notes	Equivalent length of the main pipe * Correction factor Equivalent length of the branch pipes
1. These figures illustrate the capacity correction factor due to the piping length for a standard indoor unit system at maximum load (with the thermostat set to maximum), under standard conditions.	Equivalent tenget of the trainin pipes Choose the correction factor from the following table.
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. ^{2.} With this outdoor unit, the following control is used: - In case of cooling: constant evaporating pressure control - In case of heating: constant condensing pressure control	When calculating the cooling capacity: gas pipe size When calculating the heating capacity: liquid pipe size
 Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as 	Correction factor Standard size Size increase
mentioned below, whichever is less. Conditions Indoor connection ratio 5 100%.	Cooling (gas pipe) 1,0 0,5 Heating (liquid pipe) 1,0 0,5
Maximum capacity of outdoor units Capacity of outdoor units from capacity table at 100% connection ratio.	Example Main gas pipe size increase Equivalent length of the branch pipes
x Correction ratio of piping to furthest indoor unit	Main liquid pipe size increase
Conditions Indoor connection ratio > 100%.	80m 40m
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed connection ratio.	
x Correction ratio of piping to furthest indoor unit	
4. When the level difference is 50 m or more and the equivalent piping length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased.	Cooling Overall equivalent length = -80m x 1,0 + 40m = 120m-
Refer to its itslation manual 3009340 / 3079543 For the new diameters, see below.	Heating Overall equivalent length = -80m x 0,5 + 40m = 80m-
Model Gas pipe Liquid pipe 13HP 31,8 * 19,1	The change rate of the cooling capacity when the height difference = 0 is about 0.83 . The change rate of the heating capacity when the height difference = 0 is about 1.0 .
26-30HP 38,1* 22,2 38°42HP 41,3 22,2	
 If not available on-site, do not increase the piping diameter. If not increased, do not apply a correction factor to the equivalent piping length (see note -6-). 	
5. When the pipe length after the first refrigerant branch kit is more than 40 m, the pipe size between the first and the final branch kit must be increased (only for VRV DX indoor units).	
For details, see the installer reference guide. * See the installator annual for allowed system setups and the rules for dedicated indoor connection types.	
see nie nisuunuun nunnuu ja unoneu ysiem seups unu me roes ja ueanaten nuoor comecuon ypes.	3D108958B
RWEYQ20T9 RWEYQ32-34T9	
Correction ratio for cooling capacity Correction ratio for cooling capacity Correction ratio for cooling capacity Correction ratio for heating capacity Correction ratio f	Diameter of the main pipes (standard size) Model Gas pipe Liquid pipe 20HP 28,6 15,9 32/34HP 34,9 19,1
X Y <th>The equivalent lengths from the graphs above were obtained with the following calculation: [Equivalent piping length [m] =</th>	The equivalent lengths from the graphs above were obtained with the following calculation: [Equivalent piping length [m] =
Notes	Equivalent length of the main pipe x Correction factor
 These figures illustrate the capacity correction factor due to the piping length for a standard indoor unit system at maximum load (with the thermostat set to maximum), under standard conditions. 	
	Equivalent length of the branch pipes
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures.	Equivalent length of the branch pipes Choose the correction factor from the following table.
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - in case of cooling: constant evaporating pressure control - in case of cooling: constant condensing pressure control	Choose the correction factor from the following table. When calculating the cooling capacity: gas pipe size When calculating the heating capacity: liquid pipe size
Moreover, under partial dia conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - in case of cooling: constant evaporating pressure control - in case of heating: constant condensing pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less.	Choose the correction factor from the following table. When calculating the cooling capacity: gas pipe size
Moreover, under partial dia conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - in case of cooling: constant evaporating pressure control - in case of heating: constant condensing pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as	Choose the correction factor from the following table. When calculating the cooling capacity: gas pipe size When calculating the heating capacity: liquid pipe size Correction factor Standard size Size increase Cooling (gas pipe) 1.0 0.5 Heating (liquid pipe) 1.0 0.5
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - in case of neating: constant evaporating pressure control - in case of heating: constant condensing pressure control 3. <u>Method of calculating the capacity of the outdoor units.</u> The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less. <u>Conditions</u> Indoor connection ratio s 100%.	Choose the correction factor from the following table. When calculating the cooling capacity: gas pipe size When calculating the heating capacity: liquid pipe size Correction factor Standard Size Size Increase Cooling (gas pipe) 1,0 0,5 Heating (liquid pipe) 1,0 0,5
Moreover, under partial ad conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. With this outdoor unit, the following control is used: - in case of cooling: constant environming pressure control - in case of cooling: constant environming pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whicherer is ites. Conditions Indoor connection ratio 100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: iguid pipe size When calculating the heating capacity: liquid pipe size <u>Cooling (gas pipe)</u> 1.0 0.5 Heating (liquid pipe) 1.0 0.5 Heating Main gas pipe size increase Main gas pipe size increase Main gas pipe size increase
Moreover, under partial cad conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - in case of neating: constant exoparating pressure control - in case of heating: constant condensing pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units. Conditions Indoor connection ratio 5100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: iguid pipe size When calculating the heating capacity: liquid pipe size Cooling (gas pipe) Cooling (gas pipe) Cooling (gas pipe) 1.0 0.5 Heating (liquid pipe) 1.0 0.5 Heating (liquid pipe) Liquid pipe size increase Main gas pipe size increase Main liquid pipe size increase
Moreover, under partial ad conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. With this outdoor unit, the following control is used: - in case of cooling: constant environming pressure control - in case of cooling: constant environming pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whicherer is ites. Conditions Indoor connection ratio 100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: iguid pipe size When calculating the heating capacity: liquid pipe size Cooling (gas pipe) Cooling (gas pipe) Cooling (gas pipe) 1.0 0.5 Heating (liquid pipe) 1.0 0.5 Heating (liquid pipe) Liquid pipe size increase Main gas pipe size increase Main liquid pipe size increase
Moreover, under partial (ad conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - In case of heating: constant condensing pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units. Conditions Indoor connection ratio > 100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: iguid pipe size When calculating the heating capacity: liquid pipe size Cooling (gas pipe) Cooling (gas pipe) Cooling (gas pipe) 1.0 0.5 Heating (liquid pipe) 1.0 0.5 Heating (liquid pipe) Liquid pipe size increase Main gas pipe size increase Main liquid pipe size increase
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. I. With this outdoor unit, the following control is used: - In case of cooling: constant condensing pressure control - In case of cooling: constant condensing pressure control - In case of cooling: constant condensing pressure control - In case of cooling: constant condensing pressure control - In case of cooling: constant condensing pressure control - In case of cooling: constant condensing pressure control - Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whicherer is ites. Conditions Indoor connection ratio \$ 100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: gas pipe size When calculating the heating capacity: liquid pipe size The calculating the heating capacity: liquid pipe size The content of the branch pipes is a size increase the calculating the pipe size increase Main gas pipe size increase Main liquid pipe size increase Main l
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. I. With this outdoor unit, the following control is used: - In case of cooling: constant deviation gressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whicherer is its iss. Conditions Indoor connection ratio \$ 100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: liquid pipe size When calculating the heating capacity: liquid pipe size
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. 2. With this outdoor unit, the following control is used: - in case of heating: constant condensing pressure control - in case of heating: constant condensing pressure control 3. Method of calculating the capacity of the autdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less. Conditions: Indoor connection ratio 5 100%. Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio. x Correction ratio of piping to furthest indoor unit maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio. x Correction ratio of piping to furthest indoor unit Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed connection ratio. x Correction ratio of piping to furthest indoor unit x Correction ratio of piping to furthest indoor unit x Correction ratio of piping to furthest indoor unit x Correction ratio of piping to furthest indoor unit x Correction ratio of piping to furthest indoor unit <th>Choose the correction factor from the following table. When calculating the cooling capacity: liquid pipe size When calculating the heating capacity: liquid pipe size</th>	Choose the correction factor from the following table. When calculating the cooling capacity: liquid pipe size When calculating the heating capacity: liquid pipe size
Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures. I. With this outdoor unit, the following control is used: I in case of heating: constant domenising pressure control 3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less. Conditions Indoor connection ratio 5 100%. Maximum capacity of outdoor units	Choose the correction factor from the following table. When calculating the cooling capacity: liquid pipe size When calculating the heating capacity: liquid pipe size


5

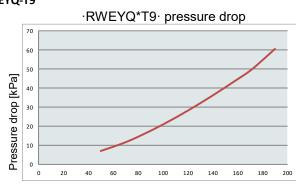
5

5 Capacity tables

5 - 2 Capacity Correction Factor

RWEYQ22T9

VRV4 Water Cooled Antifreeze Correction Factor


	Ethylene Glycol		Propylene Glycol			
	10%	0,998		10%	0,992	
Cooling capacity	20%	0,994		20%	0,988	
	30%	0,990	Cooling capacity	30%	0,983	
	40%	0,985		40%	0,974	
	50%	0,980		50%	0,968	
	10%	0,993		10%	0,985	
	20%	0,989		20%	0,982	
Heating capacity	30%	0,986	Heating capacity	30%	0,978	
	40%	0,982		40%	0,970	
	50%	0,979		50%	0,966	


3D108966

5 - 2 Capacity Correction Factor

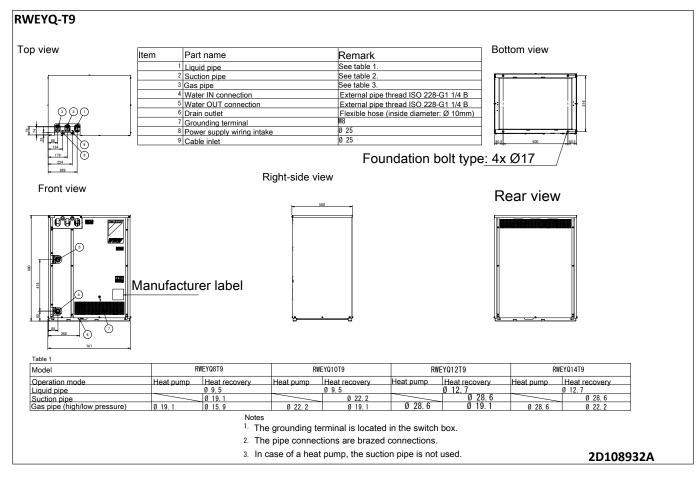
RWEYQ-T9

5

J 40%*: **		unig uio i			,		5	
		AC	:H73 // D	elta pressu	ire [kPa]			I
l/min	Water	20% EG	30% EG	40% EG	20% PG	30% PG	40% PG	t
50	5.4	6.8	6.9	7.0	7.1	7.2	7.5	Ť
60	7.4	9.3	9.4	9.6	9.7	9.8	10.2	Ī
70	9.7	12.1	12.2	12.5	12.6	12.8	13.3	Ī
80	12.3	15.3	15.5	15.9	16.0	16.2	16.9	Ī
90	15.2	18.9	19.1	19.6	19.8	20.1	20.8	T
100	18.4	22.9	23.2	23.7	23.9	24.3	25.2	T
110	21.9	27.2	27.6	28.2	28.5	28.9	30.0	I
120	25.7	31.9	32.2	33.1	33.4	33.9	35.1	I
130	29.7	37.0	37.5	38.4	38.7	39.3	40.7	I
140	34.1	42.4	43.0	44.0	44.4	45.1	46.8	I
150	38.8	48.2	48.9	50.1	50.5	51.2	53.2	Ī
160	43.8	54.4	55.2	56.5	57.0	57.8	60.0	I
170	49.1	61.0	61.9	63.3	63.9	64.8	67.3	I
180	54.7	67.9	68.9	70.5	71.1	72.2	74.9	I
190	60.6	75.2	76.3	78.1	78.8	80.0	83.0	Ι
		Water	filter /	/ Delta	pressure [k	Pa]		
		Flow [l	/min]		Water			
		50			3,5			
		60			5			
		80			8,5			
		96			12,5			
		12)		20			
		15)		31			3D108933
		19)		52		•	10100323

The values were measured during nominal cooling operation with an inlet water-glycol temperature of -10.°C. E6: Ethylene glycol P6:Propylene glycol ·ACH73: · plate heat exchanger (·100· plates)

The values were measured during nominal cooling operation with an inlet water temperature of $\cdot 30.^{\circ}$ C.

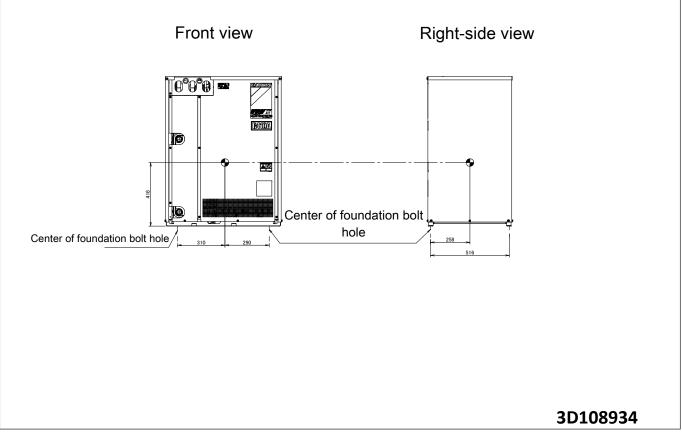

Notes

Influence on performance Influence on performance IEG 20%: +0.3-K during the condensation process, and -0.5-K during the evaporation process. IEG 30%: +0.7-K during the condensation process, and -0.7-K during the evaporation process. IEG 40%: +1.1-K during the condensation process, and -1.3-K during the evaporation process. IPG 30%: +1.3-K during the condensation process, and -1.3-K during the evaporation process. IPG 30%: +1.3-K during the condensation process, and -1.3-K during the evaporation process. IPG 40%: +1.5-K during the condensation process, and -1.3-K during the evaporation process. IPG 40%: +1.5-K during the condensation process, and -1.5-K during the evaporation process.

6

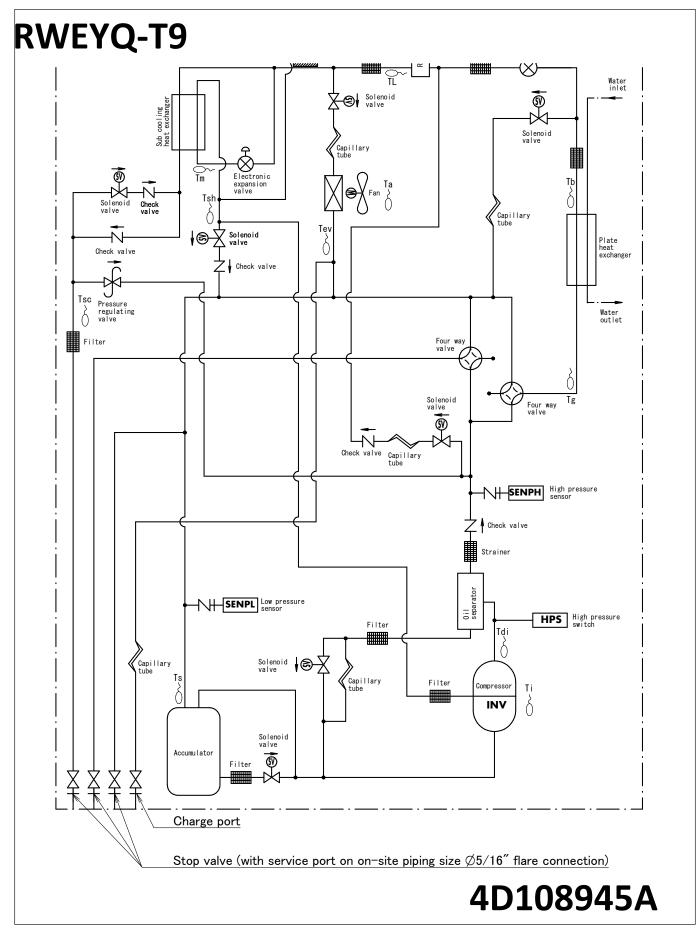
6 Dimensional drawings

6 - 1 Dimensional Drawings

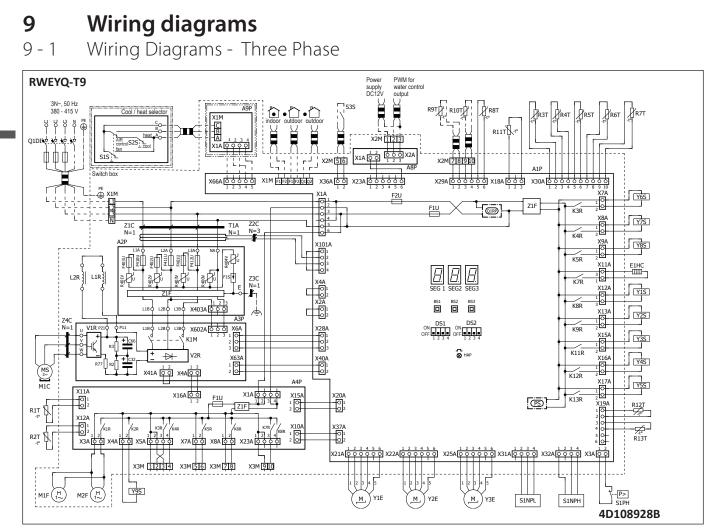


7 Centre of gravity

7 - 1 Centre of Gravity

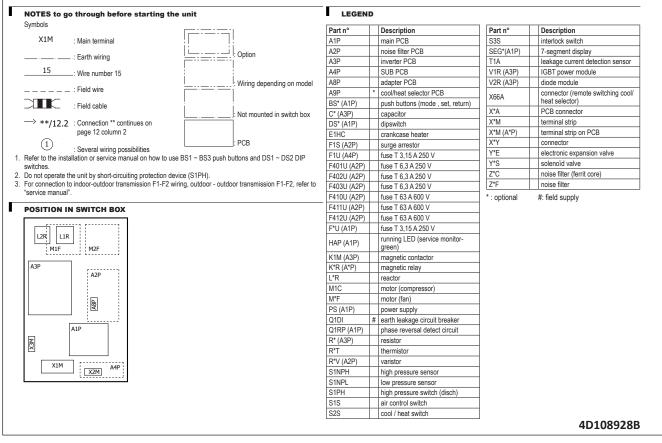

RWEYQ-T9

7



8 Piping diagrams

8 - 1 Piping Diagrams

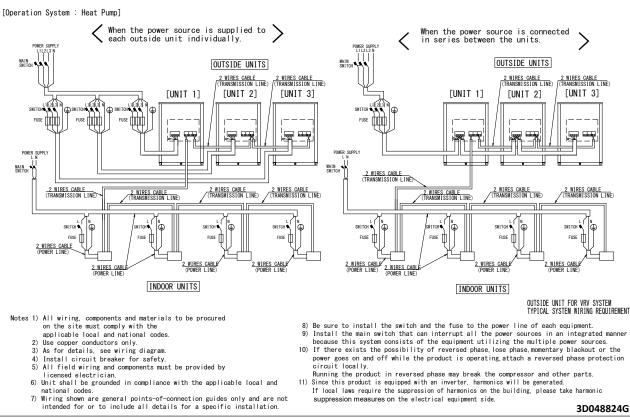


9

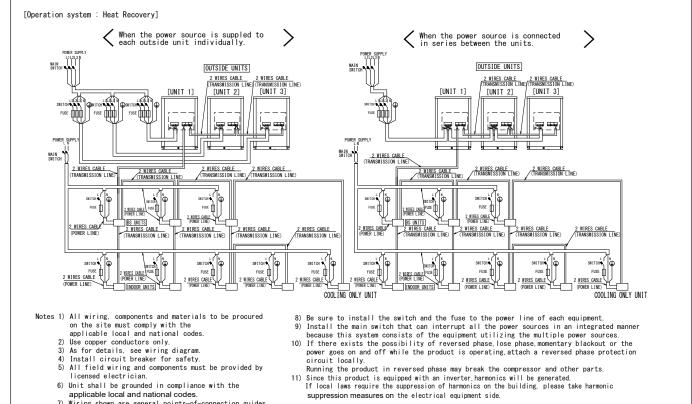
9 Wiring diagrams

9 - 2 Notes & Legend

RWEYQ-T9


External connection diagrams 10

10 - 1 External Connection Diagrams

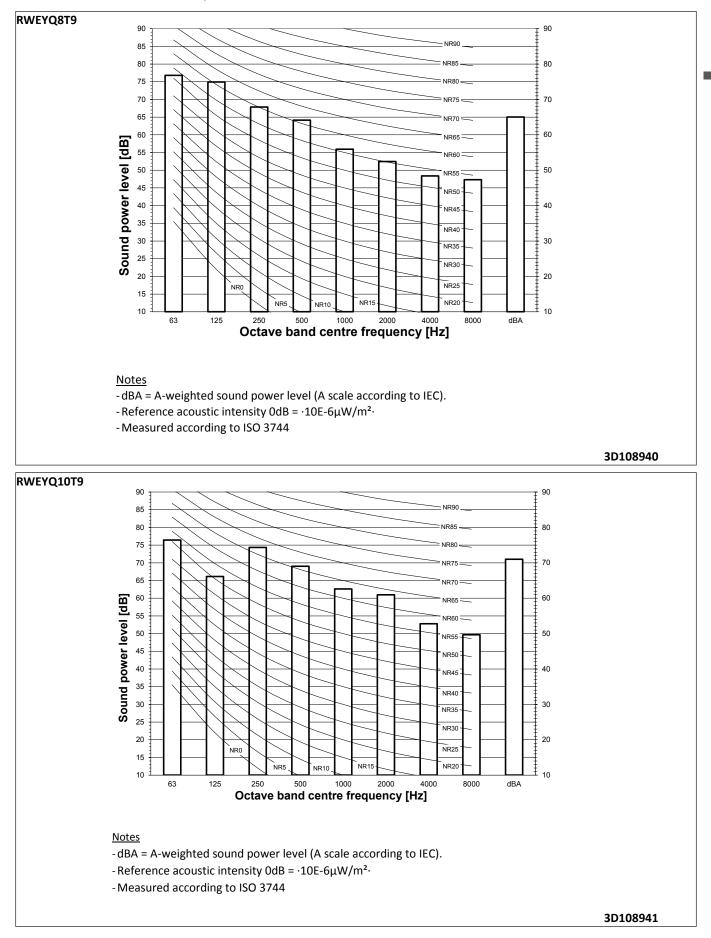

RWEYQ-T9

RWEYQ-T9

10

- - 3D048824G

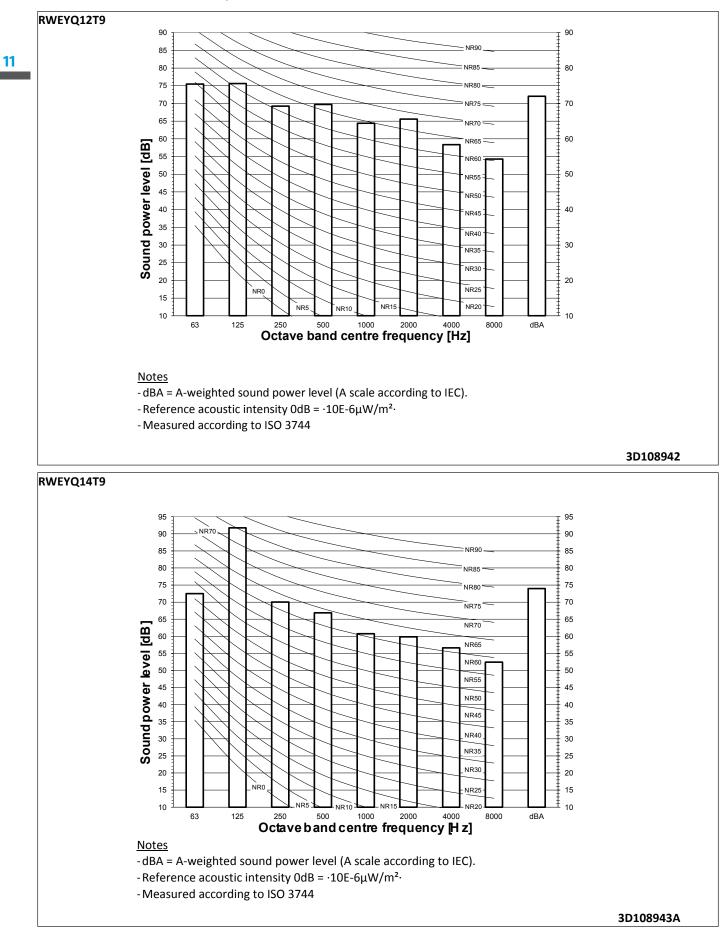
Wiring shown are general points-of-connection guides only and are not intended for or to include all details for a specific installation.

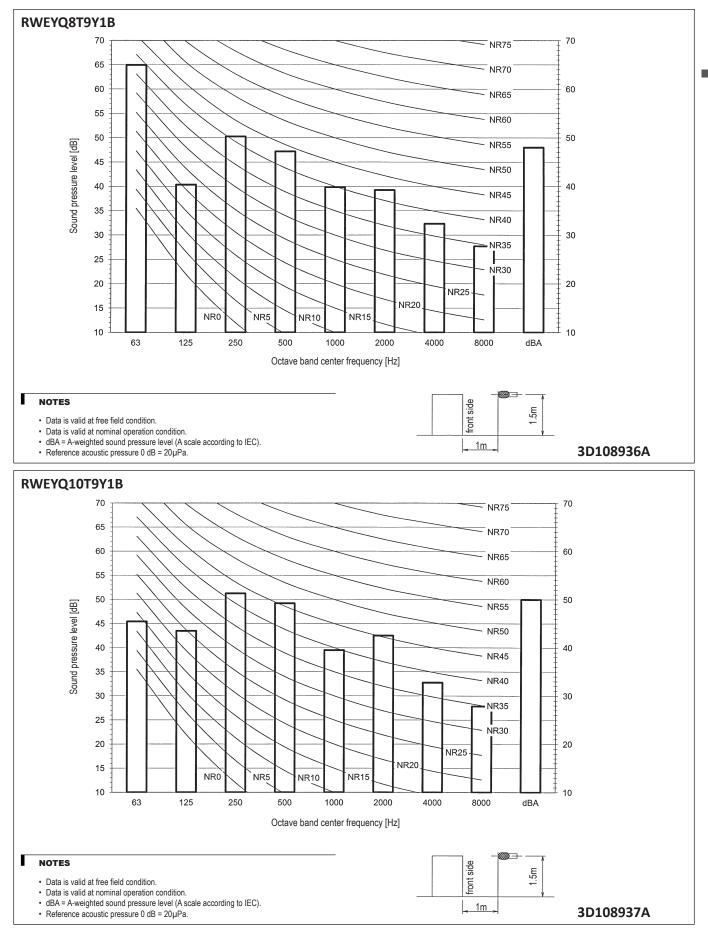

3D048823G

DAIKIN

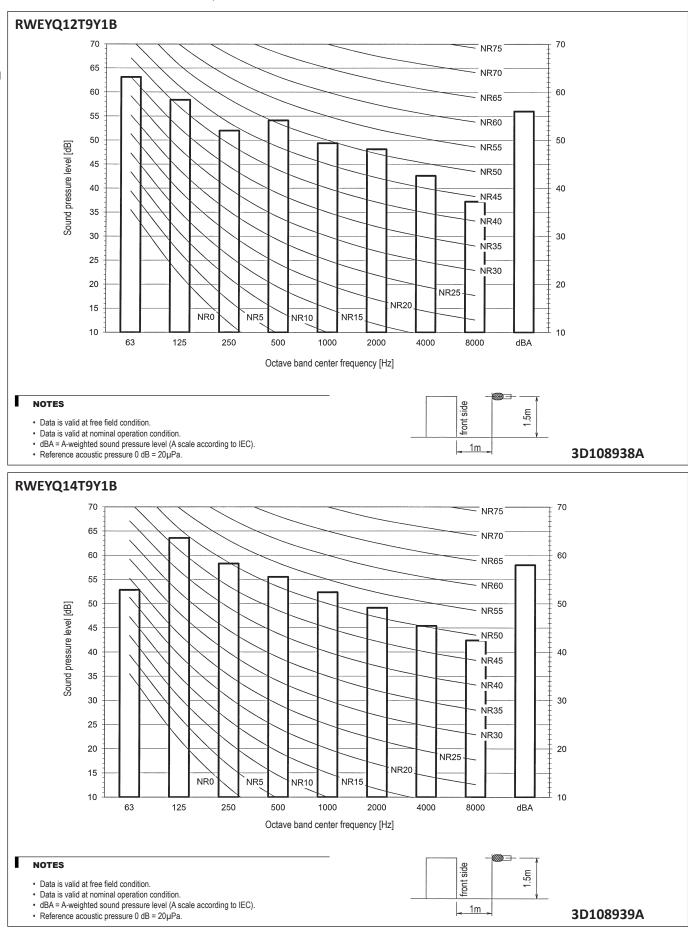
11

11 Sound data


11 - 1 Sound Power Spectrum

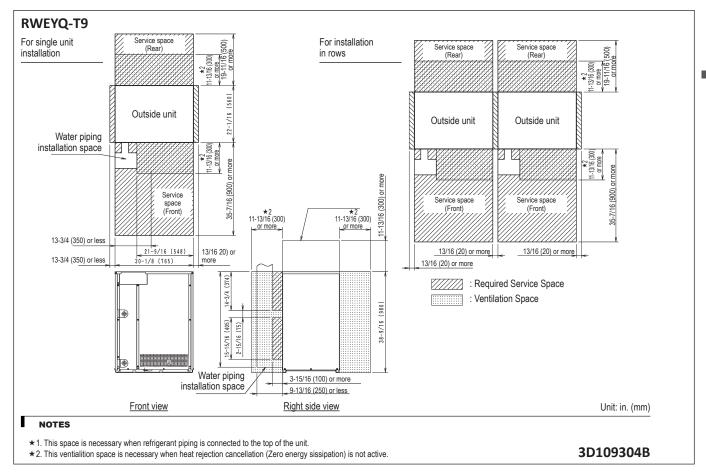

11 Sound data

11 - 1 Sound Power Spectrum


11 Sound data

11 - 2 Sound Pressure Spectrum

11 Sound data


11 - 2 Sound Pressure Spectrum

11

12 Installation

12 - 1 Installation Method

12 - 2 Refrigerant Pipe Selection

RWEYQ-T9

12

VRV4 Watercooled Field Piping Restrictions

Heat pump Piping restrictions 1/3

		Max	imum piping le	ngth	Maxin	num height diffe	erence	
		Longest pipe	After first branch	After first branch (for multi-	outdoor	Indoor-to-indoor	Outdoor-to- outdoor	Total piping length
		(A+[B,G,E,J])	(B,G,E,J)	(D)	(H1) Outdoor above	(H2)	(H3)	
		Actual / (Equivalent)	Actual	Actual / (Equivalent)	indoor / (indoor above outdoor)			
VRV DX indoor units only		165/(190)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	300m
		120/(140)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	500m
Hydrobox connection		120/(140)m	40m	10/(13)m	50/(40)m	15m	5m	300m
RA connection		100/(120)m	40m ⁽²⁾	-	50/(40)m	15m	-	250m
	Pair	50/(55) _m ⁽⁴⁾	-	-	50/(40)m	-	-	_
AHU connection	Multi	120/(140)m	40m	10/(13)m	50/(40)m	15m	5m	300m
	Mix	120/(140)m	40m	10/(13)m	50/(40)m	15m	5m	300m

<u>Remark</u>

Only available for single model configuration.

(1) If all conditions below are met, the limitation can be extended up to 90 m

- a. The piping length between all indoor units and the nearest branch kit is \leq 40m.
- b. It is necessary to increase the size of the gas and liquid piping.

If the increased pipe size is larger than the pipe size of the main pipe, also increase the size of the main pipe.

c. When the piping size is increased, the piping length has to be counted as double.

The total piping length has to be within limitations.

d. The piping length difference between the nearest indoor unit from the first branch to the outdoor unit and the farthest indoor unit to the outdoor unit is ≤ 40m.

(2) If the piping length between the first branch and the BP box or VRV indoor unit is more than 20m, increase the length of the gas and liquid piping between the first branch and the BP box or VRV indoor unit.

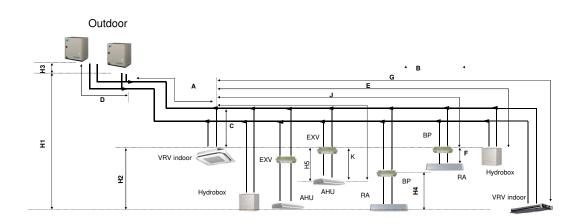
- (3) An extension to up to 90 m is possible without an additional option kit. Respect the following conditions:
 - -> If the outdoor units are positioned higher than the indoor units:
 - a. Size up the liquid piping
 - b. A dedicated setting on the outdoor unit is required.
 - -> If the outdoor units are positioned lower than the indoor units:
 - a. 40~60m Minimum connection ratio: 80%
 - 60~65m Minimum connection ratio: 90%
 - 65~80m Minimum connection ratio: 100%
 - 80~90m Minimum connection ratio: 110%
 - b. Size up the liquid piping

A dedicated setting on the outdoor unit is required.

(4) The allowable minimum length is 5 m.

(5) If the equivalent piping length between is > 90m, size up the main liquid and gas piping.

(6) Multiple air handling units (AHU)(EKEXV + EKEQ kits).


(7) Mix of AHU units and VRV DX indoor

3D108948

12 - 2 **Refrigerant Pipe Selection**

RWEYQ-T9

VRV4 Watercooled Field Piping Restrictions Heat pump Piping restrictions .2/3.

Remark (1) Schematic indication

Illustrations may differ from the actual appearance of the unit.

(2) This is only to illustrate piping length limitations. Combination of indoor unit types is not allowed.

Refer to combination table ·3D079543· for details about the allowed combinations.

		Allowed pi	ping length	Maximum h	eight difference
		·BP· to ·RA·	·EXV· to ·AHU·	·BP· to ·RA·	·EXV· to ·AHU·
		(F)	(K)	(H4)	(H5)
·RA· connect	ion	2~15m	-	5m	-
·AHU·	Pair	-	≦5m	-	5m
connection	Multi (1)	-	≦5m	-	5m
	Mix ⁽²⁾	-	≦5m	-	5m

Remark

(1) Multiple air handling units (·AHU·)(·EKEXV· + ·EKEQ· kits).

(2) Mix of ·AHU· units and ·VRV DX indoor·

3D108948

12 - 2 Refrigerant Pipe Selection

RWEYQ-T9

VRV4 Watercooled Field Piping Restrictions Heat pump

Piping restrictions 3/3

System pattern Allowed connection ratio (CR)		Τα	otal		Allowed	capacity	
Other combinations are no	ot allowed.	Capacity	Indoor unit quantity (VRV, RA, AHU, Hydrobox)	VRV DX indoor unit	RA DX indoor unit	Hydrobox unit	Air handling unit (AHU)
	Including FXZQ15 or FXAQ15	50~125%	Max.64	50~125%	-	-	-
	Including FXFQ20 or FXFQ25	50~130%	Max.64	50~130%	-	-	-
VRV DX indoor units only	Only FXDQ, FXSQ and FXAQ20~63	50~150%	Max.64	50~150%	-	-	-
	All other models (single system)	50~150%	Max.64	50~150%			
	All other models (multi system)	50~130%	Max.64	50~130%	-	-	-
VRV DX indoor unit + RA D	K	80~130%	Max.32 ⁽¹⁾	0~130%	0~130%	-	-
·RA DX· indoor units only		80~130%	Max.32 ⁽¹⁾	-	80~130%	-	-
VRV DX indoor unit + LT hy	drobox	50~130%	Max.32	50~130%	-	0~80%	-
VRV DX indoor unit + AHU		50~110% ⁽³⁾	Max.64 ⁽²⁾	50~110%	-	-	0~110%
AHU [∞] only Pair + multi		90~110% ⁽³⁾	Max.64 ⁽²⁾	-	-	-	90~110%

Remark

(1) There is no restriction on the number of connectable BP boxes.

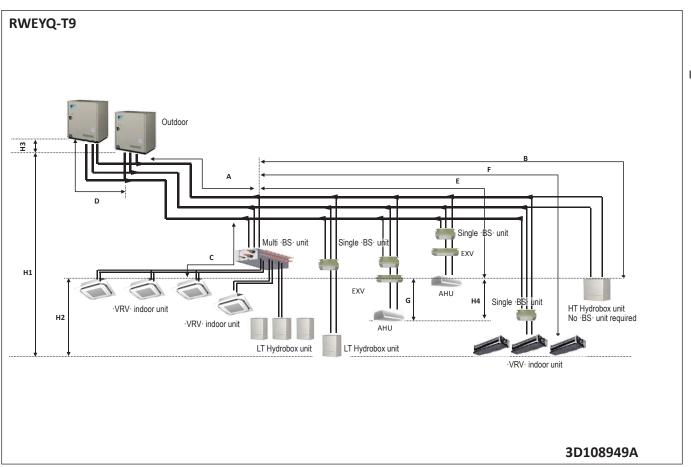
(2) For connection with AHU

EKEXV kits are also considered indoor units.

(3) Restrictions regarding the air handling unit capacity

(4) Pair AHU = system with 1 air handling unit connected to one outdoor unit

Multi AHU = system with multiple air handling units connected to one outdoor unit


About ventilation applications

- FXMQ_MF units are considered air handling units, following air handling unit limitations. Maximum connection ratio when combined with VRV DX indoor units: <30%. Maximum connection ratio when only air handling units are connected: <100%. For information on the operation range, refer to the documentation of the FXMQ_MF unit.
- II. Biddle air curtains are considered air handling units, following air handling unit limitations: For information on the operation range, refer to the documentation of the Biddle unit.
- III. [EKEXV + EKEQ] units combined with an air handling unit are considered air handling units, following air handling unit limitations. For information on the operation range, refer to the documentation of the EKEXV-EKEQ unit.
- IV. VKM units are considered to be regular VRV DX indoor units. For information on the operation range, refer to the documentation of the VKM unit.
- V. Because there is no refrigerant connection with the outdoor unit (only communication F1/F2), VAM units do not have connection limitations.
 However, since there is communication via F1/F2, count them as regular indoor unit when calculating the maximum allowed number of connectable indoor units.

3D108948

12 Installation

12 - 2 Refrigerant Pipe Selection

12 - 2 Refrigerant Pipe Selection

RWEYQ-T9

12

VRV4 Watercooled Field Piping Restrictions
Heat recovery

Piping restrictions

		To	tal		A	llowed capacity	1	
		Capacity	Maximum indoor unit quantity	VRV indoor unit	·VRV· indoor unit without ·BS· unit	HT Hydrobox unit	LT Hydrobox unit	Air handling unit (AHU)
					Cooling only			
			(*1)		(*4)			
·VRV· indoor units only	Including FXZQ15 or FXAQ15	50 ~ 125 %	64	50 ~ 125 %	0 ~ 50 %	Not allowed	Not allowed	Not allowed
	Including FXFQ20 or FXFQ25	50 ~ 130 %	64	50 ~ 130 %	0 ~ 50 %	Not allowed	Not allowed	Not allowed
	Only FXDQ, FXSQ and FXAQ20~63	50 ~ 150 %	64	50 ~ 150 %	0 ~ 50 %	Not allowed	Not allowed	Not allowed
	All other models (single system)	50 ~ 150 %	64	50 ~ 150 %	0 ~ 50 %	Not allowed	Not allowed	Not allowed
	All other models (multi system)	50 ~ 130 %	64	50 ~ 130 %	0 ~ 50 %	Not allowed	Not allowed	Not allowed
·VRV· indoor units + LT	Hydrobox	50 ~ 130%	32	50 ~ 130 %	0 ~ 50 %	Not allowed	0 ~ 80%	Not allowed
·VRV· indoor units + H	Γ Hydrobox	50 ~ 200%	32	50 ~ 110 %	Not allowed	0 ~ 100 %	Not allowed	Not allowed
"·VRV· indoor units + H Where (·VRV· indoor ur	IT Hydrobox + LT Hydrobox nits + LT Hydrobox)"	"50 ~ 200% 50 ~ 130%"	32	50 ~ 110 %	Not allowed	"0 ~ 100 % _"	0 ~ 80%	Not allowed
AHU only Pair + Multi		Not allowed	Not allowed	Not allowed	Not allowed	Not allowed	Not allowed	Not allowed
·VRV· indoor unit + ·AHU	Js	50 ~ 110 %	64	50 ~ 110 %	0 ~ 50 %	Not allowed		0~60%

NOTES

- 1. Excluding $\cdot BS \cdot$ units and including $\cdot EXV \cdot$ kits.
- 2. Pair AHU = system with 1 air handling unit connected to one outdoor unit
- Multi AHU = system with multiple air handling units connected to one outdoor unit
- 3. Other combinations than mentioned in this combination table are prohibited.
- 4. Cooling-only VRV indoor units cannot be combined with HT Hydrobox units.
- 5. Restrictions regarding the air handling unit capacity

Amount of units connectable to a ·BS· unit

	BS1Q10	BS1Q16	BS1Q25	Multi ·BS· per branch	Multi ·BS· when 2 branches are combined
	(*6)	(*6)	(*6)	(*6)	(*5) (*6)
·VRV· indoor unit	Maximum ·6· units	Maximum ·8· units	Maximum ·8· units	Maximum ·5· units	Maximum ·5· units
Air handling unit (AHU)	Maximum ·100· class	Maximum ·160· class	Maximum ·250· class	Maximum ·140· class	Maximum ·250· class
	Maximum ·100· class	Maximum ·160· class	Maximum ·250· class	Maximum ·140· class	Maximum ·250· class
LT Hydrobox unit	= 1 x HXY080	= Maximum ·2 x HXY080·	= Maximum ·3 x HXY080·	= Maximum ·1 x HXY080·	= Maximum ·3 x HXY080·
		Or maximum ·1 x HXY125·	Or maximum ·2 x HXY125·	Or maximum ·1 x HXY125·	Or maximum ·2 x HXY125·
			Or ·HXY080 + HXY125∙		Or ·HXY080 + HXY125∙

NOTES

- 1. When combining ·2· branches, the maximum piping length between the ·BS· unit and the indoor unit is ≤ 20m. If the length of this piping is > 20m, increase the size of the liquid pipe.
- 2. When using Hydrobox units, do not combine them with other types of units.

3D108949A

12 - 2 Refrigerant Pipe Selection

RWEYQ-T9

VRV4 Watercooled Field Piping Restrictions Heat recovery Piping restrictions

	N	laximum piping lengt	h	Max	kimum height differen	се	Total piping length
	Longest pipe from the outdoor unit or the last multi- outdoor piping branch	Longest pipe after first branch	Longest pipe from the outdoor unit to the last multi- outdoor piping branch	Indoor-to-outdoor Outdoor unit higher than indoor unit / Indoor unit higher than outdoor unit	Indoor-to-indoor	Outdoor-to-outdoor	Piping length
	Actual / Equivalent	Actual	Actual / Equivalent				
	Maximum: · (A+B, A+C, A+E, A+F)·	Maximum: ·(B,C,E,F)·	Maximum: ·(D)·	Maximum: ·(H1)·	Maximum: ·(H2)·	Maximum: ·(H3)·	
·VRV· indoor units only	165/190 m (*3)	40 m (*1)	10/13 m	50/40 m (*2)	30m	5 m	300 m
	120/140m (*3)	40 m (*1)		50/40 m (*2)	30m		500 m
Hydrobox unit	120/140m (*3)	40 m		50/40 m	15m		300 m
AHU (*4)	120/140m (*3)	40 m		50/40 m	15m		300 m

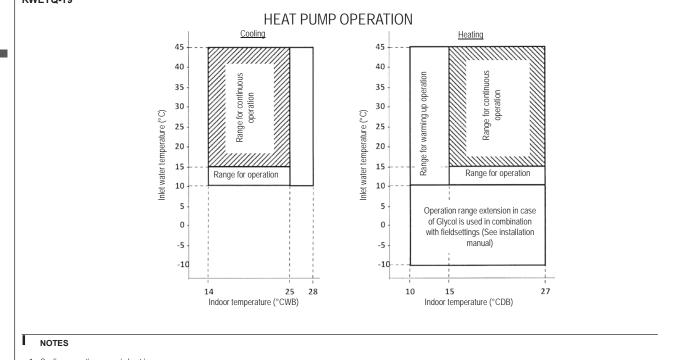
	Maximum piping length	Maximum height difference
	EXV> AHU: G	EXV> AHU: H4
AHU (*4)	5 m	5 m

NOTES

1. If all conditions below are met, the limitation can be extended up to 90 m

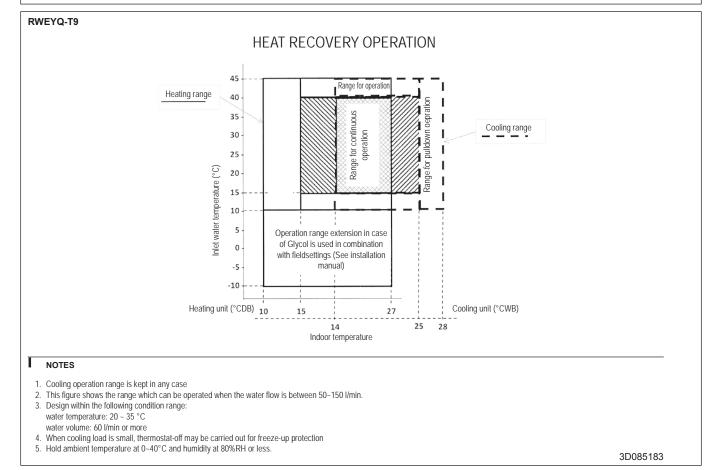
- 1.1. In case of ·BS1Q· units, the piping length between all indoor units and the nearest branch kit is ≤ ·40·m.
- 1.2. In case of multi BS units, the piping length between all indoor units and the multi BS unit is ≤ 40 m.
- 1.3. It is required to size up the liquid piping between the first branch kit and the last. In contrast to multi BS units, ·BS1Q· units are not considered branch kits. If the increased pipe size is larger than the pipe size of the main pipe, also increase the size of the main pipe.
- 1.4. When the piping size is increased, the piping length has to be counted as double. The total piping length has to be within limitations.
- 1.5. The piping length difference between the nearest indoor unit to the outdoor unit and the farthest indoor unit to the outdoor unit is ≤ .40 ·m.
- 2. If all conditions below are met, the limitation can be extended up to 90 m
 - 2.1. If the outdoor units are positioned higher than the indoor units:
 - 2.1.1. Minimum connection ratio: 80%
 - 2.1.2. Size up the liquid piping
 - 2.1.3. Outdoor unit setting
 - For more information, refer to the service manual.
 - 2.2. If the outdoor units are positioned lower than the indoor units:
 - 2.2.1. No technical cooling
 - 2.2.2. Size up the liquid piping
 - 2.2.3. Outdoor unit setting
 - 2.2.4. Minimum connection ratio
 - -40~60m: Minimum connection ratio: .80%.
 - -60~65m: Minimum connection ratio: .90%.
 - -65~80m: Minimum connection ratio: ·100%·
 - -80~90m: Minimum connection ratio: ·110%·
- 3. If the equivalent piping is > \cdot 90 \cdot m, size up the main liquid piping.
- 4. Mix of ·DX· units and ·AHU's·
- 5. If there is no branch kit present in the system, the longest pipe after the multi \cdot BS· unit has to be $\leq \cdot$ 40·m.

3D108949A



Operation range 13

13 - 1 **Operation Range**


RWEYQ-T9

13

- 1. Cooling operation range is kept in any case
- This figure shows the range which can be operated when the water flow is between 50~150 l/min. 2.
- Design within the following condition range: water temperature: 20 35 °C water volume: 60 l/min or more
- 4. When cooling load is small, thermostat-off may be carried out for freeze-up protection
- 5. Hold ambient temperature at 0~40°C and humidity at 80%RH or less.

3D085182

14 Appropriate Indoors

14 - 1 Appropriate Indoors

RWEYQ-T9

4xFXMQ50 4xFXMQ63 6xFXMQ50 5XFXMQ63 2xFXMQ80	·· HP	8	10	12	14	16
implement 5XFXMQ63 2xFXMQ80 multi outdoor units >>16HP-, the recommended amount of indoor units is the sum of the indoor ie outdoor unit. details about the allowed combinations, see the engineering databook. irropriate indoor units for ·RWEYQ*T*· outdoor units ered by -ENER LOT21- FXFQ20-25-32-40-50-63-80-100-125 FXQ215-20-25-32-40-50-63 FXCQ15-20-25-32-40-50-63 FXQ015-20-25-32-40-50-63 FXQ015-20-25-32-40-50-63 FXQ015-20-25-32-40-50-63 FXQ15-20-25-32-40-50-63 FXQ015-20-25-32-40-50-63 FXQ02-25-32-40-50-63 FXNQ25-63-80-100-125-100 FXMQ25-23-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-32-40-50-63 FXNQ20-25-35-50 FXNQ20-25-35-50 FXNQ20-25-35-50 FXNQ20-25-35-50 FXNQ20-25-35-50 FXNQ20-25 ide the scope of -ENER LOT21-				6VEVMOE0	1xFXMQ50	4XFXMQ63
details about the allowed combinations, see the engineering databook. ropriate indoor units for -RWEYQ*T*- outdoor units pred by -ENER LOT21- FXFQ20-25-32-40-50-63-80-100-125 FXQ215-20-25-32-40-50-63 FXQ20-25-32-40-50-63 FXQ20-25-32-40-50-63 FXQ215-20-25-32-40-50-63 FXQ215-20-25-32-40-50-63 FXQ20-25-32-40-50-63 FXQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-35-50 FXX20-25-35-50 FXX202-25-35-60 FXX202-25-35-50 FXX202-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250		4477101Q30	4757101003	UXFAIVIQJU	5XFXMQ63	2xFXMQ80
details about the allowed combinations, see the engineering databook. rropriate indoor units for ·RWEYQ*T*· outdoor units sered by ·ENER LOT21· FXFQ20-25-32:40-50-63-80-100-125 FXQ15-20-25-32:40-50-63 FXQ215-20-25-32:40-50-63 FXDQ15-20-25-32:40-50-63 FXDQ15-20-25-32:40-50-63 FXDQ15-20-25-32:40-50-63 FXMQ50-63:80-100-125-200-250 FXMQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-32:40-50-63 FXLQ20-25-35-50 FTXM20725-35-50 FTXM20725-35-50 FVXM25F-35F-50F FVXM25F-35F-50F FVXM25F-35F-50F FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21· EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250	or mult	ti outdoor units	·>16HP·, the re	commended	amount of indo	or units is the su
ropriate indoor units for -RWEYQ*T*- outdoor units pred by -ENER LOT21- FXFQ20-25-32-40-50-63-80-100-125 FXCQ15-20-25-32-40-50-63 FXCQ15-20-25-32-40-50-63 FXDQ15-20-25-32-40-50-63 FXDQ15-20-25-32-40-50-63 FXDQ15-20-25-32-40-50-63 FXAQ15-20-25-32-40-50-63 FXAQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-35-40-50-63 FXLQ20-25-35-40-50-63 FXLQ20-25-35-40-50-63 FXLQ20-25-35-40-50-63 FXLQ20-25-35-50 FXX20-25-35-50 FXX20-25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250	ingle o	utdoor unit.				
Pred by -ENER LOT21- FXFQ20-25-32-40-50-63-80-100-125 FXCQ15-20-25-32-40-50 FXCQ25-32-40-63 FXCQ15-20-25-32-40-50-63 FXCQ15-20-25-32-40-50-63 FXCQ15-20-25-32-40-50-63 FXHQ32-63-100 FXUQ71-100 FXUQ71-100 FXUQ2-25-32-40-50-63 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-250 FXLQ20-25-32-40-50 FXLQ20-25-32-40-50 FXLQ20-250 FXLQ20-	For deta	ails about the all	owed combina	tions, see the	engineering dat	tabook.
Pred by -ENER LOT21- FXFQ20-25-32-40-50 FXCQ20-25-32-40-50 FXCQ20-25-32-40-50-63-80-100-125 FXKQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63 FXHQ32-63-100 FXUQ71-100 FXUQ71-100 FXUQ2-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-60 FXL25-35-50 FXL25-3	Annron	riate indoor u	nits for ·RWF	VO*T*• outd	oor units	
FxFQ20-25-32-40-50-63-80-100-125 FXCQ20-25-32-40-50 FXCQ25-32-40-63 FXDQ15-20-25-32-40-50-63 FXDQ15-20-25-32-40-50-63 FXDQ15-20-25-32-40-50-63 FXAQ15-20-25-32-40-50-63 FXAQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FTXL20-25-32-40-50-63 FTXL20-25-35-42-50 FTXA20-25-35-42-50 FTXA20-25-35-42-50 FTXA20-25-35-60 FTXM2078-25R-35R-42R-50R-60R-71R FLXS25-35-50 FTXM2078-25R-35R-42R-50R-60R-71R FLXS25-35-50 FTXM2078-25R-35R-50F FVXM25F-35F-50F FVXM25F-35F-50F FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYV1100-150-200-250 CYV1100-150-200-250	•				oor units	
FXZQ15-20-25-32-40-50 FXCQ20-25-32-40-50-63 FXCQ20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63 FXAQ15-20-25-32-40-50-63 FXAQ215-20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-35-40 FTXM2078-25-835-84-28-50 FTXM2078-25-835-84-28-50 FTXM2078-25-835-84-28-50 FTXM2078-25-835-80 FXXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYV1100-150-200-250 CYV1100-150-200-250	verec					
FXC020-25-32-40-50-63-80-125 FXKQ25-32-40-63 FXSQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63 FXAQ15-20-25-32-40-50-63 FXAQ15-20-25-32-40-50-63 FXHQ32-63-100 FXUQ27-100 FXUQ20-25-32-40-50-63 ered by -ENER LOT10- FTX125-35-50 FTX125-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLX525-35-50-60 FVXM25F-35R-50F FVXG25-35-50 FVXM25F-35R-50F FVXG25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVL100-150-200-250				125		
FXKQ25-32-40-63 FXSQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63 FXAQ15-20-25-32-40-50-63 FXAQ32-63-100 FXUQ21-100 FXUQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FTXL20-25-35-40-50 FTXL25-35-50 FTXL25-35-50 FTXL2078-25R-35R-42R-50R-60R-71R FLX525-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLX525-35-50 FVXM25R-35R-50F FVXM25R-35R-50F FVXM25R-35R-50F FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250						
FXSQ15-20-25-32-40-50-63-80-100-125-140 FXMQ50-63-80-100-125-200-250 FXAQ15-20-25-32-40-50-63 FXHQ32-63-100 FXNQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 ered by •ENER LOT10- FTXI25-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLX25-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLX525-35-50 FVXM25F-35F-50F FVXM25F-35F-50F FVXM25F-35F-50F FVXM25F-35F-50F FVXM25F-35F-50F FVXM25A-35A-50A CVXM20A ide the scope of •ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250						
FXMQ50-63-80-100-125-200-250 FXAQ15-20-25-32-40-50-63 FXUQ2-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FXUQ20-25-32-40-50-63 FTX20-25-35-50 FTXA20-25-35-50 FTXA20-25-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLX525-35-50 FVXM25A-35R-42R-50R-60R-71R FLX525-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250						
FXAQ15-20-25-32-40-50-63 FXHQ32-63-100 FXUQ71-100 FXUQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FTXA20-25-35-42-50 FTXM20-25-35-42-50 FTXM20-25-35-50-60 FTXM20-25-35-50-60 FVXM25F-35F-50F FVXM25F-35F-50F FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250						
FXHQ32-63-100 FXUQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 ered by -ENER LOT10- FTXI25-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLXS25-35-50-60 FTXM20R-25R-35R-42R-50R-60R-71R FLXS25-35-50F FVXM25R-35R-42R-50F FVXM25R-35R-40R-50F FVXM25R-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250						
FXUQ71-100 FXNQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63 FXL20-25-35-40-50-63 FTX20-25-35-50 FTX20-25-35-50 FTXM20R-25R-35R-42R-50R-60R-71R FLX525-35-50 FVXM25F-35F-50F FVXG25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250			2 40 50 05			
FXLQ20-25-32-40-50-63 ered by -ENER LOT10- FTXJ25-35-50 FTXA20-25-35-42-50 FTXM20R-25R-35R-42R-50R-60R-71R FLXS25-35-50-60 FVXM25F-35F-50F FVXG25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVL100-150-200-250						
Seried by ENER LOT10· FTXJ25-35-50 FTXM20-25-35-42-50 FTXM20R-25R-35R+42R-50R-60R-71R FLX525-35-50-60 FVXM25F-35F-50F FVXM25F-35F-50 FVXM252-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21· EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250						
FTXJ25-35-50 FTXM20-25-35-42-50 FTXM207-25-35-50-60R-71R FLXS25-35-50-60 FVXM25F-35F-50F FVX625-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ERE LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250		FXLQ20-25-32-40	0-50-63			
FTXJ25-35-50 FTXM20-25-35-42-50 FTXM2078-25R-35R-42R-50R-60R-71R FLXS25-35-50-60 FVXM25F-35F-50F FVX625-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ERE LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250	Covered	by ·ENER LOT1	0.			
FTXM20R-25R-35R-42R-50R-60R-71R FLXS25-35-50-60 FVXM25F-35F-50F FVX625-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250						
FLXS25-35-50-60 FVXM25F-35F-50F FVXG25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVH100-150-200-250 CYVH100-150-200-250						
FVXM25F-35F-50F FVXG25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVH100-150-200-250 CYVL100-150-200-250				71R		
FVXG25-35-50 FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVL100-150-200-250 CYVL100-150-200-250						
FVXM25A-35A-50A CVXM20A ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250						
ide the scope of -ENER LOT21- EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYV5100-150-200-250 CYVM100-150-200-250 CYVI00-150-200-250			0A			
EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250		CVXM20A				
HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250	Outside	the scope of ·ENE	R LOT21			
HXHD125-200 VKM50-80-100 CYV\$100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250		EKEXV50-63-80-1	100-125-140-200	-250-400-500 +	EKEQM / EKEQF	
VKM50-80-100 CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250						
CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250						
CYVM100-150-200-250 CYVL100-150-200-250			0.250			
CYVL100-150-200-250						
EKVDX32-50-80-100 + VAMJ8						
		EKVDX32-50-80-	100 + VAMJ8			

DAIKIN

Daikin Europe N.V. Naamloze Vennootschap - Zandvoordestraat 300 - 8400 Oostende - Belgium - www.daikin.eu - BE 0412 120 336 - RPR Oostende (Responsible Editor)

The present leaflet is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe NV. Daikin Europe NV. has compiled the content of this leaflet to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe NV. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this leaflet. All content is copyrighted by Daikin Europe NV.