

Системы VRV IVс рекуперацией теплоты Кондиционирование воздуха Технические данные REYO-U

REYQ8U7Y1B REYQ10U7Y1B REYQ12U7Y1B REYQ14U7Y1B REYQ16U7Y1B REYQ18U7Y1B REYQ20U7Y1B REYQ10U7Y1B. REYQ13U7Y1B REYQ16U7Y1B. REYQ18U7Y1B. REYQ20U7Y1B. REYQ22U7Y1B REYQ24U7Y1B REYQ26U7Y1B REYQ28U7Y1B REYQ30U7Y1B REYQ32U7Y1B REYQ34U7Y1B REYQ36U7Y1B REYQ38U7Y1B REYQ40U7Y1B REYQ42U7Y1B REYQ44U7Y1B REYQ46U7Y1B REYQ48U7Y1B REYQ50U7Y1B REYQ52U7Y1B REYQ54U7Y1B

REMQ5U7Y1B

содержание REYQ-U

	REYQ-U	4
2	Технические характеристики	5
3	Опции	32
1	Таблица сочетания	33
5	Таблицы производительности Условные обозначения таблицы производительностей Поправочный коэффициент для общей теплопроизводительности Поправочный коэффициент для производительности	35 35 36 37
5	Размерные чертежи	42
7	Центр тяжести	43
3	Схемы трубопроводов	44
)	Монтажные схемы Монтажные схемы - Три фазы	45 45
0	Схемы внешних соединений	49
1	Данные об уровне шума Спектр звуковой мощности Спектр звукового давления Спектр звукового давления в тихом режиме, уровень 1 Спектр звукового давления в тихом режиме, уровень 2 Спектр звукового давления в тихом режиме, уровень 3	51 55 59 61 63
2	Установка Способ монтажа Крепление и фундаменты блоков Выбор труб с хладагентом	65 65 67
3	Рабочий диапазон	69
4	Подходящие внутренние блоки	70

1 Характеристики

1 - 1 REYO-U

Самая высокая эффективность и; высокий уровень комфорта

- > Выбирая продукт LOOP by Daikin, вы поддерживаете повторное использование хладагента. Более подробная информация приведена на сайте www.daikin.eu/loop-by-daikin
- Полностью интегрированное решение с рекуперацией теплоты, обеспечивающее максимальную эффективность с СОР до 8!
- Охват всех тепловых потребностей здания единой системой:
 Точное регулирование температур, вентиляция, ГВС,
 вентиляционные системы и воздушные завесы Biddle
- Бесплатное отопление и горячее водоснабжение с переносом теплоты из зон, требующих охлаждения, в зоны, требующие отопления или подготовки ГВС
- Соответствующие личным предпочтениям, идеально комфортные условия для гостей/арендаторов благодаря одновременному охлаждению и отоплению
- > Включает стандарты VRV IV и; технологии: регулирование температуры хладагента, постоянный нагрев, конфигуратор VRV, 7-сегментный дисплей и компрессоры с полностью инверторным управлением, 4-сторонний теплообменник, охлаждение платы хладагентом, новый двигатель вентилятора постоянного тока
- Настройте систему VRV для достижения более высокой сезонной эффективности и; комфорта, используя функцию изменения температуры хладагента в зависимости от погодных условий. Повышение сезонной эффективности на 28%. Больше никаких холодных сквозняков благодаря высокой температуре подаваемого воздуха
- Постоянный комфорт: Уникальная технология постоянного нагрева делает VRV IV лучшей альтернативой традиционным системам отопления

- Свободная комбинация высокоэффективных наружных блоков с учетом пространства, необходимого для монтажа
- Подходит для установки в любом здании: внутри или снаружи (высокое внешнее статическое давление достигает 78,4 Па).
 Установка внутри позволяет уменьшить длину трубопроводов, снизить затраты на монтаж, повысить эффективности и улучшить визуальное эстетическое восприятие
- Упрощенная установка и; гарантированная оптимальная
 эффективность благодаря автоматической зарядке и; проверке
- Простое соответствие положениям нормативных документов, касающихся F-газов, благодаря автоматизированной функции проверки содержания хладагента
- Значительная гибкость трубопроводов: перепад высоты внутри помещения 30 м, максимальная длина трубы: 190 м, общая длина трубопроводов: 1000 м
- > Возможность расширить рабочий диапазон при охлаждении до -20°С для технического охлаждения, например, серверные помещения
- Способность систем управления контролировать каждую зону индивидуально позволяет свести эксплуатационные расходы к минимуму
- > Возможность поэтапного монтажа
- Поддержание системы в наилучшем состоянии благодаря нашему облачному сервису Daikin Cloud Service:: Непрерывный контроль, обеспечивающий максимальную эффективность, увеличение срока службы, немедленную сервисную поддержку благодаря прогнозу неисправностей

Синвертором

Technical Spe	cifications		REYQ8U	REYQ10U	REYQ12U	REYQ14U
Рекомендуемые с	очетания		4 x FXFQ50AVEB	4 x FXFQ63AVEB	6 x FXFQ50AVEB	1 x FXFQ50AVEB + 5 x FXFQ63AVEB
Recommended cor	mbination 2		4 x FXSQ50A2VEB	4 x FXSQ63A2VEB	6 x FXSQ50A2VEB	1x FXSQ50A2VEB + 5 > FXSQ63A2VEB
Recommended cor	mbination 3		4 x FXMQ50P7VEB	4 x FXMQ63P7VEB	6 x FXMQ50P7VEB	1x FXMQ50P7VEB + 5 : FXMQ63P7VEB
Колодопроизво- цительность	Prated,c	kW	22,4 (1)	28,0 (1)	33,5 (1)	40,0 (1)
Геплопроизводи-	Ном. 6°С вл.т.	kW	22,4 (2)	28,0 (2)	33,5 (2)	40,0 (2)
гельность	Prated,h	kW	22,4 (2)	28,0 (2)	33,5 (2)	40,0 (2)
C/10/10 C/10	Макс. 6°С вл.т.	kW	25,0 (2)	31,5 (2)	37,5 (2)	45,0 (2)
Зходная мощ- ность - 50 Гц	Нагрев Ном. 6°С вл.т.	kW	5,40 (2)	7,58 (2)	9,65 (2)	10,69 (2)
ОР при ном. произв-сти	6°С вл.т.	kW/kW	4,15 (2)	3,69 (2)	3,47 (2)	3,74 (2)
троизв-сти ESEER - Автоматич	еский		7,41	7,37	6,84	7,05
SEER - Стандартн	ый		6,25	5,78	5,36	5,45
COP			4,2	4,3	4,7	4,3
СОР, рекомендуе	мое сочетание 2		4,1	4,3	4,6	4,2
СОР, рекомендуе			· · · · · · · · · · · · · · · · · · ·	,2	4,5	4,1
EER			7,2	6,7		6,5
БЕЕК, рекомендуе	мое сочетание ?		· · · · · · · · · · · · · · · · · · ·	,8	6,2	6,6
			7,2	6,7		6,6
EER, рекомендуе	иое сочетание э	%	7,2 286,1	,	257,0	·
ןs,c		90		264,8	,	255,8
լѕ,с, рекомендуем			270,2	270,4	246,6	259,4
լѕ,с, рекомендуем	10е сочетание 3		286,6	266,4	259,8	259,6
ιs,h		%	165,1	169,7	183,8	168,3
s,h, рекомендуел	лое сочетание 2		160,9	169,4	179,5	166,1
s,h, рекомендуем	лое сочетание 3		163,2	166,2	178,5	160,4
)хлаждение	Условие EERd		3,2	2,7	2,5	2,8
	A (35°C - Pdc 27/19)	kW	22,4	28,0	33,5	40,0
	Условие EERd		5,3	5,1	4,7	4,8
	B (30°C - Pdc 27/19)	kW	16,5	20,6	24,7	29,5
	Условие EERd		9,6	7,7	7,5	8,3
	C (25°C - Pdc 27/19)	kW	10,6	13,3	15,9	18,9
	Условие EERd		13,1	14,1	15,1	11,3
	D (20°C - Pdc 27/19)	kW	9,4	8,4	9,8	8,4
Рекомендуемое	Условие EERd		2,9	2,8	2,5	2,8
сочетание для	A (35°C - Pdc	kW	22,4	28,0	33,5	40,0
охлаждения про- странства 2	27/19) Условие EERd		4.0	E 1	4.5	4.0
.транства 2	В (30°С - Рdc	kW	4,9 16,5	5,1 20,6	4,5 24,7	4,8
	27/19)	KVV		·	,	,
	Условие EERd C (25°C - 27/19)		9,1	8,0	7,1	8,5
Рекомендуемое	Условие Pdc	kW	10,6	13,3	15,9	18,9
очетание для	C (25°C -					
охлаждения про-			40.5	44.5	4	
транства 2	Условие EERd	1111	12,6	14,3	14,4	11,4
	D (20°C - Pdc 27/19)	kW	9,2	8,5	9,6	8,4
екомендуемое	Условие EERd		3,1	2,7	2,5	2,8
очетание для эхлаждения про-	A (35°C - Pdc 27/19)	kW	22,4	28,0	33,5	40,0
транства 3	Условие EERd	i	5,4	5,1	4,7	4,8
	B (30°C - Pdc 27/19)	kW	16,5	20,6	24,7	29,5
	Условие EERd		9,6	7,9	7,8	8,5
	C (25°C - Pdc 27/19)	kW	10,6	13,3	15,9	18,9
	Условие EERd		13,0	14,1	15,1	11,6
	ACHODRIC LLING		13,0	1-7,1	1,0,1	11,0
	D (20°C - Pdc	kW	9,4	8,5	9,9	8,4

Technical Spe			REYQ8U	REYQ10U	REYQ12U	REYQ14U
Отопление (Уме- ренный климат)	I Bivalent	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	2,3 13,7	2,2 16,0	2,3 18,4	2,2
ренный климат)		изводительность)	13,/	10,0	10,4	20,6
		Тbiv (температура для °C			10	ı
		бивалентной системы)				
	TOL	СОР (заявленный СОР)	2,3	2,2	2,3	2,2
		Pdh (заявленная теплопро- kW	13,7	16,0	18,4	20,6
		изводительность) Тоl (предельное значение °C			10	
		рабочей температуры)			10	
	Условие	СОР (заявленный СОР)	2,7	2,6	2,9	2,7
	A (-7°C)	Pdh (заявленная теплопро- kW	12,1	14,2	16,3	18,2
		изводительность)				
		СОР (заявленный СОР)		1,0	4,2	4,0
	B (2°C)	Pdh (заявленная теплопро- kW	7,4	8,6	9,9	11,1
	Vсповие	изводительность) COPd (заявленный COP)	6,0	6,1	7,2	6,3
	C (7°C)	Pdh (заявленная теплопро- kW		5,7	6,6	7,1
	- ()	изводительность)		-,-	0,0	
	Условие	COPd (заявленный COP)	9,3	10,3	9,4	6,8
	D (12°C)	Pdh (заявленная теплопро- kW	8,8	7,0	7,7	5,4
		изводительность)				
екомендуемое		СОР (заявленный СОР)		2,6	2,8	2,7
очетание 2 для отопления (Уме-	A (-7°C)	Pdh (заявленная теплопро- kW	12,1	14,2	16,2	18,2
отопления (уме- ренный климат)	Vсповие	изводительность) COPd (заявленный COP)	3,9	4,0	4,1	4,0
IIIIII MINIMAI)	В (2°С)	Рdh (заявленная теплопро- kW		8,6	9,9	11,1
	- (- 0)	изводительность)	.,,	3,5		,.
С (7°С) - Условие	СОРd (заявленный СОР)	5,8	6,1	7,0	6,2	
	C (7°C)	Pdh (заявленная теплопро- kW		5,6	6,5	7,1
	изводительность)					
		СОР (заявленный СОР)	9,0	10,3	9,1	6,6
	D (12°C)	Pdh (заявленная теплопро- kW	8,7	6,9	7,6	5,2
	TRivalent	изводительность) COPd (заявленный COP)		2,2	2,3	2,1
	ibivalent	Рdh (заявленная теплопро- kW	13,7	16,0	18,4	20,6
		изводительность)	15)	10,0	.5,1	20,0
		Тbiv (бивалентная темпера- °C			10	
		тура)				
	TOL	СОР (заявленный СОР)		2,2	2,3	2,1
Рекомендуемое	TOL	Pdh (заявленная теплопро- kW	13,7	16,0	18,4	20,6
очетание 2 для отопления (Уме-		изводительность) Тоl (предел рабочей темпе- °C			<u> </u> 0	
ренный климат)		ратуры)		-	10	
екомендуемое	Условие	COPd (заявленный COP)	2,6	2,5	2,8	2,7
очетание 3 для	A (-7°C)	Pdh (заявленная теплопро- kW	12,1	14,2	16,3	18,2
топления (Уме-		изводительность)				
енный климат)		COPd (заявленный COP)		3,9	4,1	3,8
	B (2°C)	Pdh (заявленная теплопро- kW	7,4	8,6	9,9	11,1
	· · · · · · · · · · · · · · · · · · ·	изводительность)	F. ^			
		СОРd (заявленный СОР)	5,8	6,0	6,9	5,9
	C (7°C)	Pdh (заявленная теплопро- kW изводительность)	5,5	5,6	6,4	7,1
	Условие	СОРd (заявленный СОР)	9,2	10,1	9,1	6,2
		Pdh (заявленная теплопро- kW	8,7	6,9	7,4	4,9
		изводительность)				
	TBivalent	COPd (заявленный COP)	2,3	2,1	2,3	2,1
		Pdh (заявленная теплопро- kW	13,7	16,0	18,4	20,6
		изводительность)				
		Tbiv (бивалентная темпера- °C		-	10	
	TOL	тура)	າ ວ	71	าว	21
	IUL	COPd (заявленный COP) Pdh (заявленная теплопро- kW	2,3 13,7	2,1 16,0	2,3 18,4	2,1 20,6
		изводительность)	1,7	10,0	10,7	20,0
		ТоІ (предел рабочей темпе- °C		·	10	1
		ратуры)				
циапазон произв	одительно		8	10	12	14
'ED	Категори	я		Катег	рия II	
	Наи-	Наименование			ля жидкости	ı
	более	Ps*V Bar*I		564		672
	важная часть					

Technical Spe		ns		REYQ8U	REYQ10U	REYQ12U	REYQ14U		
Индекс произ- водительности	Мин.			100,0	125,0 325,0	150,0 390,0	175,0 455,0		
одительности подсоединяемых	Макс.			260,0	325,0	390,0	455,0		
внутренних									
блоков									
Размеры	Блок	Высота	mm		1.6	85	'		
		Ширина	mm		930		1.240		
		Глубина	mm		76	55			
	Упако-	Высота	mm		1.8	20			
	ванный	Ширина	mm		995		1.305		
	блок	Глубина	mm		86	50			
Ласса	Блок		kg		230		314		
/		ный блок	kg		243		331		
′паковка	Материа. Вес	1	kg		Kapı 1,8	тон_	2,2		
/паковка 2	Материа	 1	kg		Дер	ero	2,2		
Transbila 2	Вес	·	kg		11,0		14,0		
/паковка 3	Материа	 1			Плас	СТИК	1.72		
	Bec		kg		0,5		0,6		
борпус	Цвет				Белый	Daikin			
	Материа	1			Окрашенная оцинкован	ная стальная пластина			
еплообменник	Тип			Тег	пообменник с поперечн	ым соединением оребре	Риня		
		не помещения				дух			
	Внешняя		2		B03	.,			
	Расход	Охлаж- Ном.	m³/h	9.720	10.500	11.100	13.380		
	воздуха	дение	m³/h	0.720	10 500	11 100	12 200		
Вентилятор	Кол-во	Нагрев Ном.	III / N	9.720	10.500	11.100	13.380		
жимилор	Внешнее	Макс.	Pa		1	8			
	стати-	Trial Co			•				
	ческое								
	давле-								
	ние								
Иотор вентиля-	ля- Кол-во 1						2		
ора					Двигатель пос	тоянного тока			
	Выход		W		550		750		
Компрессор	Количест	BO			1	•	2		
	Тип	ый нагреватель	W		льный компрессор				
Рабочий диапазон		Мин.	°CDB		3 -5				
аоочии диапазон	дение	Макс.	°CDB		43				
	Нагрев	Мин.	°CWB						
	•	Макс.	°CWB		-20 15	·			
Sound power level	Охлаж-	Ном.	dBA	78,0 (4)	79,1 (4)	83,4 (4)	80,9 (4)		
	дение								
	Heating	Prated,h	dBA	79,6 (4)	80,9 (4)	83,5 (4)	83,9 (4)		
/ровень звуково-		Ном.	dBA	57,	0 (5)	61,0 (5)	60,0 (5)		
о давления	дение					10.4			
Кладагент	Тип				R-4				
	ПГП		TCO2Eq	20.2	2.08		24.6		
	Charge Charge		kg	20,2 9,7	20,5 9,8	20,7 9,9	24,6		
	CHAIGE		ky	2,1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	11,0		
Ласпо упалагецта				Синтетическое (эфирное) масло FVC68D					
	Тип	Тип			Соелинен	Соединение пайкой			
Тодсоединения		<u>Тип</u> НД	mm	ç	Соединен 0,5		2,7		
Тодсоединения	Тип Жид-		mm	ç		1.	2,7		
Іодсоединения	Тип Жид- кость	нд	mm	19,1),5	1. ие пайкой	2,7		
Тодсоединения	Тип Жид- кость	НД Тип),5 Соединен	1. ие пайкой 2			
Тодсоединения	Тип Жид- кость Газ Газ ВД/ НД	НД Тип НД Туре НД	mm		0,5 Соединен 22,2 Соединен 15	1. ие пайкой 2 ие пайкой у,1			
Іодсоединения	Тип Жид- кость Газ Газ ВД/ НД Общая	НД Тип НД Туре	mm	19,1	9,5 Соединен 22,2 Соединен	1. ие пайкой 2 ие пайкой у,1	8,6		
Іодсоединения	Тип Жид- кость Газ Газ ВД/ НД Общая длина	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 15	1. ие пайкой 2 ие пайкой у,1	8,6		
Іодсоединения	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо-	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 15	1. ие пайкой 2 ие пайкой у,1	8,6		
Іодсоединения	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово-	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 15	1. ие пайкой 2 ие пайкой у,1	8,6		
Тодсоединения руб	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо-	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 19 1.00	1. ие пайкой 2 ие пайкой 1,1 0 (6)	8,6		
Подсоединения груб Defrost method	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово- дов	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 15 1.000	1. ие пайкой 2 ие пайкой 1,1 0 (6)	8,6		
Подсоединения груб Defrost method Регулирование	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово-	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 19 1.00	1. ие пайкой 2 ие пайкой 1,1 0 (6)	8,6		
Подсоединения груб Defrost method Регулирование производитель-	Тип Жид- кость Газ ВД/ НД Общая длина трубо- прово- дов	НД Тип НД Туре НД	mm	19,1	0,5 Соединен 22,2 Соединен 15 1.000	1. ие пайкой 2 ие пайкой 1,1 0 (6)	8,6		
Подсоединения груб Defrost method Регулирование производительности	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово- дов Способ	НД Тип НД Туре НД Система Фактиче	тт тт ская т	19,1	0,5 Соединен 22,2 Соединен 15 1.000	1. ие пайкой 2 ие пайкой 0,1 0 (6) ный цикл и управлением	8,6		
Масло хладагента Подсоединения труб Defrost method Регулирование проти Указатель того, что	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово- дов Способ	НД Тип НД Туре НД	тт тт ская т	19,1	2,5 Соединен 22,2 Соединен 15 1.00 Реверсив С инверторны	1. ие пайкой 2 ие пайкой 0,1 0 (6) ный цикл и управлением	8,6		
Подсоединения груб Defrost method Pегулирование производительности Указатель того, что	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово- дов Способ	НД Тип НД Туре НД Система Фактиче	тт тт ская т	19,1	2,5 Соединен 22,2 Соединен 15 1.00 Реверсив С инверторны	1. ие пайкой 2 ие пайкой 7,1 0 (6) ный цикл и управлением	8,6		
Defrost method Perулирование производительности (казатель того, что	Тип Жид- кость Газ Газ ВД/ НД Общая длина трубо- прово- дов Способ	НД Тип НД Туре НД Система Фактичен	толнительным	19,1	2,5 Соединен 22,2 Соединен 15 1.00 Реверсив С инверторныя	1. ие пайкой 2 ие пайкой 7,1 0 (6) ный цикл и управлением	8,6		

Technical Spe	cificatio	ns			REYQ8U	REYQ10U	REYQ12U	REYQ14U
Потребляемая	Режим	Охлаж-	PCK	kW		0	,000	`
мощность не в	нагре-	дение						
активном режиме	вателя	Нагрев	PCK	kW		0,059		0,110
	картера							
	Обору-	Охлаж-	POFF	kW		0,052		0,120
	дование	дение						
	ВЫКЛ	Нагрев	POFF	kW		0,059		0,110
	Режим	Охлаж-	PSB	kW		0,052		0,120
КО	ожида-	дение						
	ния	Нагрев	PSB	kW		0,059		0,110
	Tep-	Охлаж-	PTO	kW		0,003		0,006
	мостат	дение						
	ВЫКЛ	Нагрев	PTO	kW		0,068		0,119
Охлаждение	Cdc (Сних	жение охл	аждения)			(),25	
Отопление	Cdh (Сни	жение отс	пления)			(),25	
Защитные устро-	Компо-	01				Реле высон	ого давления	
йства	нент	02			Уст	ройство защиты от пер	егрузки привода вентилят	ора
		03				Защита от пере	грузки инвертора	
		04				Плавкий предо	охранитель платы	
		05				Leakage cu	rrent detector	

Technical Spe	cificatio	ns		REYQ16U	REYQ18U	REYQ20U
Рекомендуемые с				4 x FXFQ63AVEB + 2 x FXFQ80AVEB	3 x FXFQ50AVEB + 5 x FXFQ63AVEB	2 x FXFQ50AVEB + 6 x FXFQ63AVEB
Recommended co	mbination 2	2		4 x FXSQ63A2VEB + 2 x	3 x FXSQ50A2VEB + 5 x	2 x FXSQ50A2VEB + 6 x
				FXSQ80A2VEB	FXSQ63A2VEB	FXSQ63A2VEB
Recommended co	mbination 3	}		4 x FXMQ63P7VEB + 2 x FXMQ80P7VEB	3 x FXMQ50P7VEB + 5 x FXMQ63P7VEB	2 x FXMQ50P7VEB + 6 x FXMQ63P7VEB
Холодопроизво-	Prated,c		kW	45,0 (1)	50,4 (1)	52,0 (1)
дительность						
Теплопроизводи-	Ном.	6°С вл.т.	kW	45,0 (2)	50,4 (2)	56,0 (2)
тельность	Prated,h		kW	45,0 (2)	50,4 (2)	56,0 (2)
	Макс.	6°С вл.т.	kW	50,0 (2)	56,5 (2)	63,0 (2)
Входная мощ- ность - 50 Гц	Нагрев	Ном. 6°С вл.т.	kW	12,54 (2)	14,22 (2)	17,47 (2)
СОР при ном. произв-сти	6°С вл.т.		kW/kW	3,59 (2)	3,54 (2)	3,20 (2)
ESEER - Автоматич	еский			6,63	6,26	5,68
ESEER - Стандартн				5,14	4,84	4,39
SCOP	-			4,3	4,4	4,1
SCOP, рекомендуе	мое сочета	ание 2		4,2	4,3	4,1
SCOP, рекомендуе				4,1	4,2	4,0
SEER				6,2	6,3	6,2
SEER, рекомендуе	мое сочета	ние 2		6,2	6,4	6,3
SEER, рекомендуе				6,1	6,4	6,3
ηs,c			%	243,1	250,6	246,7
ns,c, рекомендуем	ое сочетан	ние 2		244,5	251,9	249,6
ns,c, рекомендуем				241,7	252,0	248,9
ηs,h			%	167,5	172,5	162,7
ns,h, рекомендуем	лое сочета	ние 2		164,4	170,0	161,4
ns,h, рекомендуем				160,5	164,7	157,3
Охлаждение	Условие			12 5/5	2,2	12.72
помещений	A (35°C - 27/19)		kW	45,0	50,4	52,0
	Условие	FFRd		4,6	4,5	4,4
	B (30°C - 27/19)		kW	33,2	37,1	38,3
	Условие	FFRd		8,1	7,8	7,7
	C (25°C - 27/19)		kW	21,3	23,9	24,6
	Условие	FFRd		11,2	15,0	14,6
	D (20°C -		kW	9,5	11,6	13,6
	27/19)			-,-	,0	.5,0
Рекомендуемое	Условие	EERd			2,2	1
сочетание для	A (35°C -		kW	45,0	50,4	52,0
охлаждения про-				,-]	,-
странства 2	Условие	EERd		4,5	4	,4
•	B (30°C - 27/19)		kW	33,2	37,1	38,3
	Условие С (25°С - 27/19)	EERd		8,2	7	, ,9

recillical spe	cificatio		REYQ16U	REYQ18U	REYQ20U
екомендуемое	Условие	Pdc kW	21,3	23,9	24,6
очетание для	C (25°C -				
охлаждения про-					
транства 2	Условие		11,3	15,0	14,9
	D (20°C -	Pdc kW	9,5	11,6	13,6
екомендуемое	27/19) Условие	FERd		2,2	
очетание для	A (35°C -		45,0	50,4	52,0
хлаждения про-		ruc KW	45,0	30,4	32,0
транства 3	Условие	FERd	4,5	Δ	,4
Tpuncibu 5	B (30°C -		33,2	37,1	38,3
	27/19)	Tue KW	33,2	37,1	30,3
	Условие	EERd	8	3,0	7,9
	C (25°C -	Pdc kW	21,3	23,9	24,6
	27/19)			· ·	
	Условие	EERd	11,3	15,2	15,0
	D (20°C -	Pdc kW	9,5	11,8	13,6
	27/19)				
топление (Уме-	TBivalent	COPd (заявленный COP)	2,1	2,6	2,4
енный климат)		Pdh (заявленная теплопро- kW	23,2	27,9	31,0
		изводительность)			
		Tbiv (температура для °C		-10	
		бивалентной системы)			
	TOL	COPd (заявленный COP)	2,1	2,6	2,4
		Pdh (заявленная теплопро- kW	23,2	27,9	31,0
		изводительность)			
		Tol (предельное значение °C		-10	
		рабочей температуры)			
	Условие	COPd (заявленный COP)	2,7	2,9	2,7
	A (-7°C)	Pdh (заявленная теплопро- kW	20,5	24,7	27,4
		изводительность)			
		COPd (заявленный COP)	3,9	4,1	3,7
	B (2°C)	Pdh (заявленная теплопро- kW	12,5	15,0	16,7
		изводительность)			
		СОРd (заявленный СОР)	6,5	6,2	6,1
	C (7°C)	Pdh (заявленная теплопро- kW	8,0	9,7	10,7
		изводительность)			
		СОРd (заявленный СОР)	6,9	8,0	8,1
	D (12°C)	Pdh (заявленная теплопро- kW	5,5	8	,2
		изводительность)			
екомендуемое		СОР (заявленный СОР)	2,6	2,9	2,7
очетание 2 для	A (-7°C)	Pdh (заявленная теплопро- kW	20,5	24,7	27,4
топления (Уме-		изводительность)	2.5		
енный климат)		СОРd (заявленный СОР)	3,9	4,0	3,7
	B (2°C)	Pdh (заявленная теплопро- kW	12,5	15,0	16,7
		изводительность)			
		СОР (заявленный СОР)	6,4	6,0	6,1
	C (7°C)	Pdh (заявленная теплопро- kW	8,0	9,7	10,7
	V	изводительность)		_	0
		СОР (заявленный СОР)	6,7		9
	D (12°C)	Pdh (заявленная теплопро- kW	5,3	8	,0
	TD: -!	изводительность)	24	3.5	2:
	IBIvalent	СОР (заявленный СОР)	2,1	2,5	2,4
		Pdh (заявленная теплопро- kW	23,2	27,9	31,0
		изводительность)		10	
		Tbiv (бивалентная темпера- °C		-10	
	TOI	Typa)	21	2.5	2.4
lowonaure	TOL	СОР (заявленный СОР)	2,1	2,5	2,4
екомендуемое очетание 2 для	TOL	Pdh (заявленная теплопро- kW	23,2	27,9	31,0
очетание 2 для		изводительность) Тоl (предел рабочей темпе- °C		-10	
топления (Уме-					

Technical Spe				REYQ16U	REYQ18U	REYQ20U		
Рекомендуемое		COPd (заявленный COP)		2,6	2,8	2,7		
сочетание 3 для отопления (Уме-	A (-7°C)	Pdh (заявленная теплопро- изводительность)	kW	20,5	24,7	27,4		
оенный климат)	Vсповие	СОРd (заявленный СОР)		3,8	3,9	3,6		
- /	B (2°C)	Pdh (заявленная теплопро-	kW	12,5	15,0	16,7		
		изводительность)		••				
	Условие	COPd (заявленный COP)		6,2	5,8	5,9		
	C (7°C)	Pdh (заявленная теплопро-	kW	8,0	9,7	10,7		
		изводительность)						
	Условие	COPd (заявленный COP)		6,5	7,4	7,6		
	D (12°C)	Pdh (заявленная теплопро-	kW	5,1	7,6	7,7		
		изводительность)						
	TBivalent	COPd (заявленный COP)		2,1	2,5	2,3		
		Pdh (заявленная теплопро-	kW	23,2	27,9	31,0		
		изводительность)						
		Tbiv (бивалентная темпера-	°C		-10			
	TOL	тура)		21	3.5	2.2		
	TOL	COPd (заявленный COP)	134/	2,1	2,5	2,3		
		Pdh (заявленная теплопро- изводительность)	KVV	23,2	27,9	31,0		
		Tol (предел рабочей темпе-	°C		-10			
		ратуры)						
ļиапазон произво			HP	16	18	20		
ED	Категори				Категория II			
	Наи-	Наименование	D. W.		Приемник для жидкости	24		
	более	Ps*V	Bar*l	672	8.	24		
	важная							
Varcing in the contract	часть	IOUCOOUNTED IN BUILDING	блоког		64 (2)			
лаксимальное кол 1ндекс произ-	ичество г Мин.	одсоединяемых внутренних	OJIOKOB	200,0	64 (3) 225,0	250,0		
индекс произ- водительности	Макс.			520,0	585,0	650,0		
подсоединяемых внутренних блоков	Marc.			320,0	363,0	030,0		
Размеры	Блок	Высота	mm		1.685			
Уп		Ширина	mm		1.240			
			mm		765			
	Упако-		mm		1.820			
	ванный	Ширина	mm		1.305			
	блок	Глубина	mm		860			
Ласса	Блок		kg	314	3	17		
	Упакован	ный блок	kg	331	33	34		
паковка	Материал				Картон_			
	Bec		kg		2,2			
паковка 2	Материал				Дерево			
	Bec		kg		14,0			
паковка 3	Материал				Пластик			
	Bec		kg		0,6			
орпус	Цвет				Белый Daikin			
	Материал	1			иенная оцинкованная стальная пл			
еплообменник	Тип			Іеплообме	енник с поперечным соединением	ореорения		
		не помещения			воздух			
	Внешняя		m³/h	15 600	ВОЗДУХ 15.060	15 ((0		
	Расход возлуха		10170	15.600	15.060	15.660		
	воздуха	дение Нагрев Ном.	m³/h	15.600	15.060	15.660		
ентилятор	Кол-во	пагрев пом.	111711	13.000	15.060	000.ci		
стилитор	Внешнее	Макс	Pa		<u>2</u> 			
	стати-	···atte			70			
	ческое							
	давле-							
	ние							
Іотор вентиля-	Кол-во				2			
ра	Тип							
•	Выход		W		750			
омпрессор	Количест				2			
	Тип			Геј	рметичный спиральный компрес	сор		
		ій нагреватель	W		33			
		· · · · · · · · · · · · · · · · · · ·	°CDB		-5,0			
абочий диапазон				43,0				
абочий диапазон	дение	Makc.	CDD					
Рабочий диапазон	дение Нагрев	Мин.	°CWB		-20,0			

1 - 1 REYQ-U

Technical Spe	cificatio	ns			REYQ16U	REYQ18U	REYQ20U		
Sound power level		Ном.		dBA	85,6 (4)	83,8 (4)	87,9 (4)		
	Heating	Prated,h		dBA	86,9 (4)	85,3 (4)	89,8 (4)		
Уровень звуково-	Охлаж-	Ном.		dBA	63,0 (5)	62,0 (5)	65,0 (5)		
го давления	дение								
Хладагент	Тип				R-410A				
	ПГП					2.087,5			
	Charge			TCO2Eq		24,6			
	Charge			kg		11,8			
Масло хладагента					Cv	интетическое (эфирное) масло FVC68	BD		
Подсоединения	Жид-	Тип				Соединение пайкой			
труб	кость	НД		mm	12,7	15,9			
. ,	Газ	Тип			,	Соединение пайкой			
		НД		mm		28,6			
	Газ ВД/	Туре				Соединение пайкой			
	нд	НД		mm		22,2	28,6		
	Общая		Фактическая	m		1.000 (6)	20,0		
	длина трубо- прово- дов								
Defrost method					Реверсивный цикл				
Регулирование производитель- ности	Способ					С инверторным управлением			
Указатель того, чт нагревателем	о нагреват	ель обору	дован дополнит	ельным		no			
Дополнительный нагреватель	Резерв- ная мощ- ность	Нагрев	elbu	kW		0,0			
Потребляемая мощность не в	Режим нагре-	Охлаж- дение	PCK	kW	0,000				
•									
активном режиме		Нагрев	PCK	kW	0,110	0,134	1		
активном режиме	картера Обору-	Охлаж-	PCK POFF	kW kW	0,110	0,134			
активном режиме	картера Обору-	Охлаж-					3		
активном режиме	картера Обору- дование	Охлаж- дение	POFF	kW	0,120	0,118	3		
активном режиме	картера Обору- дование ВЫКЛ	Охлаж- дение Нагрев	POFF	kW kW	0,120	0,118	3		
активном режиме	картера Обору- дование ВЫКЛ Режим	Охлаж- дение Нагрев Охлаж- дение	POFF	kW kW	0,120	0,118 0,134 0,118	3 4 3		
активном режиме	картера Обору- дование ВЫКЛ Режим ожида- ния	Охлаж- дение Нагрев Охлаж- дение Нагрев	POFF POFF PSB	kW kW kW	0,120 0,110 0,120 0,110	0,118 0,134 0,118 0,134	3 4 3		
активном режиме	картера Обору- дование ВЫКЛ Режим ожида- ния Тер-	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж-	POFF POFF PSB	kW kW kW	0,120 0,110 0,120	0,118 0,134 0,118	3 4 3		
активном режиме	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение	POFF POFF PSB PSB PTO	kW kW kW	0,120 0,110 0,120 0,110 0,006	0,118 0,132 0,118 0,132 0,012	3 4 3 4 2		
·	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев	POFF POFF PSB PSB PTO PTO	kW kW kW	0,120 0,110 0,120 0,110	0,118 0,134 0,118 0,013 0,013	3 4 3 4 2		
Охлаждение	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев жение охла	POFF PSB PSB PTO PTO аждения)	kW kW kW	0,120 0,110 0,120 0,110 0,006	0,118 0,134 0,118 0,013 0,013 0,014 0,25	3 4 3 4 2		
Охлаждение Отопление	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ Сdc (Сних	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев жение охла жение отог	POFF PSB PSB PTO PTO аждения)	kW kW kW	0,120 0,110 0,120 0,110 0,006	0,118 0,134 0,118 0,012 0,012 0,144 0,25 0,25	3 4 3 4 2		
Охлаждение Отопление Защитные устро-	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ Cdc (Сних Cdh (Сних Компо-	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев жение охла жение отог	POFF PSB PSB PTO PTO аждения)	kW kW kW	0,120 0,110 0,120 0,110 0,006 0,119	0,132 0,132 0,118 0,012 0,012 0,142 0,25 0,25 0,25 Реле высокого давления	3 4 3 4 2 4		
Охлаждение Отопление Защитные устро-	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ Сdc (Сних	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев жение отого 01	POFF PSB PSB PTO PTO аждения)	kW kW kW	0,120 0,110 0,120 0,110 0,006 0,119	0,134 0,134 0,134 0,012 0,144 0,25 0,25 0,25 Реле высокого давления о защиты от перегрузки привода вег	3 4 3 4 2 4		
Охлаждение Отопление Защитные устро-	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ Cdc (Сних Cdh (Сних Компо-	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев жение охла жение отого 01 02 03	POFF PSB PSB PTO PTO аждения)	kW kW kW	0,120 0,110 0,120 0,110 0,006 0,119	0,134 0,134 0,134 0,134 0,012 0,144 0,25 0,25 0,25 Реле высокого давления о защиты от перегрузки привода вег	3 4 3 4 2 4		
Охлаждение Отопление Защитные устро- йства	картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ Cdc (Сних Cdh (Сних Компо-	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев жение отого 01	POFF PSB PSB PTO PTO аждения)	kW kW kW	0,120 0,110 0,120 0,110 0,006 0,119	0,134 0,134 0,134 0,012 0,144 0,25 0,25 0,25 Реле высокого давления о защиты от перегрузки привода вег	3 4 3 4 2 4		

Стандартные принадлежности: Руководство по установке и эксплуатации;Количество: 1;

Стандартные принадлежности: Соединительные трубопроводы;Количество: 1;

Electrical Spe	cifications		REYQ8U	REYQ10U	REYQ12U	REYQ14U	
Электропитание	Наименование		Y1 3N~				
	Фаза						
	Частота	Hz	50				
	Напряжение	V	380-415				
Подключение эле	ктропитания		Внутренний и наружный блок				
Диапазон напря-	Мин.	%	-10				
жений	Макс.	%	10				
Ток	Номи- Охлаждение нальный рабочий ток (RLA)	A	7,7 (7)	10,5 (7)	13,8 (7)	15,6 (7)	

1 - 1 **REYO-U**

Electrical Spe	cificatio	ns		REYQ8U	REYQ10U	REYQ12U	REYQ14U	
Ток - 50 Гц	Ном.	Combination A Cooling				-		
	рабочий ток (RLA)	Combination B Cooling		-				
	Пусковой	й ток (MSC) - примечание			См. п	рим. 8		
	Z макс.	Список			Требова	ния отс-т		
	Минимальное значение Ssc kVa			2.893 (9)	3.954 (9)	4.313 (9)	4.852 (9)	
	Мин. ток	цепи (МСА)	A	16,1 (10)	22,0 (10)	24,0 (10)	27,0 (10)	
	Макс. ток	предохранителя (MFA)	A	20 (11)	25 (11)	32	(11)	
	Ток полной нагрузки (FLA)	Итого	A	1,2 (12)	1,3 (12)	1,5 (12)	1,8 (12)	
Производитель-	Коэффи-	Combination B 35°C ISO - Full	load	-				
ность	циент	46°C ISO - Full	load	-				
Соединительная проводка - 50 Гц	Для Количество электро- питания				5	G		
	Для	Количество				2		
	подсое- Примечание динения с внутр. бл.				F1,	F2		

Electrical Spe	cifications		REYQ16U	REYQ18U	REYQ20U			
Электропитание	Наименование			Y1				
	Фаза		3N~					
	Частота	Hz	50					
	Напряжение	V		380-415				
Подключение эле	ктропитания		Внутренний и наружный блок					
Диапазон напря-	Мин.	%	-10					
жений	Макс.	%		10				
Ток	Номи- Охлаждение	A	18,5 (7)	22,0 (7)	28,5 (7)			
	нальный							
	рабочий							
	ток (RLA)							
Ток - 50 Гц	Hом. Combination A Cooling			-				
	рабочий CombinationB Cooling			-				
	ток (RLA)							
Z _N Mi	Пусковой ток (MSC) - примеча	ние		См. прим. 8				
	Z макс. Список			Требования отс-т				
	Минимальное значение Ssc	kVa	5.391 (9)	6.289 (9)	7.009 (9)			
	Мин. ток цепи (МСА)	A	31,0 (10)	35,0 (10)	39,0 (10)			
	Макс. ток предохранителя (М	FA) A	40 (11) 50 (11)					
	Ток Итого	A	2,6 (12)					
	полной							
	нагрузки							
	(FLA)							
Производитель-	Koэффи− Combination B 35°C ISO -			-				
ность	циент 46°C ISO -	Full load		-				
Соединительная	Для Количество			5G				
проводка - 50 Гц	электро-							
	питания							
	Для Количество			2				
	подсое- Примечание		F1,F2					
	динения							
	с внутр.							
	бл.							

⁽¹⁾Охлаждение: темп. в помещении: 27°CDB, 19°CWB; темп. наружного воздуха 35°CDB; эквивалентная длина трубопроводов: 7,5м; перепад уровня: 0 м |

⁽¹⁹⁾ЕМ/IEC 61000-3-12: Европейский/международный технический стандарт, задающий пределы гармонического тока, производимого оборудованием, подсоединенным к общедоступной сети низкого напряжения с потребляемым током > 16А и ≤ 75А одной фазы |

⁽²⁾Нагрев: темп. в помещении: 20°CDB; темп. наружного воздуха 7°CDB, 6°CWB; эквивалентная длина труб с хладагентом: 7,5м; перепад уровня: 0 м | (3)Фактич. кол-во подключаемых внутр. блоков зависит от типа внутреннего блока и ограничения по отношению подключений для системы (50% ≤ CR ≤ 120%) |

⁽⁴⁾Уровень звуковой мощности является абсолютной величиной, производимой источником звука. | (5)Это относительная величина, которая зависит от указанного расстояния и акустики среды. Более подробно см. чертежи с описанием уровней шума. |

⁽⁶⁾См. раздел выбора трубопровода хладагента или руководство по установке | (7)RLA основан на следующих условиях: темп. в помещении: 27°CDB, 19°CWB; темп. наружного воздуха 35°CDB | (8)MSC означает макс. ток при пуске компрессора. В этом блоке используются только инверторные компрессоры. Всегда: пусковой ток ≤ макс. рабочий ток. |

⁽⁹⁾В соответствии с EN/IEC 61000-3-12 может быть необходимо проконсультироваться у оператора системы коммуникаций для обеспечения подсоединения оборудования исключительно к питанию с Ssc ≥ минимальное значение Ssc |

⁽¹⁰⁾Для выбора правильного сечения подключаемых на месте проводов необходимо использовать МСА. МСА можно рассматривать как максимальный рабочий ток. | (11)МFА используется для выбора автоматического выключателя и выключатель цепи при замыкании на землю (автоматический выключатель утечек на землю) |

⁽¹²⁾FLA означает номинальный рабочий ток вентилятора |

⁽¹³⁾Максимально допустимое изменение диапазона напряжений между фазами составляет 2%. І

^{(13)/}измаслимально допустивное изменение дивизасны наприментии между фазами осставляет 2 гм. | (14)/Диапазон напряжения: блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клемму блока, находится в пределах указанного диапазона. | (15)Значение AUTOMATIC ESEER соответствует нормальной работе системы VRV4 с рекуперацией теплоты, с учетом расширенных функций экономии энергии (режим работы с переменной

⁽¹⁶⁾Значение STANDARD ESEER соответствует нормальной работе системы VRV4 с рекуперацией теплоты, без учета расширенных функций экономии энергии | (17)Величина уровня звука измеряется в безэховом помещении. |

⁽¹⁸⁾Давление звука в системе [дБ] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)], с блоком А = А дБА, блоком В = В дБА, блоком С = С дБА |

REYQ-U 1 - 1

(20)Ssc: мощность короткого замыкания | (21)Более подробная информация о стандартных принадлежностях приведена в руководстве по монтажу/эксплуатации | (22) Данные мультисочетания (10~54 л.с.) соответствуют стандартному мультисочетанию

Technical spe				REYQ10U	REYQ13U	REYQ16U	REYQ18U	REYQ20U
Система	,	аружного блока 1			MQ5U	2011	REYQ8U	DEMONIA
D		unit module 2		REMQ5U		Q8U	REYQ10U	REYQ12U
Рекомендуемые с	очетания			4 x FXFQ63AVEB	x FXFQ50AVEB + 3	x FXFQ80AVEB + 2	4 x FXFQ50AVEB + 4 x FXFQ63AVEB	10 x FXFQ50AVEB
Recommended co	mbination	2		4 x FXSQ63A2VEB	3 x FXSQ50A2VEB + 3 x FXSQ63A2VEB	4 x FXSQ63A2VEB + 2 x FXSQ80A2VEB	4 x FXSQ50A2VEB + 4 x FXSQ63A2VEB	10 x FXSQ50A2VEB
Recommended co	mbination	3		4 x FXMQ63P7VEB	3 x FXMQ50P7VEB + 3 x FXMQ63P7VEB	4 x FXMQ63P7VEB + 2 x FXMQ80P7VEB		10 x FXMQ50P7VEB
Непрерывное отс	пление					Да		
Холодопроизво- дительность	Prated,c		kW	28,0 (1)	36,4 (1)	44,8 (1)	50,4 (1)	55,9 (1)
Теплопроизводи-	Ном.	6°С вл.т.	kW	28,0 (2)	36,4 (2)	44,8 (2)	50,4 (2)	55,9 (2)
тельность	Prated,h		kW	28,0 (2)	36,4 (2)	44,8 (2)	50,4 (2)	55,9 (2)
	Макс.	6°С вл.т.	kW	32,0 (2)	41,0 (2)	50,0 (2)	56,5 (2)	62,5 (2)
Входная мощ- ность - 50 Гц	Нагрев	Ном. 6°С вл.т.	kW	7,56 (2)	9,67 (2)	12,57 (2)	12,98 (2)	15,05 (2)
СОР при ном.	6°С вл.т.		kW/kW	3,71 (2)	3,76 (2)	3,57 (2)	3,88 (2)	3,71 (2)
произв-сти				777	754	7.41	720	706
ESEER - ABTOMATIV				7,77	7,54	7,41	7,38	7,06
ESEER - Стандартн	NIDIVI			6,55	6,36	6,25	5,98	5,68
SCOP poromoutive		21140.2		4,0	4,1		,3	4,5
SCOP, рекомендуе				4,1	4,0		,2	4,4
SCOP, рекомендуе	емое сочет	ание 3		4,1	4,2	4,1	4,2	4,4
SEER				7,0	7,6	7,3	6,9	6,7
SEER, рекомендуе				7,1	7,5	7,3	6,8	6,4
SEER, рекомендуе	мое сочет	ание 3		6,9	7,4	7,1	6,9	6,8
ηs,c			%	275,1	301,3	288,6	272,9	266,0
ηѕ,с, рекомендуем	лое сочета	ние 2		280,4	296,3	290,6	269,4	252,4
ηs,c, рекомендуем	иое сочета	ние 3		272,0	291,7	282,1	274,2	269,0
ηs,h			%	158,8	160,6	168,2	167,9	175,7
ηs,h, рекомендуе	иое сочета	ние 2		160,2	157,6	164,5	166,0	173,3
ηѕ,һ, рекомендуе	иое сочета	ние 3		161,0	166,5	160,4	165,0	171,9
Охлаждение	Условие	EERd		3,5	3,3	3,0	2,9	2,7
помещений	A (35°C - 27/19)	Pdc	kW	28,0	36,4	44,8	50,4	55,9
	Условие	EERd		5,8	5,5	5,0	5,2	4,9
	B (30°C - 27/19)	Pdc	kW	20,6	26,8	33,0	37,1	41,2
	Условие	FFRd		8,4	9,8	9,1	8,5	8,3
	C (25°C - 27/19)		kW	16,8	17,2	21,2	23,9	26,5
	Условие	EED4		13,5	14,8	15,0	13,6	12,5
	D (20°C -		kW	9,6),0	17,8	11,8
	27/19)	FED I		2.	2.0	2.0		2.7
Рекомендуемое сочетание для охлаждения про- странства 2	Условие А (35°C - 27/19)		kW	3,6 28,0	3,2 36,4	3,0 44,8	2,8 50,4	2,7 55,9
Рекомендуемое	Условие	EERd		5,9	5,5	5,1	5,0	4,7
сочетание для охлаждения про-	B (30°C -		kW	20,6	26,8	33,0	37,1	41,2
странства 2	Условие	FFRd		8,5	9,5	9,2	8,5	7,8
erpunerbu z	C (25°C - 27/19)		kW	17,0	17,2	21,2	23,9	26,5
	Условие	EEDY		13,9	14,7	15,1	13,3	11,7
	D (20°C -		1.14/			· · · · · · · · · · · · · · · · · · ·		
	27/19)		kW	9,8	10,0	10,1	17,7	11,8
Рекомендуемое	Условие			3,5	3,3	3,0	2,9	2,7
сочетание для охлаждения про-	A (35°C - 27/19)	Pac	kW	28,0	36,4	44,8	50,4	55,9
странства 3	Условие	EERd		5,7	5,6	4,9	5,2	4,9
r	B (30°C - 27/19)		kW	20,6	26,8	33,0	37,1	41,2
	Условие	FFRd		8,3	9,0	8,9	8,6	8,4
	C (25°C -		kW	16,8	18,8	21,2	23,9	26,5
	27/19)	EED 4		12.0	14.5	14.0	13.5	10.7
	Условие D (20°C		1.1.1	13,0	14,5	14,9	13,5	12,7
	D (20°C - 27/19)	rut	kW	9,4	9,9	10,1	18,0	11,8

Technical spe			REYQ10U	REYQ13U	REYQ16U	REYQ18U	REYQ20U	
Отопление (Уме- ренный климат)	TBivalent	СОРД (заявленный СОР)	1,8	2,3	2,4	2,		
эенный климат)		Pdh (заявленная теплопро- kW изводительность)	16,0	21,7	23,2	27,9	31,0	
		Tbiv (температура для °C			-10			
	TOI	бивалентной системы)	1.0	2.2	2.4	2	2	
	TOL	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	1,8 16,0	2,3 21,7	2,4	27,9	31,0	
		изводительность)	10,0	21,7	23,2	27,9	31,0	
		Тоl (предельное значение °C		I.	-10			
		рабочей температуры)						
		COPd (заявленный COP)	1,9	2,6	2,7	2,6	2,8	
	A (-7°C)	Pdh (заявленная теплопро- kW	14,2	19,2	20,5	24,7	27,4	
	Vспорио	изводительность) COPd (заявленный COP)	4,0	3,6	3,8	4,0	4,1	
	В (2°C)	Рdh (заявленная теплопро- kW	8,6	11,7	12,5	15,0	16,7	
	- (-,	изводительность)	-,-	1.,,	1	,.	,-	
	Условие	COPd (заявленный COP)	6,1	6,2	6,3	6,0	6,6	
	C (7°C)	Pdh (заявленная теплопро- kW	5,7	7,5	8,0	11,3	12,2	
	V	изводительность)	0.6	10.6	11 1	10.2	0.4	
	Условие D (12°C)	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	9,6 8,9	10,6 9,1	9,2	10,3 7,0	9,4 7,7	
	D (12 C)	изводительность)	0,5	9,1	9,2	7,0	7,7	
Рекомендуемое	Условие	СОРd (заявленный СОР)	2	,5	2,7	2,6	2,8	
сочетание 2 для	A (-7°C)	Pdh (заявленная теплопро- kW	14,2	19,2	20,5	24,7	27,4	
отопления (Уме-		изводительность)						
ренный климат)		СОР (заявленный СОР)	3,9	3,6	3,7	3,9	4,1	
	B (2°C)	Pdh (заявленная теплопро- kW изводительность)	8,6	11,7	12,5	15,0	16,7	
	Условие	СОР (заявленный СОР)	5,8	6	5,1	5,9	6,5	
	C (7°C)	Pdh (заявленная теплопро- kW	5,5	7,5	8,0	11,2	12,3	
		изводительность)	,	·	,	,	,	
		COPd (заявленный COP)	9,1	10,4	10,8	10,3	9,1	
_	D (12°C)	Pdh (заявленная теплопро- kW	8,7	9	,0	6,9	7,6	
	TD:lt	изводительность)	2.2	2.2	2.2	2.2	2.2	
		СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	2,3 16,0	2,2 21,7	2,3 23,2	2,2 27,9	2,3 31,0	
сочетание 2 для	TDIValent	изводительность)	10,0	21,7	23,2	21,9	31,0	
отопления (Уме-		Tbiv (бивалентная темпера- °C	-10					
ренный климат)		тура)						
	TOL	СОР (заявленный СОР)	2,3	2,2	2,3	2,2	2,3	
		Pdh (заявленная теплопро- kW	16,0	21,7	23,2	27,9	31,0	
		изводительность) Тоl (предел рабочей темпе- °C						
		ратуры)	-10					
Рекомендуемое	Условие	СОР (заявленный СОР)	2,4	2,5	2	,6	2,8	
сочетание 3 для	A (-7°C)	Pdh (заявленная теплопро- kW	14,2	19,2	20,5	24,7	27,4	
отопления (Уме-		изводительность)						
ренный климат)		СОРД (заявленный СОР)	3,9		12.5	3,9	4,0	
	B (2°C)	Pdh (заявленная теплопро- kW изводительность)	8,6	11,7	12,5	15,0	16,7	
	Условие	СОР (заявленный СОР)	5,8	6,1	5	i,9	6,4	
	C (7°C)	Pdh (заявленная теплопро- kW	5,5	7,5	8,0	11,1	11,9	
		изводительность)						
		COPd (заявленный COP)	9,2	16,8	10,5	10,1	9,1	
	D (12°C)	Pdh (заявленная теплопро- kW	8,7	5,1	8,9	6,9	7,4	
	TRivalent	изводительность) COPd (заявленный COP)		.,2	2,3	2,2	2,3	
	ibivalent	Рdh (заявленная теплопро- kW	16,0	21,7	23,2	27,9	31,0	
		изводительность)	10,0	21,7	23,2	21,3	51,0	
		Tbiv (бивалентная темпера- °C			-10			
		тура)			1			
	TOL	СОР (заявленный СОР)		,2	2,3	2,2	2,3	
		Pdh (заявленная теплопро- kW	16,0	21,7	23,2	27,9	31,0	
		изводительность) Тоl (предел рабочей темпе- °C			-10			
		ратуры)			10			
Диапазон произв	одительно		10	13	16	18	20	
PED	Категори				Категория II			
		подсоединяемых внутренних блоков			64 (3)			

Technical spe	echnical specifications System					REYQ13U	REYQ16U	REYQ18U	REYQ20U
Индекс произ-	Мин.	•			125,0	163,0	200,0	225,0	250,0
водительности	Макс.				325,0	423,0	520,0	585,0	650,0
подсоединяемых									
внутренних									
блоков									
Геплообменник	На сторо	не помещ	ения		воздух				
	Внешняя	сторона					воздух		
	Расход	Охлаж-	Ном.	m³/h	19.440			20.220	20.820
	воздуха	дение							
		Нагрев	Ном.	m³/h		19.440		20.220	20.820
Sound power level		Ном.		dBA		81,0 (4)		81,6 (4)	84,5 (4)
	дение								
	Heating	Prated,h		dBA	81,9 (4)	82,3 (4)	82,6 (4)	83,3 (4)	85,0 (4)
Уровень звуково-		Ном.		dBA		60,	0 (5)		62,5 (5)
о давления	дение								
Кладагент	Тип						R-410A		
	ПГП						2.087,5		
Масло хладагента						Синтетич	еское (эфирное) масл	10 FVC68D	
Тодсоединения	Жид-	Тип				I	Соединение пайкой		
груб	кость	НД		mm	9,5	12	2,7		5,9
	Газ	Тип					Соединение пайкой		
Тодсоединения	Газ	НД		mm	22,2		28	,	
руб	Газ ВД/ Туре				Соединение пайкой				
Об дл	нд	НД		mm	19	9,1	22	,2	28,6
	Общая	Система	Фактическая	m			500 (6)		
	длина								
	трубо-								
	прово-								
	дов								
Defrost method							Реверсивный цикл		
Регулирование	Способ					Син	верторным управлен	нием	
производитель-									
ности									
Указатель того, что	о нагреват	ель обору	/дован дополнит	ельным			no		
нагревателем									
Дополнительный		Нагрев	elbu	kW			0,0		
нагреватель	ная мощ-								
	ность		201						
Потребляемая	Режим	Охлаж-	PCK	kW			0,000		
мощность не в	нагре-	дение	DCK	1.14			0.447		
активном режиме		Нагрев	PCK	kW			0,117		
	картера	0	DOLL	1.147			0.105		
	Обору-	Охлаж-	POFF	kW			0,105		
	дование	дение	DOFF	114			0.447		
		Нагрев	POFF	kW			0,117		
P	ВЫКЛ	0					0,105		
	Режим	Охлаж-	PSB	kW			0,103		
	Режим ожида-	дение							
	Режим ожида- ния	дение Нагрев	PSB	kW			0,117		
	Режим ожида- ния Тер-	дение Нагрев Охлаж-							
	Режим ожида- ния Тер- мостат	дение Нагрев Охлаж- дение	PSB PTO	kW kW			0,117 0,006		
	Режим ожида- ния Тер- мостат ВЫКЛ	дение Нагрев Охлаж- дение Нагрев	PSB PTO PTO	kW			0,117 0,006 0,136		
Эхлаждение Этопление	Режим ожида- ния Тер- мостат ВЫКЛ Cdc (Сних	дение Нагрев Охлаж- дение	PSB PTO PTO аждения)	kW kW			0,117 0,006		

Technical sp	ecifications System		REYQ22U	REYQ24U	REYQ26U	REYQ28U	REYQ30U
Система	Модуль наружного бло	жа 1	REYQ10U	REYQ8U		REYQ12U	
	Outdoor unit module 2		REYQ12U	REYQ16U	REYQ14U	REYQ16U	REYQ18U
Рекомендуемые	е сочетания		6 x FXFQ50AVEB + 4	4 x FXFQ50AVEB + 4	7 x FXFQ50AVEB + 5	6 x FXFQ50AVEB + 4	9 x FXFQ50AVEB + 5
			x FXFQ63AVEB	x FXFQ63AVEB + 2 x	x FXFQ63AVEB	x FXFQ63AVEB + 2 x	x FXFQ63AVEB
				FXFQ80AVEB		FXFQ80AVEB	
Recommended of	combination 2		6 x FXSQ50A2VEB +	4 x FXSQ50A2VEB +	7 x FXSQ50A2VEB +	6 x FXSQ50A2VEB +	9 x FXSQ50A2VEB +
			4 x FXSQ63A2VEB	4 x FXSQ63A2VEB +	5 x FXSQ63A2VEB	4 x FXSQ63A2VEB +	5 x FXSQ63A2VEB
				2 x FXSQ80A2VEB		2 x FXSQ80A2VEB	
Recommended of	combination 3		6 x FXMQ50P7VEB +	4 x FXMQ50P7VEB +	7 x FXMQ50P7VEB +	6 x FXMQ50P7VEB +	9 x FXMQ50P7VEB +
			4 x FXMQ63P7VEB	4 x FXMQ63P7VEB +	5 x FXMQ63P7VEB	4 x FXMQ63P7VEB +	5 x FXMQ63P7VEB
				2 x FXMQ80P7VEB		2 x FXMQ80P7VEB	
Непрерывное о	топление				Да		
Холодопроизво	- Prated,c	kW	61,5 (1)	67,4 (1)	73,5 (1)	78,5 (1)	83,9 (1)
дительность							
Теплопроизводі	и- Ном. 6°С вл.т.	kW	61,5 (2)	67,4 (2)	73,5 (2)	78,5 (2)	83,9 (2)
тельность	Prated,h	kW	61,5 (2)	67,4 (2)	73,5 (2)	78,5 (2)	83,9 (2)
	Макс. 6°С вл.т.	kW	69,0 (2)	75,0 (2)	82,5 (2)	87,5 (2)	94,0 (2)

Technical spe	cificatio	ns Sys	tem		REYQ22U	REYQ24U	REYQ26U	REYQ28U	REYQ30L
Входная мощ-	Нагрев	Ном.	6°С вл.т.	kW	17,23 (2)	17,94 (2)	20,33 (2)	22,19 (2)	23,87 (2)
ность - 50 Гц									
СОР при ном.	6°С вл.т.			kW/kW	3,57 (2)	3,76 (2)	3,61 (2)	3,54 (2)	3,51 (2)
произв-сти									
ESEER - Автоматич	іеский				7,07	6,87	6,95	6,72	6,48
ESEER - Стандартн	ый				5,54	5,46	5,41	5,23	5,03
SCOP					4,5	4,3	4,5	4,4	4,6
SCOP, рекомендуе	мое сочет	ание 2			4,5	4,2	4	,4	4,5
SCOP, рекомендуе	мое сочет	ание 3			4,4	4,1	4	,3	4,4
SEER					6,6	6	,5	6,4	6,7
SEER, рекомендуе	мое сочет	ание 2			6,5	6	,4	6,3	6,6
SEER, рекомендуе	мое сочет	ание 3			6,6	6,5	6,6	6,4	6,8
ηs,c				%	260,4	257,7	257,5	251,9	266,8
ηs,c, рекомендуем	ое сочета	ние 2			256,8	253,7	254,1	247,9	262,9
ηѕ,с, рекомендуем	ое сочета	ние 3			262,7	256,6	260,5	252,2	269,3
ηs,h				%	178,5	167,6	175,5	174,8	179,4
ηs,h, рекомендуем	лое сочета	ние 2			176,4	164,3	172,5	171,3	176,1
ηs,h, рекомендуем					174,1	162,1	168,6	168,4	172,6
Охлаждение	Условие			i	2,6	2,5	2,7	2	,4
помещений	A (35°C - 27/19)	Pdc		kW	61,5	67,4	73,5	78,5	83,9
	Условие	EERd			4,9	4,8	4,7	4,6	4,8
<u>27/1</u> Усл С (2	B (30°C - 27/19)	Pdc		kW	45,3	49,7	54,2	57,9	61,8
	Условие	FFRd			7,6	8,5	7,9	7,8	8,2
	C (25°C -			kW	29,1	31,9	34,8	37,2	39,7
	27/19)								
	Условие				14,6	12,4	13,2	13,3	15,9
	D (20°C - 27/19)	Pdc		kW	18,2	17,3	17,6	17,7	21,3
Рекомендуемое	Условие	EERd			2,6	2,4	2,7	2	,4
сочетание для охлаждения про- странства 2	A (35°C - 27/19)	Pdc		kW	61,5	67,4	73,5	78,5	83,9
Рекомендуемое	Условие	EERd				4,7		4,5	4,7
сочетание для охлаждения про-	B (30°C -			kW	45,3	49,7	54,2	57,8	61,8
странства 2	Условие	EERd		-	7,5	8,5	7,8	7,7	8,0
,	C (25°C - 27/19)			kW	29,1	31,9	34,8	37,2	39,7
	Условие	FFRd			14,4	12,1	13	5,0	15,6
	D (20°C - 27/19)			kW	18,1	17,2	17,5	17,6	21,2
Рекомендуемое	Условие	FFRd		-	2,6	2,5	2,7	2	,4
сочетание для	A (35°C -			kW	61,5	67,4	73,5	78,5	83,9
охлаждения про-	27/19)			IV V V					
странства 3	Условие				4,9		,7	4,6	4,8
	B (30°C - 27/19)	Pdc		kW	45,3	49,7	54,2	57,8	61,8
	Условие	EERd			7,8	8,5	8,2	7,9	8,4
	C (25°C - 27/19)	Pdc		kW	29,1	31,9	34,8	37,2	39,7
	Условие	EERd			14,6	12,4	13	5,4	16,0
	D (20°C -			kW	18,4	17,5	18,0	17,9	21,7
	27/19)				- / -	"-	,-	\	,-

Technical spe			REYQ22U	REYQ24U	REYQ26U	REYQ28U	REYQ30U	
Отопление (Уме- ренный климат)	TBivalent	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	2,3	36,9	2,2 39,0	41,6	2,5 46,3	
ренный климат)		изводительность)	34,4	36,9	39,0	41,0	40,3	
		Тbiv (температура для °C			-10		I	
		бивалентной системы)						
	TOL	COPd (заявленный COP)	2,3		2,2		2,5	
		Pdh (заявленная теплопро- kW	34,4	36,9	39,0	41,6	46,3	
		изводительность)						
		Tol (предельное значение °C			-10			
		рабочей температуры)	ļ .		2	2	20	
	условие А (-7°C)	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	30,4	32,6	34,5	,8 36,8	2,9 40,9	
	A (-/ C)	изводительность)	30,4	32,0	34,3	30,8	40,9	
	Условие	СОР (заявленный СОР)	4,1	3,9		4,1	1	
	B (2°C)	Pdh (заявленная теплопро- kW	18,5	19,9	21,0	22,4	24,9	
		изводительность)	,		,	,	,	
	Условие	COPd (заявленный COP)	6,7	6,3	6,7	6,8	6,5	
	C (7°C)	Pdh (заявленная теплопро- kW	12,3	12,8	13,7	14,6	16,2	
		изводительность)						
		СОРd (заявленный СОР)	10,3	7,		7,2	9,4	
	D (12°C)	Pdh (заявленная теплопро- kW	7,0	5,7	6,0	6,4	7,7	
Deveneur	Venosus	изводительность)	2.7	2.6	20	2.7	2,9	
Рекомендуемое сочетание 2 для	Условие A (-7°C)	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	2,7	2,6 32,6	2,8 34,5	2,7 36,8	40,9	
отопления (Уме-	Α(, C)	изводительность)	30,4	32,0	C1+C	50,0	40,5	
ренный климат)	Условие	СОР (заявленный СОР)	4,1	3,9	4,1	4,0	4,1	
	B (2°C)	Pdh (заявленная теплопро- kW	18,5	19,9	21,0	22,4	24,9	
		изводительность)	,		,	,	,	
	Условие	COPd (заявленный COP)	6,6	6,2	6,5	6,7	6,4	
	C (7°C)	Pdh (заявленная теплопро- kW	12,1	12,8	13,6	14,5	16,2	
		изводительность)						
D (12°		COPd (заявленный COP)	10,3	6,8	6,9	7,1	9,1	
	D (12°C)	Pdh (заявленная теплопро- kW	6,9	5,7	6,0	6,4	7,6	
	TDivislant	изводительность)	2.2	21	2	2	2.4	
Рекомендуемое		COPd (заявленный COP) Pdh (заявленная теплопро- kW	2,2 34,4	2,1 36,9	39,0	,2 41,6	2,4 46,3	
очетание 2 для	ibivalent	изводительность)	34,4	30,9	39,0	41,0	40,3	
отопления (Уме-		Тbiv (бивалентная темпера- °C	-10					
ренный климат)		тура)						
	TOL	COPd (заявленный COP)	2,2	2,1	2	,2	2,4	
		Pdh (заявленная теплопро- kW	34,4	36,9	39,0	41,6	46,3	
		изводительность)						
		Tol (предел рабочей темпе- °C	-10					
	V	ратуры)	27	2.6	2	7	2.0	
Рекомендуемое	Условие A (-7°C)	СОР (заявленный СОР)	2,7	2,6		,7	2,8	
очетание 3 для отопления (Уме-	A (-/ C)	Pdh (заявленная теплопро- kW изводительность)	30,4	32,6	34,5	36,8	40,9	
ренный климат)	Условие	СОР (заявленный СОР)	4,0	3,8	4,0	3,9	4,0	
	B (2°C)	Pdh (заявленная теплопро- kW	18,5	19,9	21,0	22,4	24,9	
		изводительность)						
	Условие	COPd (заявленный COP)	6,4	6,0	6,4	6,5	6,2	
	C (7°C)	Pdh (заявленная теплопро- kW	11,9	12,8	13,5	14,4	16,0	
		изводительность)	-					
		СОР (заявленный СОР)	10,1	6,7	6,6	6,9	9,1	
	D (12°C)	Pdh (заявленная теплопро- kW	6,9	5,7	6,0	6,4	7,4	
	TD:1	изводительность)	22	2.1		2	2.4	
	i bivalent	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	2,2	2,1 36,9		,2 41,6	2,4 46,3	
		изводительность)	34,4	۷,50	39,0	41,0	40,3	
		Тbiv (бивалентная темпера- °C		1	-10	I.	I	
		тура)			10			
	TOL	СОР (заявленный СОР)	2,2	2,1	2	,2	2,4	
		Pdh (заявленная теплопро- kW	34,4	36,9	39,0	41,6	46,3	
		изводительность)	<u></u>				<u> </u>	
		Tol (предел рабочей темпе- °C			-10			
		ратуры)				1		
	Диапазон производительностей HP							
Диапазон произв PED	одительно Категори		22	24	26 Категория II	28	30	

recilincal spe	cificatio	ns Syste	em		REYQ22U	REYQ24U	REYQ26U	REYQ28U	REYQ30U	
Индекс произ-	Мин.				275,0	300,0	325,0	350,0	375,0	
водительности подсоединяемых внутренних блоков	Макс.				715,0	780,0	845,0	910,0	975,0	
Теплообменник	На сторо	не помещ	ения		воздух					
	Внешняя	сторона					воздух			
	Расход воздуха	Охлаж- дение	Ном.	m³/h	21.600	25.320	24.480	26.700	26.160	
		Нагрев	Ном.	m³/h	21.600	25.320	24.480	26.700	26.160	
Sound power level	Охлаж- дение	Ном.		dBA	84,8 (4)	86,3 (4)	85,3 (4)	87,6 (4)	86,6 (4)	
	Heating	Prated,h		dBA	85,4 (4)	87,6 (4)	86,7 (4)	88,5 (4)	87,5 (4)	
Уровень звуково- го давления	Охлаж- дение	Ном.		dBA	62,5 (5)	64,0 (5)	63,5 (5)	65,1 (5)	64,5 (5)	
Хладагент	Тип						R-410A			
	ПГП						2.087,5			
Масло хладагента	Тип					Синтетиче	еское (эфирное) мас	ло FVC68D		
Подсоединения	Жид-	Тип					Соединение пайкой	í		
груб	кость	нд		mm	15	5,9		19,1		
	Газ	Тип					Соединение пайкой	í		
Тодсоединения				28,6		34	4,9			
руб	Газ ВД/	Туре					Соединение пайкой	í		
	НД	НД		mm			28,6			
	длина трубо- прово- дов									
Defrost method							Реверсивный цикл			
					С инверторным управлением					
производитель-	Способ					Син	верторным управле	нием		
Регулирование производитель- ности Указатель того, что нагревателем		гель обору	/дован дополнит	ельным		С ин	верторным управле	нием		
производитель- ности		Нагрев	дован дополнит elbu	ельным kW		Син		нием		
производитель- ности /казатель того, что нагревателем Дополнительный нагреватель	нагреват Резерв- ная мощ-	Нагрев				Син	no	нием		
производитель- ности Указатель того, что нагревателем Дополнительный	Резерв- ная мощ- ность Режим нагре-	Нагрев	elbu PCK PCK	kW	0,117	Син	no 0,0	нием	0,193	
производительности Указатель того, что нагревателем Дополнительный нагреватель Потребляемая мощность не в	Резерв- ная мощ- ность Режим нагре- вателя	Нагрев Охлаж- дение	elbu	kW	0,117	Син	no 0,0	нием	0,193 0,170	
производительности (казатель того, что нагревателем дополнительный нагреватель Тотребляемая мощность не в	Резерв- ная мощ- ность Режим нагре- вателя картера Обору-	Охлаж- дение Нагрев	PCK PCK POFF	kW kW		Син	0,0 0,000 0,000	нием		
производительности Указатель того, что нагревателем Дополнительный нагреватель Потребляемая нощность не в	Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дование	Охлаж- дение Нагрев Охлаж- дение	PCK PCK POFF	kW kW kW	0,105	Син	0,0 0,000 0,169 0,172	нием	0,170	
производительности (казатель того, что нагревателем дополнительный нагреватель Тотребляемая мощность не в	Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дование ВЫКЛ	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж-	PCK PCK POFF	kW kW kW kW	0,105	Син	0,0 0,000 0,169 0,172	нием	0,170	
производительности Указатель того, что нагревателем Дополнительный нагреватель Потребляемая нощность не в	Резервная мощность Режим нагрера Картера Обору- дование ВЫКЛ Режим ожида-	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение	PCK PCK POFF POFF PSB	kW kW kW kW	0,105 0,117 0,105	Син	0,00 0,000 0,169 0,172 0,169 0,172	нием	0,170 0,193 0,170	
производительности (казатель того, что нагревателем дополнительный нагреватель Тотребляемая мощность не в	Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дование ВЫКЛ Режим ожида- ния Тер-	Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Охлаж-	PCK PCK POFF POFF PSB PSB	kW kW kW kW kW	0,105 0,117 0,105 0,117	Син	0,0 0,000 0,169 0,172 0,169 0,172	нием	0,170 0,193 0,170 0,193	
производительности Указатель того, что нагревателем Дополнительный нагреватель Потребляемая нощность не в	Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дование ВЫКЛ Режим ожида- ния Тер- мостат ВЫКЛ	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение	PCK PCK POFF POFF PSB PSB PTO	kW kW kW kW kW kW	0,105 0,117 0,105 0,117 0,006	Син	0,000 0,000 0,169 0,172 0,169 0,172 0,169 0,009	нием	0,170 0,193 0,170 0,193 0,016	

Technical spe	cificatio	ns System		REYQ32U	REYQ34U	REYQ36U	REYQ38U	REYQ40U
Система	Модуль н	аружного блока 1			REYQ16U		REYQ8U	REYQ10U
	Outdoor u	ınit module 2		REYQ16U	REYQ18U	REYQ20U	REY	Q12U
	Outdoor u	ınit module 3			-		REY	Q18U
Рекомендуемые с	екомендуемые сочетания		8 x FXFQ63AVEB + 4	3 x FXFQ50AVEB + 9	2 x FXFQ50AVEB +	6 x FXFQ50AVEB +	9 x FXFQ50AVEB + 9	
				x FXFQ80AVEB	x FXFQ63AVEB + 2 x	10 x FXFQ63AVEB +	10 x FXFQ63AVEB	x FXFQ63AVEB
					FXFQ80AVEB	2 x FXFQ80AVEB		
Recommended cor	mbination 2)		8 x FXSQ63A2VEB +	3 x FXSQ50A2VEB +	2 x FXSQ50A2VEB +	6 x FXSQ50A2VEB +	9 x FXSQ50A2VEB +
				4 x FXSQ80A2VEB	9 x FXSQ63A2VEB +	10 x FXSQ63A2VEB	10 x FXSQ63A2VEB	9 x FXSQ63A2VEB
					2 x FXSQ80A2VEB	+ 2 x FXSQ80A2VEB		
Recommended cor	mbination 3	}		8 x FXMQ63P7VEB +	3 x FXMQ50P7VEB +	2 x FXMQ50P7VEB +	6 x FXMQ50P7VEB +	9 x FXMQ50P7VEB
				4 x FXMQ80P7VEB	9 x FXMQ63P7VEB +	10 x FXMQ63P7VEB	10 x FXMQ63P7VEB	+ 9 x FXMQ63P7VEB
					2 x FXMQ80P7VEB	+ 2 x FXMQ80P7VEB		
Непрерывное ото	пление					Да		
Холодопроизво-	Prated,c		kW	90,0 (1)	95,4 (1)	97,0 (1)	106,3 (1)	111,9 (1)
дительность								
Теплопроизводи-	Ном.	6°С вл.т.	kW	90,0 (2)	95,4 (2)	101,0 (2)	106,3 (2)	111,9 (2)
тельность	Prated,h		kW	90,0 (2)	95,4 (2)	101,0 (2)	106,4 (2)	111,9 (2)
	Макс.	6°С вл.т.	kW	100,0 (2)	106,5 (2)	113,0 (2)	119,0 (2)	125,5 (2)

Technical spe	cificatio	ns Sys	tem		REYQ32U	REYQ34U	REYQ36U	REYQ38U	REYQ40U
Входная мощ- ность - 50 Гц	Нагрев	Ном.	6°С вл.т.	kW	25,08 (2)	26,76 (2)	30,02 (2)	29,27 (2)	31,45 (2)
ОР при ном. произв-сти	6°С вл.т.			kW/kW	3,59 (2)	3,56 (2)	3,36 (2)	3,63 (2)	3,56 (2)
SEER - Автоматич	еский				6,63	6,43	6,06	6,66	6,68
SEER - Стандартн					5,14	4,97	4,70	5,25	5,20
СОР					4,3	4,4	4,2		,5
СОР, рекомендуе	мое сочет	ание 2			4,2	4,3	4,2		,4
СОР, рекомендуе					4,1	4,2	4,1		,3
SEER					6,2	6,6	6,5	6,8	6,6
EER, рекомендуе	мое сочета	ание 2			6,2	6,6	6,5		,6
EER, рекомендуе					6,1	6,6	6,5	6,9	6,7
)s,c				%	243,1	259,2	255,3	269,2	259,6
үз,с, рекомендуем	ое сочета	ние 2		,,,	244,5	260,6	257,6	263,0	259,5
үз,с, рекомендуем					241,7	259,8	255,8	271,4	263,1
ıs,h				%	169,1	172,0	166,3	176,0	176,1
ıs,h, рекомендуем	ое сочета	ние 2			166,1	169,3	164,2	172,4	173,4
үз,h, рекомендуел					162,2	164,4	160,0	170,3	170,1
Јул, рекомендуен Охлаждение	Условие У				2,2		,3		,5
помещений	A (35°С - 27/19)			kW	90,0	95,4	97,0	106,3	111,9
	Условие	FEBY			4,6	4,8	4,7	1	.9
	B (30°C - 27/19)			kW	66,3	70,3	71,5	78,3	82,5
	Условие	EEDY			8,1	8,4	8,2	8,4	8,0
	C (25°C -			kW	42,6	45,2	45,9	50,4	53,0
	27/19)								
	Условие				11,2	13,7	13,6	14,9	12,6
	D (20°C - 27/19)	Pdc		kW	18,9	21,0	23,1	30,8	23,6
Рекомендуемое сочетание для охлаждения про- странства 2	Условие A (35°C - 27/19)	EERd			2,2	2	,3	2.	,5
Рекомендуемое сочетание для эхлаждения про-	Условие A (35°C - 27/19)	Pdc		kW	90,0	95,4	97,0	106,3	111,9
транства 2	Условие	EERd			4,5	4	,7	4	,8
•	B (30°C - 27/19)			kW	66,3	70,3	71,5	78,3	82,5
	Условие	EERd			8,2	8,5	8,4	8,2	8,0
	C (25°C - 27/19)			kW	42,6	45,2	45,9	50,3	53,0
	Условие	FEBY			11,3	13	5,8	14,5	12,9
	D (20°C -			kW	18,9	21,1	23,1	30,5	23,6
)ovorous:	27/19)	EED-1			2.2	3	2	2	<u> </u>
Рекомендуемое	Условие A (35°C -			14/4/	2,2		,3		,5 111 O
очетание для эхлаждения про-				kW	90,0	95,4	97,0	106,3	111,9
транства 3	Условие				4,5	4,7	4,6	4	
	B (30°C - 27/19)	Pdc		kW	66,3	70,3	71,5	78,3	82,5
	Условие	EERd		i	8,0	8,5	8,3	8,6	8,3
	C (25°C -			kW	42,6	45,2	45,9	50,4	53,0
	27/19)				•				
	Условие	EERd			11,3	13,9	13,8	14,9	12,9
	D (20°C -			kW	19,0	21,3	23,0	31,2	23,6
	27/19)				•				

Technical spe			REYQ32U	REYQ34U	REYQ36U	REYQ38U	REYQ40U		
Отопление (Уме- ренный климат)	TBivalent	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	2,1		,3	2,4			
ренный климат,		изводительность)	46,4	51,1	54,2	60,0	62,3		
		Тbiv (температура для °C			-10				
		бивалентной системы)							
	TOL	COPd (заявленный COP)	2,1		,3	2,4			
		Pdh (заявленная теплопро- kW	46,4	51,1	54,2	60,0	62,3		
		изводительность) Тоl (предельное значение °C			-10				
		рабочей температуры)			-10				
	Условие	СОР (заявленный СОР)	2,7	2,8	2,7	2,8	3		
	A (-7°C)	Pdh (заявленная теплопро- kW	41,0	45,2	47,9	53,0	55,1		
		изводительность)							
		COPd (заявленный COP)	3,9	4,0	3,8	4,1			
	B (2°C)	Pdh (заявленная теплопро- kW	25,0	27,5	29,2	32,3	33,5		
	Vспорио	изводительность) COPd (заявленный СОР)	6,5	6	.3	6,4	1		
	С (7°C)	Pdh (заявленная теплопро- kW	16,1	17,7	18,8	21,9			
	C (, C)	изводительность)	10,1	.,,,	10,0	21,			
	Условие	СОРd (заявленный СОР)	7,4	8	,0	8,7	8,6		
	D (12°C)	Pdh (заявленная теплопро- kW	7,1	8,2	8,3	9,2	9,6		
		изводительность)							
екомендуемое		СОР (заявленный СОР)	2,6	2,8	2,7	2,8			
очетание 2 для	A (-7°C)	Pdh (заявленная теплопро- kW	41,0	45,2	47,9	53,0	55,1		
отопления (Уме- ренный климат)	Vспорие	изводительность) COPd (заявленный СОР)		 	3,8	4,0)		
	В (2°С)	Рdh (заявленная теплопро- kW	25,0	27,5	29,2	32,3	33,5		
	- ()	изводительность)	23,0	2.75		32,3	33,3		
	Условие	COPd (заявленный COP)	6,4		6,2		6,3		
	C (7°C)	Pdh (заявленная теплопро- kW	16,1	17,7	18,8	21,8	8		
		изводительность)							
		СОР (заявленный СОР)	7,2	7,9	7,8	8,4	8,3		
	D (12°C)	Pdh (заявленная теплопро- kW	7,1	8,0	8,3	9,2	9,6		
екомендуемое Т	TRivalent	изводительность) COPd (заявленный СОР)	2,1	2,3	2,2	2,4	 1		
комендуемое четание 2 для	TDIVAICIIC	Pdh (заявленная теплопро- kW	46,4	51,1	54,2	60,0	62,3		
топления (Уме-		изводительность)	,.		,-		,-		
енный климат)		Tbiv (бивалентная темпера- °C			-10				
		тура)	21 22 22						
	TOL	СОРd (заявленный СОР)	2,1	2,3	2,2	2,4			
		Pdh (заявленная теплопро- kW	46,4	51,1	54,2	60,0	62,3		
		изводительность) Тоl (предел рабочей темпе- °C			10				
		ратуры)	-10						
екомендуемое	Условие	СОР (заявленный СОР)	2,6	2,7	2,6	2,8	2,7		
очетание 3 для	A (-7°C)	Pdh (заявленная теплопро- kW	41,0	45,2	47,9	53,1	55,1		
топления (Уме-		изводительность)							
енный климат)		COPd (заявленный COP)	3	,8	3,7	4,0			
	B (2°C)	Pdh (заявленная теплопро- kW	25,0	27,5	29,2	32,3	33,5		
	V	изводительность)			0				
	условие С (7°С)	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	6,2 16,1	17,7	,0 18,8	20,8	21,6		
	C (/ C)	изводительность)	10,1	17,7	10,0	20,0	21,0		
	Условие	СОР (заявленный СОР)	7,0	7,	4	8,4	8,3		
	D (12°C)	Pdh (заявленная теплопро- kW	7,1	7,9	8,3	9,2	9,6		
		изводительность)							
	TBivalent	СОР (заявленный СОР)	2,1	2,3	2,2	2,4	2,3		
		Pdh (заявленная теплопро- kW	46,4	51,1	54,2	60,0	62,3		
		изводительность) Тbiv (бивалентная темпера- °C			-10				
		тура)			-10				
	TOL	СОР (заявленный СОР)	2,1	2,3	2,2	2,4	2,3		
		Pdh (заявленная теплопро- kW	46,4	51,1	54,2	60,0	62,3		
		изводительность)	·			<u> </u>			
		Tol (предел рабочей темпе- °C			-10				
		ратуры)		I					
апазон производительностей НР			32	34	36	38	40		
иапазон произв ED	одительно Категори			·	Категория II				

Technical spe	cificatio	ns Syste	em		REYQ32U	REYQ34U	REYQ36U	REYQ38U	REYQ40U
Индекс произ-	Мин.	•			400,0	425,0	450,0	475,0	500,0
водительности подсоединяемых внутренних блоков	Макс.				1.040,0	1.105,0	1.170,0	1.235,0	1.300,0
Теплообменник	На сторо	не помещ	ения				воздух		
	Внешняя	сторона					воздух		
	Расход воздуха	Охлаж- дение	Ном.	m³/h	31.200	30.660	31.260	35.880	36.660
		Нагрев	Ном.	m³/h	31.200	30.660	31.260	35.880	36.660
Sound power level	Охлаж- дение	Ном.		dBA	88,6 (4)	87,8 (4)	89,9 (4)	87,2 (4)	87,3 (4)
	Heating	Prated,h		dBA	89,9 (4)	89,2 (4)	91,6 (4)	90,7 (4)	88,4 (4)
Уровень звуково- го давления	Охлаж- дение	Ном.		dBA	66,0 (5)	65,5 (5)	67,1 (5)	65,	2 (5)
Хладагент	Тип						R-410A		
	ПГП						2.087,5		
Масло хладагента	Тип					Синтетич	еское (эфирное) мас	ло FVC68D	
Подсоединения	Жид-	Тип					Соединение пайкой	i	
труб	кость	НД		mm			19,1		
Подсоединения	Газ	Тип					Соединение пайкой	i	
труб		НД		mm	34,9 41,3				
	Газ ВД/	Туре					Соединение пайкой	i	
-	нд	НД		mm		28,6		3.	4,9
	Общая длина трубо- прово-	Система	Фактическая	m			1.000 (6)		
Defrost method	дов						Реверсивный цикл		
Регулирование производитель- ности	Способ				С инверторным управлением				
Указатель того, что нагревателем	о нагреват	гель обору	удован дополнит	гельным			no		
Дополнительный нагреватель	Резерв- ная мощ- ность	Нагрев	elbu	kW			0,0		
Потребляемая мощность не в	Режим нагре-	Охлаж- дение	PCK	kW			0,000		
активном режиме	вателя картера	Нагрев	PCK	kW	0,220	0,	244	0,:	252
	Обору- дование	Охлаж- дение	POFF	kW	0,240	0,	238	0,7	223
	ВЫКЛ	Нагрев	POFF	kW	0,220	0,	244	0,	252
F	Режим ожида-	Охлаж- дение	PSB	kW	0,240	0,	238	0,:	223
			PSB	kW	0,220	0.	244	0	252
	ния	Нагрев	r 3b	17.4.4					
	ния Тер- мостат	нагрев Охлаж- дение	PTO	kW	· · · · · · · · · · · · · · · · · · ·	,		· · · · · · · · · · · · · · · · · · ·	252
	Tep-	Охлаж- дение			· · · · · · · · · · · · · · · · · · ·			019	279
Охлаждение	Тер- мостат ВЫКЛ	Охлаж-	PTO PTO	kW	0,013		0,0	019	

Technical spe	cifications System		REYQ42U	REYQ44U	REYQ46U	REYQ48U	REYQ50U
Система	Модуль наружного блока 1		REYQ10U	REYQ12U	REYQ14U	REY	Q16U
	Outdoor unit module 2				REYQ16U		
	Outdoor unit module 3			REYO	Q16U		REYQ18U
Рекомендуемые со	очетания		12 x FXFQ63AVEB +	6 x FXFQ50AVEB + 8	1 x FXFQ50AVEB +	12 x FXFQ63AVEB +	3 x FXFQ50AVEB +
			4 x FXFQ80AVEB	x FXFQ63AVEB + 4 x	13 x FXFQ63AVEB +	6 x FXFQ80AVEB	13 x FXFQ63AVEB +
				FXFQ80AVEB	4 x FXFQ80AVEB		4 x FXFQ80AVEB
Recommended cor	ecommended combination 2			6 x FXSQ50A2VEB +	1x FXSQ50A2VEB +	12 x FXSQ63A2VEB	3 x FXSQ50A2VEB -
			+ 4 x FXSQ80A2VEB	8 x FXSQ63A2VEB +	13 x FXSQ63A2VEB	+6 x FXSQ80A2VEB	13 x FXSQ63A2VEB
				4 x FXSQ80A2VEB	+4xFXSQ80A2VEB		+4xFXSQ80A2VE
Recommended cor	mbination 3		12 x FXMQ63P7VEB	6 x FXMQ50P7VEB +	1x FXMQ50P7VEB +	12 x FXMQ63P7VEB	3 x FXMQ50P7VEB
			+ 4 x FXMQ80P7VEB	8 x FXMQ63P7VEB +	13 x FXMQ63P7VEB	+6 x FXMQ80P7VEB	13 x FXMQ63P7VEE
				4 x FXMQ80P7VEB	+4xFXMQ80P7VEB		+4xFXMQ80P7VE
Непрерывное ото	пление				Да		
Холодопроизво-	Prated,c	kW	118,0 (1)	123,5 (1)	130,0 (1)	135,0 (1)	140,4 (1)
дительность							
Теплопроизводи-	Ном. 6°С вл.т.	kW	118,0 (2)	123,5 (2)	130,0 (2)	135,0 (2)	140,4 (2)
тельность	Prated,h	kW	118,0 (2)	123,5 (2)	130,0 (2)	135,0 (2)	140,4 (2)
	Макс. 6°С вл.т.	kW	131,5 (2)	137,5 (2)	145,0 (2)	150,0 (2)	156,5 (2)

Technical spe	cifications	System		REYQ42U	REYQ44U	REYQ46U	REYQ48U	REYQ50L
Входная мощ-	Нагрев Но	ом. 6°С вл.т.	kW	32,66 (2)	34,73 (2)	35,77 (2)	37,62 (2)	39,30 (2)
ность - 50 Гц								
СОР при ном.	6°С вл.т.		kW/kW	3,61 (2)	3,56 (2)	3,63 (2)	3,59 (2)	3,57 (2)
произв-сти								
ESEER - Автоматич				6,79	6,68	6,75	6,63	6,49
ESEER - Стандартн	ЫЙ			5,28	5,20	5,23	5,14	5,03
SCOP		2		4,3	4,4		4,3	4.2
SCOP, рекомендуе				4,2	4,3		,2	4,3
SCOP, рекомендуе	мое сочетани	1e 3		4,1	4,2		l,1	4,2
SEER		- 2			5,3		,2	6,4
SEER, рекомендуе				6,4		6,3	6,2	6,5
SEER, рекомендуе	мое сочетани	le 3	%		5,3	6,2	6,1	6,4
ηs,c ηs,c, рекомендуем	100 60110731114	. 2	90	250,2 252,5	249,3 247,1	246,8 248,8	243,1 244,5	254,4 255,9
				249,6	249,0	246,9	244,3	254,5
ηs,c, рекомендуем ηs,h	ое сочетание	. J	%	249,6 167,8	171,9	168,8	168,5	170,3
ղѕ,п ղѕ,h, рекомендуем	INE COUETALIA	27	70	165,4	168,7	165,9	165,3	167,5
լs,п, рекомендуек γs,h, рекомендуек				161,9	165,4		1,5	163,0
ту,п, рекомендуек Эхлаждение	Условие EE			· · · · · · · · · · · · · · · · · · ·	2,3	2,4	2,2	2,3
помещений	A (35°C - Pc		kW	118,0	123,5	130,0	135,0	140,4
.омещении	27/19)		1577	110,0	123,3	130,0	155,0	170,7
	Условие ЕЕ	:Rd		4,7		4,6	1	4,7
	B (30°C - Pc		kW	86,9	91,0	95,8	99,5	103,5
	27/19)		,	10	,0	- 5,0		,5
	Условие ЕЕ	:Rd		8,0	7,9	8	3,1	8,3
	C (25°C - Pc		kW	55,9	58,5	61,6	64,0	66,5
	27/19)							
	Условие ЕЕ	Rd		12,3	12,7	11	,2	13,0
	D (20°C - Pc	lc	kW	24,8	26,0	27,4	28,4	29,6
	27/19)							
Рекомендуемое	Условие ЕЕ	:Rd		2,4	2,3	2,4	2,2	2,3
сочетание для	A (35°C -							
охлаждения про-	27/19)							
странства 2	., -		1000	440 -	40	40.7.7	425 -	
Рекомендуемое	Условие Ро	IC	kW	118,0	123,5	130,0	135,0	140,4
сочетание для	A (35°C -							
охлаждения про-		:Dd		4.7	A.5	4.0	4.5	4.7
странства 2	Условие <u>EE</u> В (30°C - Pc		Is\A/	4,7	4,5	4,6	4,5	4,7
	27/19)	IC	kW	86,9	91,0	95,8	99,5	103,4
	Условие ЕЕ	:D4		8,2	7,9	8,3	8,2	8,4
	С (25°С - Рс		kW	55,9	58,5	61,6	63,9	66,5
	27/19)		IX V V	33,3	30,3	01,0	03,9	00,5
	Условие ЕЕ	:Rd		12,4	12,5	11,4	11,3	13,1
	D (20°C - Pc		kW	24,8	26,0	27,4	28,4	29,6
	27/19)		,	= :/0				
Рекомендуемое	Условие ЕЕ	Rd		2	2,3	2,4	2,2	2,3
сочетание для	A (35°C - Pc		kW	118,0	123,5	130,0	135,0	140,4
охлаждения про-				•				
странства 3	Условие ЕЕ	Rd		4,6	4,5	4,6	4,5	4,6
	B (30°C - Pc	lc	kW	87,0	91,0	95,8	99,5	103,5
	27/19)							
	Условие ЕЕ			8	3,0	8,2	8,0	8,3
	C (25°C - Pc	lc	kW	55,9	58,5	61,6	63,9	66,5
	27/19)							
	Условие ЕЕ			12,4	12,8	11,4	11,3	13,2
	D (20°C - Pc	lc	kW	24,8	26,0	27,4	28,4	29,6
	27/19)							

Technical spe			REYQ42U	REYQ44U	REYQ46U	REYQ48U	REYQ50U
Отопление (Уме- ренный климат)	TBivalent	СОРd (заявленный СОР)	2,1	2,2	670		2,3
ренный климат)		Pdh (заявленная теплопро- kW изводительность)	62,4	64,8	67,0	69,6	74,3
		Тbiv (температура для °C			-10		
		бивалентной системы)					
	TOL	COPd (заявленный COP)	2,1	2,2	2	,1	2,3
		Pdh (заявленная теплопро- kW	62,4	64,8	67,0	69,6	74,3
		изводительность)	10				
		Тоl (предельное значение °C	-10				
	Условие	рабочей температуры) COPd (заявленный COP)	2,6 2,7				2,8
	A (-7°C)	Pdh (заявленная теплопро- kW	55,2	57,3	59,3	61,5	65,7
	(-/	изводительность)				,,,	,
	Условие	COPd (заявленный COP)		4,0		3,9	4,0
	B (2°C)	Pdh (заявленная теплопро- kW	33,6	34,9	36,1	37,5	40,0
Услов С (7°C		изводительность)					
		СОР (заявленный СОР)	6,4	6,7	6,4	6,5	6,4
	C (/ C)	Pdh (заявленная теплопро- kW изводительность)	21,8	22,6	23,2	24,1	25,7
y _c	Условие	СОР (заявленный СОР)		6	i,9		7,6
	D (12°C)	Pdh (заявленная теплопро- kW	1		1,0		13,7
		изводительность)					
Рекомендуемое		COPd (заявленный COP)	2,6	<u> </u>	2,7	2,6	2,7
сочетание 2 для	A (-7°C)	Pdh (заявленная теплопро- kW	55,2	57,3	59,3	61,6	65,7
отопления (Уме-		изводительность)			2.0		
ренный климат)	условие В (2°C)	СОР (заявленный СОР)	22.6	24.0	3,9	27.5	40.0
	D (2 C)	Pdh (заявленная теплопро- kW изводительность)	33,6	34,9	36,1	37,5	40,0
	Условие	СОР (заявленный СОР)	6,3	6,5	6,3	6,4	6,2
	C (7°C)	Pdh (заявленная теплопро- kW	21,7	22,6	23,2	24,1	25,7
		изводительность)			·		
		COPd (заявленный COP)		6	,7		7,3
	D (12°C)	Pdh (заявленная теплопро- kW	10,6			10,7	13,3
		изводительность)			_		
Рекомендуемое сочетание 2 для	l Bivalent	СОРd (заявленный СОР) Pdh (заявленная теплопро- kW	62,4	64,8	2,1 67,0	69,6	2,2 74,3
отопления (Уме-		изводительность)	02,4	04,0	67,0	69,6	74,3
ренный климат)		Тbiv (бивалентная темпера- °C			-10		
		тура)					
	TOL	COPd (заявленный COP)			2,1		2,2
		Pdh (заявленная теплопро- kW	62,4	64,8	67,0	69,6	74,3
		изводительность)			40		
		Tol (предел рабочей темпе- °C	-10				
Рекомендуемое	Vсповие	ратуры) COPd (заявленный COP)			2,6		2,7
сочетание 3 для	A (-7°C)	Pdh (заявленная теплопро- kW	55,2	57,3	59,3	61,6	65,7
отопления (Уме-	, ,	изводительность)				,,,	
ренный климат)		COPd (заявленный COP)	3,8	3,9		3,8	
	B (2°C)	Pdh (заявленная теплопро- kW	33,6	34,9	36,1	37,5	40,0
	V	изводительность)	(2)			6.3	
		СОРd (заявленный СОР)	6,2	6,4	6,1	6,2	6,1
	C (7°C)	Pdh (заявленная теплопро- kW изводительность)	21,7	22,4	23,2	24,1	25,7
	Условие	СОР (заявленный СОР)		6,5	1	6,6	7,0
	D (12°C)	Pdh (заявленная теплопро- kW		10,2		10,7	12,7
		изводительность)		· 		,	
	TBivalent	COPd (заявленный COP)			2,1		2,2
		Pdh (заявленная теплопро- kW	62,4	64,8	67,0	69,6	74,3
		изводительность)					
		Tbiv (бивалентная темпера- °C			-10		
	TOL	тура) COPd (заявленный COP)			2,1		2,2
	IOL	Pdh (заявленная теплопро- kW	62,4	64,8	67,0	69,6	74,3
		изводительность)	52,.	.,,5	0.,0	0,70	, ,,5
		Tol (предел рабочей темпе- °C			-10		
		TOT (TIPEACT PAGO TENT TENTILE C					
		ратуры)					
Циапазон произв	одительно Категори	ратуры) стей HP	42	44	46 Категория II	48	50

Technical spe	echnical specifications System					REYQ44U	REYQ46U	REYQ48U	REYQ50U		
Индекс произ-	Мин.				525,0	550,0	575,0	600,0	625,0		
водительности	Макс.				1.365,0	1.430,0	1.495,0	1.560,0	1.625,0		
подсоединяемых											
внутренних											
блоков											
Геплообменник	На сторо	не помещ	ения			воздух					
	Внешняя	сторона					воздух				
	Расход	Охлаж-	Ном.	m³/h	41.700	42.300	44.580	46.800	46.260		
	воздуха	дение									
		Нагрев	Ном.	m³/h	41.700	42.300	44.580	46.800	46.260		
Sound power level	Охлаж-	Ном.		dBA	89,1 (4)	89,8 (4)	89,3 (4)	90,4 (4)	89,8 (4)		
	дение										
	Heating	Prated,h		dBA	90,4 (4)	90,8 (4)	90,9 (4)	91,7 (4)	91,2 (4)		
Уровень звуково-	Охлаж-	Ном.		dBA	66,5 (5)	67,2 (5)	67,0 (5)	67,8 (5)	67,5 (5)		
го давления	дение										
Хладагент	Тип						R-410A				
	ПГП						2.087,5				
Масло хладагента	осло хладагента Тип					Синтетиче	еское (эфирное) мас	ло FVC68D			
Тодсоединения	Жид-	Тип					Соединение пайкой	I			
груб	кость	НД		mm			19,1				
Подсоединения	Газ	Тип					Соединение пайкой	l			
груб		НД		mm	41,3						
	Газ ВД/	Type					Соединение пайкой	l			
O	НД	нд		mm			34,9				
	Общая	Система	Фактическая	m			1,000 (c)				
			wantivi iccitari	1111			1.000 (6)				
	длина		Quitti Techan	""			1.000 (6)				
	длина трубо-		Quitin rection	""			1.000 (6)				
			Quitty rectain	""			1.000 (6)				
	трубо-		Quitty rectain	""			1.000 (6)				
Defrost method	трубо- прово-		Quitty rection	""			1.000 (6)				
Defrost method Регулирование	трубо- прово-		- Contraction			Сині	.,	нием			
Регулирование	трубо- прово- дов		- Control of the Cont			Сині	Реверсивный цикл	нием			
Регулирование производитель-	трубо- прово- дов					Сині	Реверсивный цикл	нием			
Регулирование производитель- ности	трубо- прово- дов Способ	гель обору				Сині	Реверсивный цикл	нием			
Регулирование производитель- ности Указатель того, что нагревателем	трубо- прово- дов Способ		удован дополнит	ельным		Сині	Реверсивный цикл зерторным управле по	нием			
Регулирование производитель- ности Указатель того, что нагревателем	трубо- прово- дов Способ	гель обору				Сині	Реверсивный цикл верторным управле	нием			
Регулирование производительности Указатель того, что нагревателем Дополнительный	трубо- прово- дов Способ о нагреват Резерв-	Нагрев	удован дополнит	ельным		Сині	Реверсивный цикл зерторным управле по	нием			
Регулирование производительности Указатель того, что нагревателем Дополнительный нагреватель	трубо- прово- дов Способ о нагреват Резерв- ная мощ- ность	Нагрев	удован дополнит elbu	ельным kW		Сині	Реверсивный цикл зерторным управле по 0,0	нием			
Регулирование производительности // казатель того, что нагревателем дополнительный нагреватель	трубо- прово- дов Способ о нагреват Резерв- ная мощ- ность Режим	Нагрев	удован дополнит	ельным		Сині	Реверсивный цикл зерторным управле по	нием			
Регулирование производительности Указатель того, что нагревателем Дополнительный нагреватель Потребляемая мощность не в	трубо- прово- дов Способ Резерв- ная мощ- ность Режим нагре-	Нагрев Охлаж- дение	удован дополнит elbu PCK	ельным kW kW			Реверсивный цикл зерторным управле по 0,0				
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ Резерв- ная мощ- ность Режим нагре- вателя	Нагрев	удован дополнит elbu	ельным kW	0,2	С ині	Реверсивный цикл зерторным управле по 0,0	нием	0,354		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагре- вателя картера	Нагрев Охлаж- дение Нагрев	удован дополнит elbu PCK PCK	eльным kW kW kW		279	Реверсивный цикл зерторным управле по 0,0 0,000	330			
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ Резерв- ная мощ- ность Режим- нагре- вателя картера Обору-	Охлаж- дение Нагрев	удован дополнит elbu PCK	ельным kW kW			Реверсивный цикл зерторным управле по 0,0 0,000		0,354 0,358		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дование	Охлаж- дение Нагрев Охлаж- дение	удован дополнит elbu PCK PCK POFF	kW kW kW kW	0,2	279	Реверсивный цикл зерторным управле по 0,0 0,000	130	0,358		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ Резерв- ная мощ- ность Режим- нагре- вателя картера Обору-	Охлаж- дение Нагрев	удован дополнит elbu PCK PCK POFF	kW kW kW kW	0,2	279 292 279	Реверсивный цикл зерторным управле по 0,0 0,000 0,3	i30 i60	0,358		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагре- вателя Сбору- дование ВЫКЛ Режим	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж-	удован дополнит elbu PCK PCK POFF	kW kW kW kW	0,2	279	Реверсивный цикл зерторным управле по 0,0 0,000 0,3	130	0,358		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дование ВЫКЛ	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение	удован дополнит elbu PCK PCK POFF POFF PSB	kW kW kW kW kW	0,2 0,2 0,2	279 292 279	Реверсивный цикл зерторным управле по 0,0 0,000 0,3 0,3	330 60 330	0,358 0,354 0,358		
Регулирование производительности (казатель того, что нагревателем дополнительный нагреватель Потребляемая мощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагре- вателя Сбору- дование ВЫКЛ Режим	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж-	удован дополнит elbu PCK PCK POFF POFF PSB	kW kW kW kW kW kW	0,2 0,2 0,2	279 292 279 292	Реверсивный цикл зерторным управле по 0,0 0,000 0,3 0,3	i30 i60	0,358		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагревателя картера Обору- дование ВЫКЛ Режим ожида-	Нагрев Охлаж-дение Нагрев Охлаж-дение Нагрев Охлаж-дение Нагрев Охлаж-дение Охлаж-дение	удован дополнит elbu PCK PCK POFF POFF PSB	kW kW kW kW kW	0,2 0,2 0,2	279 292 279	Реверсивный цикл зерторным управле по 0,0 0,000 0,3 0,3 0,3	330 60 330	0,358 0,354 0,358		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо- прово- дов Способ О нагреват Резерв- ная мощ- ность Режим нагре- вателя картера Обору- дования ВЫКЛ Режим ожида- ния	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев	удован дополнит elbu PCK PCK POFF POFF PSB PSB PTO	kW kW kW kW kW kW kW kW	0,2 0,2 0,2	279 292 279 292	Реверсивный цикл верторным управле по 0,0 0,000 0,3 0,3 0,3 0,3 0,0	130 160 130 160 130 130	0,358 0,354 0,358 0,354 0,025		
Регулирование производительности и казатель того, что нагревателем Дополнительный нагреватель Потребляемая иощность не в	трубо-проводов Способ О нагреват Резервная мощность Режим нагревателя картера Обору-дование ВЫКЛ Режим ожидания Тер-	Нагрев Охлаж-дение Нагрев Охлаж-дение Нагрев Охлаж-дение Нагрев Охлаж-дение Охлаж-дение	удован дополнит elbu PCK PCK POFF POFF PSB	kW kW kW kW kW kW	0,2 0,2 0,2 0,2	279 292 279 292	Реверсивный цикл верторным управле по 0,0 0,000 0,3 0,3 0,3 0,3 0,0	330 660 330 660	0,358 0,354 0,358 0,354		
	трубо-проводов Способ О нагреват Резервная мощность Режим нагревателя картера Оборудование ВЫКЛ Режим ожидания Термостат ВЫКЛ	Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев Охлаж- дение Нагрев	удован дополнит elbu PCK PCK POFF POFF PSB PSB PTO	kW kW kW kW kW kW kW kW	0,2 0,2 0,2 0,2	279 292 279 292 279 216	Реверсивный цикл верторным управле по 0,0 0,000 0,3 0,3 0,3 0,3 0,0	130 160 130 160 130 130	0,358 0,354 0,358 0,354 0,025		

Technical spe	cifications System		REYQ52U	REYQ54U			
Система	Модуль наружного блока 1		REYQ16U	REYQ18U			
	Outdoor unit module 2		REYQ18U				
	Outdoor unit module 3		REYQ18U				
Рекомендуемые с	очетания		6 x FXFQ50AVEB + 14 x FXFQ63AVEB + 2 x FXFQ80AVEB				
Recommended co	mbination 2		6 x FXSQ50A2VEB + 14 x FXSQ63A2VEB + 2 x 9 x FXSQ50A2VEB + 15 x FXSQ63A2VE FXSQ80A2VEB				
Recommended co	mbination 3		6 x FXMQ50P7VEB + 14 x FXMQ63P7VEB + 2 x FXMQ80P7VEB	9 x FXMQ50P7VEB + 15 x FXMQ63P7VEB			
Непрерывное отс	опление		Да				
Холодопроизво- дительность	Prated,c	kW	145,8 (1)	151,2 (1)			
Теплопроизводи-	Ном. 6°С вл.т.	kW	145,8 (2)	151,2 (2)			
тельность	Prated,h	kW	145,8 (2)	151,2 (2)			
	Макс. 6°С вл.т.	kW	163,0 (2)	169,5 (2)			
Входная мощ- ность - 50 Гц	Нагрев Ном. 6°С вл.т.	kW	40,98 (2)	42,66 (2)			

Technical spe	cifications System		REYQ52U	REYQ54U			
СОР при ном.	6°С вл.т.	kW/kW	3,56 (2)	3,54 (2)			
произв-сти							
ESEER - Автоматич	еский		6,37	6,26			
ESEER - Стандартні	ый		4,93	4,84			
SCOP		İ	4	1,4			
SCOP, рекомендуе	мое сочетание 2		4,3				
SCOP, рекомендуе				4,2			
SEER			6,7	7,0			
SEER, рекомендуе	мое сочетание 2		6,7	7,0			
SEER, рекомендуе			6,7	7,0			
ηs,c		%	265,7	275,2			
ηs,c, рекомендуем	пое сочетание 2	,,	267,0	276,7			
ηs,c, рекомендуем			266,8	276,7			
ηs,h		%	171,7	173,3			
ııз,ıı ηs,h, рекомендуем	лое сочетание 2	/0	169,3	170,8			
пs,п, рекомендуем ηs,h, рекомендуем			164,3	165,5			
пѕ,п, рекомендуем Охлаждение	Условие EERd		2,3	2,4			
Охлаждение помещений	A (35°С - Pdc	kW					
помещении		KVV	145,8	151,2			
	27/19) Variables EEDd		4.0	50			
	Условие EERd	14/4/	4,8	5,0			
	B (30°C - Pdc	kW	107,4	111,4			
	27/19)		0.4	0.0			
	Условие EERd	1.34/	8,4	8,6			
	C (25°C - Pdc	kW	69,1	71,6			
	27/19)		15.0	16.7			
	Условие EERd	134/	15,0	16,7			
	D (20°C - Pdc	kW	30,7	34,7			
D	27/19)		2.2	24			
Рекомендуемое	Условие EERd		2,3	2,4			
сочетание для	A (35°C -						
охлаждения про-	2// 19)						
странства 2	Vananus Dda	1.34/	145.0	151.0			
Рекомендуемое	Условие Pdc	kW	145,8	151,2			
сочетание для	A (35°C -						
охлаждения про-				10			
странства 2	Условие EERd	114	4,8	4,9			
	B (30°C - Pdc	kW	107,4	111,4			
	27/19)						
	Условие EERd		8,6	8,8			
	C (25°C - Pdc	kW	69,1	71,6			
	27/19)						
	Условие EERd		15,0	16,7			
	D (20°C - Pdc	kW	31,2	34,9			
	27/19)						
Рекомендуемое	Условие EERd		2,3	2,4			
сочетание для	A (35°C - Pdc	kW	145,8	151,2			
охлаждения про-							
странства 3	Условие EERd		4,8	4,9			
	B (30°C - Pdc	kW	107,4	111,4			
	27/19)						
	Условие EERd		8,6	8,8			
	C (25°C - Pdc	kW	69,1	71,6			
	27/19)						
	Условие EERd		15,2	16,8			
	D (20°C - Pdc	kW	31,7	35,4			
	27/19)						

		REYQ52U	REYQ54U				
TBivalent		2,4	2,6				
	Pdh (заявленная теплопро- kW	79,0	83,7				
	изводительность)						
	. C. sh. Mr. iii	-10					
TOL	,	2.4	26				
TOL			2,6				
	·	79,0	83,7				
		-10					
	* 1 * 11	-10					
Условие		2.8	2,9				
			74,0				
, -,	· · · · · · · · · · · · · · · · · · ·		,				
Условие		4,0	4,1				
B (2°C)	Pdh (заявленная теплопро- kW	42,6	45,1				
	изводительность)						
Условие	COPd (заявленный COP)	6,3	6,2				
C (7°C)	Pdh (заявленная теплопро- kW	27,3	29,0				
	изводительность)						
		7,6	8,0				
D (12°C)	Pdh (заявленная теплопро- kW	13,7	16,3				
	изводительность)						
			2,9				
A (-7°C)		69,9	74,0				
V							
			454				
D (2 °C)	·	42,5	45,1				
Vсповио		61	6,0				
			29,0				
C (/ C)	•	27,5	29,0				
Условие		7.3	7,9				
			16,0				
- (-,	•	1.2/2					
TBivalent		2,4	2,5				
ibivaicht			83,7				
	изводительность)						
	Тbiv (бивалентная темпера- °C	-10					
	тура)						
TOL	COPd (заявленный COP)	2,4	2,5				
	Pdh (заявленная теплопро- kW	79,0	83,7				
	изводительность)						
	Tol (предел рабочей темпе- °C	-10					
	ратуры)						
			2,8				
A (-7°C)	· · · · · · · · · · · · · · · · · · ·	69,9	74,0				
V		20					
			AF 1				
D (2 °C)	· · · · · · · · · · · · · · · · · · ·	42,5	45,1				
Venoeus		50	E 0				
			5,8 29,0				
C (/ C)		21,3	27,U				
Усповие		70	7,4				
			15,2				
D (12 C)	·	12,/	13,2				
TBivalent		2.3	2,5				
· = · · · · · · · ·			83,7				
	изводительность)	1-70	35),				
	Тbiv (бивалентная темпера- °C	-10					
	тура)						
		2.2	2,5				
TOL	COPd (заявленный COP)	2,3					
TOL	COPd (заявленный COP) Pdh (заявленная теплопро- kW	79,0	83,7				
TOL							
TOL	Pdh (заявленная теплопро- kW						
TOL	Pdh (заявленная теплопро- kW изводительность)	79,0					
TOL	Pdh (заявленная теплопро- kW изводительность) Тоl (предел рабочей темпе- °C ратуры)	79,0					
	ТВіvalent ТОL Условие А (-7°С) Условие В (2°С) трію (температура для ос бивалентной системы) ТОL СОР (заявленный СОР) Раб (заявленный СОР) В (2°С) Раб (заявленный СОР)	ТВічаlепt СОРВ (заявленный СОР) Рdh (заявленный теплопро- kW изводительность) Тоl. СОРВ (заявленный СОР) Рdh (заявленный Расский СОР) Рdh (заявленный Расский СОР) Рdh (заявле					

Technical spe	cificatio	ns Syste	em		REYQ52U	REYQ54U
Индекс произ-	Мин.				650,0	675,0
водительности	Макс.				1.690,0	1.755,0
подсоединяемых						
внутренних						
блоков						
Теплообменник	На сторо	не помещ	ения		возду	/X
	Внешняя	сторона			возду	/X
	Расход	Охлаж-	Ном.	m³/h	45.720	45.180
	воздуха	дение				
		Нагрев	Ном.	m³/h	45.720	45.180
Sound power level		Ном.		dBA	89,3 (4)	88,6 (4)
	дение					
	Heating	Prated,h		dBA	90,7 (4)	90,1 (4)
/ровень звуково-	Охлаж-	Ном.		dBA	67,1 (5)	66,8 (5)
о давления	дение					
Хладагент	Тип				R-410	
	ПГП				2.087	
Масло хладагента	Тип				Синтетическое (эфирн	ное) масло FVC68D
Подсоединения	Жид-	Тип			Соединение	е пайкой
труб	кость	нд		mm	19,1	
Подсоединения	Газ	Тип			Соединение	е пайкой
труб		нд		mm	41,3	
	Газ ВД/	Туре			Соединение	е пайкой
	НД	НД		mm	34,9)
	Общая		Фактическая	m	1.000	
	длина					· ·
	трубо-					
	прово-					
	дов					
Defrost method					Реверсивні	ый цикл
Регулирование	Способ				С инверторным у	управлением
производитель-						•
ности						
Указатель того, что	о нагреват	гель обору	удован дополнит	ельным	no	
нагревателем	•					
Дополнительный	Резерв-	Нагрев	elbu	kW	0,0	
нагреватель	ная мощ-				1	
	ность					
Потребляемая	Режим	Охлаж-	PCK	kW	0,00	0
мощность не в	нагре-	дение				
активном режиме		Нагрев	PCK	kW	0,379	0,403
F	картера		-	•	,,,,,	-,
	Обору-	Охлаж-	POFF	kW	0,356	0,354
	дование		-	•	,,,,,	.,
	ВЫКЛ	Нагрев	POFF	kW	0,379	0,403
	Режим	Охлаж-	PSB	kW	0,356	0,354
	ожида-	дение			5,555	0,00
	ния	Нагрев	PSB	kW	0,379	0,403
	Tep-	Охлаж-	PTO	kW	0,031	0,037
	мостат	дение	. 10	IV A A	0,031	0,037
	ВЫКЛ	Нагрев	PTO	kW	0,406	0,431
Охлаждение		жение охл		IV V V	0,400	·
Отопление	сап (Сни	жение отс	пления)		0,25	

Electrical spe	cifications System		REYQ10U	REYQ13U	REYQ16U	REYQ18U	REYQ20U	
Электропитание	Наименование			Y1				
	Фаза			3N~				
	Частота			50				
	Напряжение	V	380-415					
Подключение эле	ктропитания		Внутренний и наружный блок					
Диапазон напря-	Мин.	%	-10					
жений	Макс.	%	10					
Ток	Номи- Охлаждение нальный рабочий ток (RLA)	А	8,2 (7)	11,8 (7)	15,4 (7)	18,2 (7)	21,5 (7)	

Electrical spe	cificatio	ns System		REYQ10U	REYQ13U	REYQ16U	REYQ18U	REYQ20U
Ток - 50 Гц	Ном.	Combination A Cooling				-		,
	рабочий	Combination B Cooling				-		
	ток (RLA)							
	Пускової	й ток (MSC) - примечание				См. прим. 8		
	Z макс. Список					Требования отс-т		
	Минимал	тьное значение Ssc	kVa		5.786 (9)		6.846 (9)	7.206 (9)
	Мин. ток	цепи (МСА)	Α		30,0 (10)		37,0 (10)	39,0 (10)
	Макс. тон	к предохранителя (MFA)	Α		40 (11)		50	(11)
Производитель-	Коэффи-	Combination B 35°C ISO - Full lo	ad			-		
ность	циент	46°C ISO - Full lo	ad			-		
Соединительная	Для	Количество		5G				
проводка - 50 Гц	электро-							
	питания							
	Для	Количество				2		
	подсое-	Примечание				F1,F2		
	динения							
	с внутр.							
	бл.							

Electrical spe	cifications System		REYQ22U	REYQ24U	REYQ26U	REYQ28U	REYQ30U		
Электропитание	Наименование		Y1						
	Фаза		3N~						
	Частота	Hz			50				
	Напряжение	V			380-415				
Подключение эле	ктропитания			Внут	ренний и наружный	блок			
Диапазон напря-	Мин.	%			-10				
жений	Макс.	%			10				
Ток	Номи- Охлаждение	Α	24,3 (7)	26,2 (7)	29,4 (7)	32,3 (7)	35,8 (7)		
	нальный								
	рабочий								
	ток (RLA)								
p	Hom. Combination A Cooling	-							
	рабочий Combination B Cooling		-						
	ток (RLA)		6						
	Пусковой ток (MSC) - примечани	См. прим. 8							
	Z макс. Список		Требования отс-т						
	Минимальное значение Ssc	kVa	8.266 (9)	8.284 (9)	9.165 (9)	9.704 (9)	10.602 (9)		
	Мин. ток цепи (МСА)	A	46,	0 (10)	51,0 (10)	55,0 (10)	59,0 (10)		
	Макс. ток предохранителя (МFA		63 (11) 80 (11)						
Производитель-	Коэффи- Combination B 35°C ISO - Fu				-				
ность	циент 46°C ISO - Ft	III load	-						
Соединительная	Для Количество		5G						
проводка - 50 Гц	электро-								
	питания								
	Для Количество	2							
	подсое- Примечание	F1,F2							
	динения								
	с внутр.								
	бл.								

Electrical spe	cifications System		REYQ32U	REYQ34U	REYQ36U	REYQ38U	REYQ40U		
Электропитание	Наименование		Y1						
	Фаза		3N~						
	Частота	Hz			50				
	Напряжение	V			380-415				
Подключение эле	ктропитания			Внут	ренний и наружный	і блок			
Диапазон напря-	Мин.	%			-10				
жений	Макс.	%			10				
1	Номи- Охлаждение	Α	37,0 (7)	40,5 (7)	47,0 (7)	43,5 (7)	46,3 (7)		
	нальный								
	рабочий								
	ток (RLA)								
Ток - 50 Гц	Hом. Combination A Cooling				-				
	рабочий CombinationB Cooling				-				
	ток (RLA)								
	Пусковой ток (MSC) - примечание		См. прим. 8						
	Z макс. Список			Требования отс-т					
	Минимальное значение Ssc	kVa	10.781 (9)	11.680 (9)	12.399 (9)	13.495 (9)	14.556 (9)		
	Мин. ток цепи (МСА)	Α	62,0 (10)	66,0 (10)	70,0 (10)	74,0 (10)	81,0 (10)		
	Макс. ток предохранителя (MFA) A		80 (11) 100 (11)						
Производитель-	Коэффи- Combination В 35°C ISO - FuⅡ	oad			-				
ность	циент 46°C ISO - Full	load			-				

Electrical spe	cificatio	ns System	REYQ32U	REYQ34U	REYQ36U	REYQ38U	REYQ40U
Соединительная проводка - 50 Гц	Для электро- питания	Количество			5G		
	Для	Количество			2		
	подсое- динения с внутр. бл.	Примечание			F1,F2		

Electrical spe	cifications System		REYQ42U	REYQ44U	REYQ46U	REYQ48U	REYQ50U		
Электропитание	Наименование	Y1							
•	Фаза		3N~						
	Частота			50					
	Напряжение	V			380-415				
Подключение эле	ектропитания		Внут	ренний и наружный	блок				
Диапазон напря-	Мин.	%			-10				
жений	Макс.	%			10				
Ток	Номи- Охлаждение	Α	47,5 (7)	50,8 (7)	52,6 (7)	55,5 (7)	59,0 (7)		
	нальный								
	рабочий								
	ток (RLA)								
Гок - 50 Гц	Hом. Combination A Cooling	-							
-	рабочий CombinationB Cooling			-					
	ток (RLA)								
	Пусковой ток (MSC) - примечание	См. прим. 8							
	Zмакс. Список		Требования отс-т						
	Минимальное значение Ssc	kVa	14.735 (9)	15.094 (9)	15.634 (9)	16.172 (9)	17.071 (9)		
	Мин. ток цепи (МСА)	Α	84,0 (10)	86,0 (10)	89,0 (10)	93,0 (10)	97,0 (10)		
	Макс. ток предохранителя (МFA)	Α	100 (11) 125 (11)						
Производитель-	Koэффи− Combination B 35°C ISO - Full	load			-				
ность	циент 46°C ISO - Full	load			-				
Соединительная	Для Количество				5G				
проводка - 50 Гц	электро-								
	питания								
	Для Количество	2							
	подсое- Примечание			F1,F2					
	динения								
	с внутр.								
	бл.								

Electrical spe	cifications System		REYQ52U	REYQ54U			
Электропитание	Наименование		Y1				
	Фаза		3N~				
	Частота	Hz	50				
	Напряжение	V	380-415				
Подключение эле	ктропитания		Внутренний и наруж	ный блок			
Диапазон напря-	Мин.	%	-10				
жений	Макс.	%	10				
Ток	Номи- Охлаждение	A	62,5 (7)	66,0 (7)			
	нальный						
	рабочий						
	ток (RLA)						
р <u>т</u>	Hom. Combination A Cooling		<u> </u>				
	рабочий CombinationB Cooling ток (RLA)		-				
	Пусковой ток (MSC) - примечани		См. прим. 8				
	Zмакс. Список	e	Требования отс-т				
	Минимальное значение Ssc	kVa	17.969 (9)	18.868 (9)			
	Мин. ток цепи (МСА)	A	101,0 (10)	105,0 (10)			
	Макс. ток предохранителя (МFA)		125 (11)	103,0 (10)			
Производитель-	Коэффи- Combination B 35°C ISO - Ful		-				
ность	циент 46°C ISO - Ful						
Соединительная	Для Количество	11000	5G				
проводка - 50 Гц	электро-		30				
	питания						
	Для Количество		2				
	подсое- Примечание		F1,F2				
	динения		,				
	с внутр.						
	бл.						

REYQ-U 1 - 1

Technical spec		ns Module		REMQ5U
Холодопроизво- дительность	Prated,c		kW	14,0 (1)
Теплопроизводи- тельность	Макс.	6°С вл.т.	kW	16,0 (2)
Диапазон произво	дительно	стей	HP	5
PED	Категори	Я		Категория II
	Наи-	Наименование		Приемник для жидкости
	более	Ps*V	Bar*l	564
	важная			
	часть			
	тичество п	одсоединяемых вн	утренних блоков	64 (3)
∕Індекс произ-	Мин.			62,5
водительности подсоединяемых внутренних	Макс.			162,5
блоков Размери :	Enou	Pusara	mm	1.685
Размеры	Блок	Высота	mm	
		Ширина	mm	930
	Упако-	Глубина Высота	mm mm	765 1.820
	упако- ванный			
	ванныи блок	Ширина Глубина	mm	995 860
Масса	Блок	глуоина	mm	230
		ный блок	kg kg	230 243
			ку	
Упаковка	Материал Вес	1	kg	Картон
Упаковка 2			ку	
riiakubka Z	Материал Вес	1	kg	
Упаковка 3			ку	Пластик
Allakorka 2	Материал Вес	1	l.a	0,5
/on=vs			kg	
Корпус	Цвет			Окрашенная оцинкованная стальная пластина
Геплообменник	Материал Тип	1		<u> </u>
теплоооменник				Теплообменник с поперечным соединением оребрения
		не помещения		воздух
	Внешняя Расход воздуха	Охлаж- Ном. дение	m³/h	воздух 9.720
Вентилятор	Кол-во	Нагрев Ном.	m³/h	9.720 1
eciiiiiiiiiiiii	Внешнее стати- ческое давле-	Макс.	Pa	78
Мотор вентиля-	ние Кол-во			1
пора	Тип			Двигатель постоянного тока
ора			W	<u>двигатель постоянного тока</u> 550
Компрессор	Выход Количест	700	VV	1
Компрессор	Тип	во_		Герметичный спиральный компрессор
townipeccop		ый нагреватель	W	терметичный спиральный компрессор 33
			°CDB	-5,0
Рабочий лиапаэоц	()хпаж-			
Рабочий диапазон		Мин.		43.0
Рабочий диапазон	дение	Макс.	°CDB	43,0
Рабочий диапазон		Макс. Мин.	°CDB	-20,0
	дение Нагрев Охлаж-	Макс.	°CDB	
	дение Нагрев Охлаж- дение	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA	-20,0 15,5 78,0 (4)
Sound power level	дение Нагрев Охлаж- дение Heating	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA	-20,0 15,5 78,0 (4) 79,6 (4)
Sound power level	Дение Нагрев Охлаж- дение Heating Охлаж-	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA	-20,0 15,5 78,0 (4)
Sound power level /ровень звуково- го давления	дение Нагрев Охлаждение Heating Охлаждение	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5)
Sound power level /ровень звуково- го давления	дение Нагрев Охлаждение Неаting Охлаждение Тип	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A
Sound power level /ровень звуково- го давления	дение Нагрев Охлаждение Нeating Охлаждение Тип ПГП	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA dBA dBA	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5)
Sound power level /ровень звуково- го давления	Дение Нагрев Охлаждение Нeating Охлаждение Тип ПГП Charge	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA dBA dBA TCO2Eq	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5
Sound power level /ровень звуково- о давления (ладагент	дение Нагрев Охлаждение Нeating Охлаждение Тип ПГП Charge Charge	Макс. Мин. Макс. Ном.	°CDB °CWB °CWB dBA dBA dBA	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7
Sound power level /ровень звуково- о давления Кладагент Масло хладагента	дение Нагрев Охлаждение Нeating Охлаждение Тип ПГП Charge Charge	Макс. Мин. Макс. Ном. Prated,h Ном.	°CDB °CWB °CWB dBA dBA dBA TCO2Eq	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7 Синтетическое (эфирное) масло FVC68D
Sound power level /ровень звуково- го давления Кладагент Масло хладагента	дение Нагрев Охлаждение Неатing Охлаждение Тип ПГП Сharge Сharge Тип Жид-	Макс. Мин. Макс. Ном. Prated,h Ном.	°CDB °CWB °CWB dBA dBA dBA TCO2Eq	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7 Синтетическое (эфирное) масло FVC68D Соединение пайкой
Sound power level Уровень звуково- го давления Кладагент Масло хладагента	дение Нагрев Охлаждение Неаting Охлаждение Тип ПГП Сharge Сharge Тип Жид- кость	Макс. Мин. Макс. Ном. Prated,h Ном.	°CDB °CWB °CWB dBA dBA dBA TCO2Eq	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7 Синтетическое (эфирное) масло FVC68D Соединение пайкой 9,5
Sound power level Уровень звуково- го давления Хладагент Масло хладагента	дение Нагрев Охлаждение Неатing Охлаждение Тип ПГП Сharge Сharge Тип Жид-	Макс. Мин. Макс. Ном. Prated,h Ном.	°CDB °CWB °CWB dBA dBA dBA TCO2Eq kg	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7 Синтетическое (эфирное) масло FVC68D Соединение пайкой 9,5 Соединение пайкой
го давления Хладагент Масло хладагента	дение Нагрев Охлаждение Неаting Охлаждение Тип ПГП Сharge Сharge Тип Жид-кость	Макс. Мин. Макс. Ном. Prated,h Ном. Тип НД Тип НД	°CDB °CWB °CWB dBA dBA dBA TCO2Eq	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7 Синтетическое (эфирное) масло FVC68D Соединение пайкой 9,5 Соединение пайкой
Sound power level Уровень звуково- го давления Хладагент Масло хладагента Подсоединения труб	дение Нагрев Охлаждение Неаting Охлаждение Тип ПГП Сharge Сharge Тип Жид- кость	Макс. Мин. Макс. Ном. Prated,h Ном.	°CDB °CWB °CWB dBA dBA dBA TCO2Eq kg	-20,0 15,5 78,0 (4) 79,6 (4) 57,0 (5) R-410A 2.087,5 20,2 9,7 Синтетическое (эфирное) масло FVC68D Соединение пайкой 9,5 Соединение пайкой

REYO-U

Technical spe	cificatio	ons Module	REMQ5U
Регулирование производитель- ности	Способ		С инверторным управлением
Защитные устро-	Компо-	01	Реле высокого давления
йства	нент	02	Устройство защиты от перегрузки привода вентилятора
		03	Защита от перегрузки инвертора
		04	Плавкий предохранитель платы
		05	Leakage current detector

Electrical spe	cificatio	ns Module		REMQ5U			
Электропитание	Наимено	вание		Y1			
	Фаза			3N~			
	Частота Hz		Hz	50			
	Напряже	ние	V	380-415			
Подключение эле	ктропитан	Р		Внутренний и наружный блок			
Диапазон напря-	Мин.		%	-10			
жений	Макс.		%	10			
Ток	Номи- нальный рабочий ток (RLA)	Охлаждение	A	4,1 (7)			
Ток - 50 Гц	Ном.	Combination A Cooling Combination B Cooling		-			
	ток (RLA) Пусковой ток (MSC) - примечание			См. прим. 8			
	Z макс.	Список		Требования отс-т			
	Минимальное значение Ssc kVa			2.893 (9)			
	Мин. ток	цепи (МСА)	Α	16,1 (10)			
	Макс. ток	предохранителя (МFA)	Α	20 (11)			
	Ток полной нагрузки (FLA)	Итого	A	1,2 (12)			
Производитель-	Коэффи-	Combination B 35°C ISO - Full Ic	oad	-			
ность	циент	46°C ISO - Full Io	oad	-			
Соединительная проводка - 50 Гц	Для электро- питания	Количество		5G			
	Для	Количество		2			
	динения с внутр.	Примечание		F1,F2			
	бл.						

- (1)Охлаждение: темп. в помещении: 27°CDB, 19°CWB; темп. наружного воздуха 35°CDB; эквивалентная длина трубопроводов: 7,5м; перепад уровня: 0 м | (2)Нагрев: темп. в помещении: 20°CDB; темп. наружного воздуха 7°CDB, 6°CWB; эквивалентная длина труб с хладагентом: 7,5м; перепад уровня: 0 м |
- (3)Фактич. кол-во подключаемых внутр. блоков зависит от типа внутреннего блока и ограничения по отношению подключений для системы (50% ≤ CR ≤ 120%) |
- (4) Уровень звуковой мощности является абсолютной величиной, производимой источником звука. (5)Это относительная величина, которая зависит от указанного расстояния и акустики среды. Более подробно см. чертежи с описанием уровней шума.
- (6)См. раздел выбора трубопровода хладагента или руководство по установке | (7)RLA основан на следующих условиях: темп. в помещении: 27°CDB, 19°CWB; темп. наружного воздуха 35°CDB |

- (8)MSC означает макс. ток при пуске компрессора. В этом блоке используются только инверторные компрессоры. Всегда: пусковой ток ≤ макс. рабочий ток. | (9)В соответствии с EN/IEC 61000-3-12 может быть необходимо проконсультироваться у оператора системы коммуникаций для обеспечения подсоединения оборудования исключительно к питанию с Ssc ≥ минимальное значение Ssc |
- (10)Для выбора правильного сечения подключаемых на месте проводов необходимо использовать МСА. МСА можно рассматривать как максимальный рабочий ток. І (11)МFA используется для выбора автоматического выключателя и выключатель цепи при замыкании на землю (автоматический выключатель утечек на землю) |
- (12)FLA означает номинальный рабочий ток вентилятора | (13)Максимально допустимое изменение диапазона напряжений между фазами составляет 2%. |
- (14)Диапазон напряжения: блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клемму блока, находится в пределах указанного диапазона. | (15)Значение AUTOMATIC ESEER соответствует нормальной работе системы VRV4 с рекуперацией теплоты, с учетом расширенных функций экономии энергии (режим работы с переменной
- температурой хладагента) | (16)Значение STANDARD ESEER соответствует нормальной работе системы VRV4 с рекуперацией теплоты, без учета расширенных функций экономии энергии |

- (10)Земачение 31 июльо 12 да системе (дБ) = 100 кори по международный гехнический стандарт, задающий пределы с 61000-3-12: Европейский/международный технический стандарт, задающий пределы гармонического тока, производимого оборудованием, подсоединенным к общедоступной (19)ЕN/IEC 61000-3-12: Европейский/международный технический стандарт, задающий пределы гармонического тока, производимого оборудованием, подсоединенным к общедоступной сети низкого напряжения с потребляемым током > 16A и ≤ 75A одной фазы | (20)Ssc: мощность короткого замыкания |
- (21)Более подробная информация о стандартных принадлежностях приведена в руководстве по монтажу/эксплуатации |
- (22)Данные мультисочетания (10~54 л.с.) соответствуют стандартному мультисочетанию

Опции 3

3 - 1 Опции

REMQ-U REYQ-U

Рекуперация тепла Список опций

Описание	Опция	REMQ5*	REYQ8*	REYQ10*	REYQ12*	REYQ14*	REYQ16*	REYQ18*	REYQ20*	Мульти 2	Мульти 3
0	EVDDUO43774 (*4)										
Опция для низкой температуры окружающей		0	0	0	0	-	-	-	-	0	0
Нагреватель поддона	EKBPH020T7A (*1)	-	-	-	-	0	0	0	0	0	0
Кабель кабеля РС	EKPCCAB2	0	0	0	0	0	0	0	0	0	0
	KHRQ23M29H	0	0	0	0	0	0	0	0	0	0
Разветвитель Refinet насадка	KHRQ23M64H	-	-	-	0	0	0	0	0	0	0
	KHRQ23M75H	-	-	-	-	-	-	-	-	0	0
	KHRQ23M20T	0	0	0	0	0	0	0	0	0	0
D-+	KHRQ23M29T9	0	0	0	0	0	0	0	0	0	0
Рефнет-разветвитель	KHRQ23M64T	-	-	-	0	0	0	0	0	0	0
	KHRQ23M75T	-	-	-	-	-	-	-	-	0	0
Комплект для нескольких соединений	BHFQ23P907	-	-	-	-	-	-	-	-	0	-
наружного агрегата	BHFQ23P1357	-	-	-	-	-	-	-	-	-	0
06853/0	BS1Q10A	0	0	0	0	0	0	0	0	0	0
Один блок BSVQ	BS1Q16A	0	0	0	0	0	0	0	0	0	0
(*2) (*3)	BS1Q25A	0	0	0	0	0	0	0	0	0	0
	BS4Q14A	0	0	0	0	0	0	0	0	0	0
	BS6Q14A	0	0	0	0	0	0	0	0	0	0
Несколько блоков BS	BS8Q14A	0	0	0	0	0	0	0	0	0	0
несколько олоков вз	BS10Q14A	0	0	0	0	0	0	0	0	0	0
	BS12Q14A	0	0	0	0	0	0	0	0	0	0
	BS16Q14A	0	0	0	0	0	0	0	0	0	0

- 1. Требуется один нижний пластинчатый обогреватель для каждого наружного блока.

Комплект для снижения шума EKBSVQLNP
 Требуется один комплект для снижения шума на корпус BSVQ.

- 3. Возможно технологическое охлаждение.
- 4. Возможна установка в нескольких помещениях

4 Таблица сочетания

4 - 1 Таблица сочетания

REYQ-U

Ограничения на сочетания блоков: наружные агрегаты VRV4 (все модели) + внутренние агрегаты класса 15

Блоки в составе системы: FXZQ15A и FXAQ15A.

- Если система содержит эти внутренние агрегаты и общий коэффициент соединения (CR) ≤ 100%: специальные ограничения отсутствуют.
 Соблюдайте ограничения, которые применяются для стандартных внутренних агрегатов VRV DX.
- 2. Если система содержит эти внутренние агрегаты и общий коэффициент соединения (СR) > 100%: применяются специальные ограничения.
 - A. Если сумма коэффициентов соединения (CR1) всех блоков FXZQ15A и/или FXAQ15A в системе ≤ 70%, и ВСЕ остальные внутренние агрегаты VRV DX имеют индивидуальный класс производительности > 50: специальные ограничени
 - В. Если сумма коэффициентов соединения (CR1) всех блоков FXZQ15A и/или FXAQ15A в системе ≤ 70%, и НЕ ВСЕ остальные внутренние агрегаты VRV DX имеют индивидуальный класс производительности > 50: применяются специал
 - ° 100% < CR ≤ 105% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 70%.
 ° 105% < CR ≤ 110% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 60%.
 ° 110% < CR ≤ 115% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 40%.
 ° 120% < CR ≤ 120% ->
 ° 120% < CR ≤ 125% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 25%.
 ° 120% < CR ≤ 130% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 10%.
 ° 125% < CR ≤ 130% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 10%.
 ° 125% < CR ≤ 130% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 10%.
 ° 125% < CR ≤ 130% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 10%.
 ° 125% < CR ≤ 130% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 10%.
 ° 125% < CR ≤ 130% ->
 Cymmaphoe значение CR1 для всех внутренних агрегатов FXZQ15A и/или FXAQ15A в системе должно быть ≤ 10%.

Примечание

Только внутренние агрегаты класса 15, явно указанные на этой странице, входят в состав системы. На остальные внутренние агрегаты распространяются правила, которые применяются для стандартных внутренних агрегатов VRV DX.

3D104665A

REMQ-U REYQ-U

	Внутренний агрегат VRV Внутренний агрегат VRV		Блок LT Hydrobox	Блок HT Hydrobox	AHU (*3)
Схема сочетания внутреннего агрегата		Блок только для			
Внутренний arperat VRV	0	0	0	0	0
Внутренний агрегат VRV		0	0	Не допускается	0
Блок только для охлаждения	O	O	0	не оопускиется	0
Блок LT Hydrobox	0	0	o (*1)	o (*1)	Не допускается
Блок HT Hydrobox	0	Не допускается	o (*1)	o (*1)	Не допускается
AHU (*3)	0	0	Не допускается	Не допускается	o (*2)

Примечания

- Внутренние блоки гидросистем (Hydrobox) не могут использоваться без внутреннего блока VRV См. ограничения на коэффициент соединения.
- Вентиляционные установки/воздушные завесы не могут использоваться без внутреннего блока VRV.
 См. ограничения на коэффициент соединения.
- 3. Следующие блоки рассматриваются как вентиляционные установки (AHU):
 - 3.1 EKEXV + EKEQM + теплообменник вентиляционной установки
 - 3.2 Воздушная завеса Biddle
 - 3.3 Блок FXMQ*MF

Таблица сочетания 4

4 - 1 Таблица сочетания

REMQ-U **REYQ-T**

		SHP	8НР	10HP	12 HP	14HP	16НР	18HP	20HP
	REMQ5* (*1)	1							
ø)	REYQ8*		1						
Не непрерывное отопление	REYQ10*			1					
2 ž	REYQ12*				1				
непрерывн отопление	REYQ14*					1			
E 5	REYQ16*						1		
9 O	REYQ18*							1	
=	REYQ20*								1
	REYQ10*	2							
	REYQ13*	1	1						
ž	REYQ16*		2						
E 6	REYQ18* REYQ20* REYQ22*		1	1					
5 × 5	REYQ20*		1		1				
5 5	REYQ22*			1	1				
9 e	REYQ24*		1				1		
трерывное Наружные	REYQ26*				1	1			
8 8	REYQ28*				1		1		
Непрерывное отопление Наружные блоки 2					1			1	
半	REYQ32*						2		
	REYQ34*						1	1	
	REYQ36*						1		1
ие	REYQ38*		1		1			1	
_ E _ E	REYO40*			1	1			1	
15 \$	REYQ42*			1			2		
5 5	REYQ44*				1		2		
Непрерывное отопление Наружные блоки 3	REYQ46*					1	2		
å ž	REYQ48*						3		
1 d g	REYQ50*						2	1	
불품							1	2	
ž	REYQ54*							3	

- Примечания

 1. Блок REMO5* не может использоваться в качестве автономного агрегата, а должен устанавливаться в составе стандартный сочетаний.

 2. Для стандартный и произвольных сочетаний действуют различные ограничения по трубопроводам.

 3. Никогда не объединяйте более 3 блоков для создания многоблочного сочетания.

5 Таблицы производительности

5 - 1 Условные обозначения таблицы производительностей

Для удовлетворения потребностей клиентов в быстром доступе к данным в удобном формате мы разработали инструмент, позволяющий воспользоваться таблицами производительности.

Ниже приведена ссылка на базу данных таблиц производительности и обзор всех инструментов, которые мы предлагаем, чтобы помочь вам выбрать наиболее подходящий продукт:

- <u>База данных таблиц производительности:</u> позволяет быстро найти и экспортировать данные производительности, соответствующие модели блока, температуре хладагента и соотношению подключений.
- Для получения доступа к средству просмотра таблиц производительности посетите сайт: https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

 Обзор <u>всех программных инструментов</u> приведен здесь: https://my.daikin.eu/denv/en_US/home/applications/software-finder.html

5 Таблицы производительности

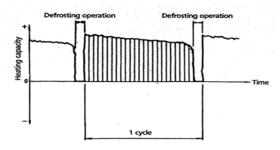
5 - 2 Поправочный коэффициент для общей теплопроизводительности

REMQ-U REYQ-U

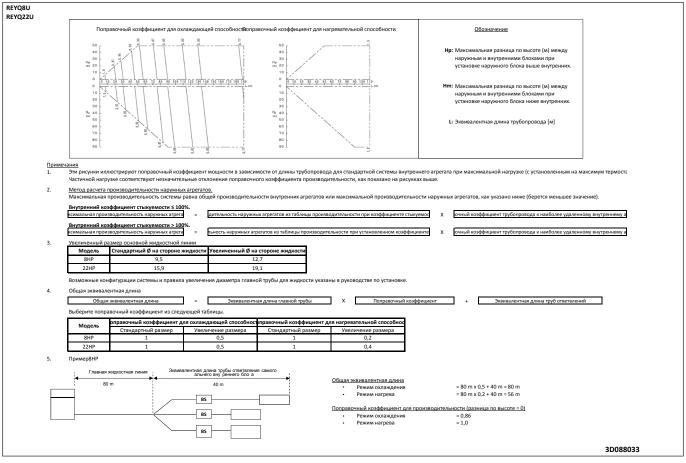
В таблицах нагревательной способности не учитывается уменьшение производительности в случае обледенения или размораживания.

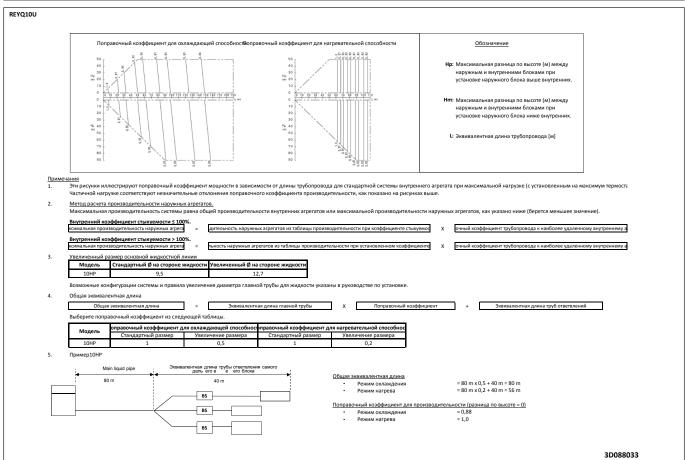
Значения производительности, для которых учитываются эти коэффициенты (т. е. интегральные показатели нагревательной способности), можно рассчитать следующим образом:

Формула **A = B * C**

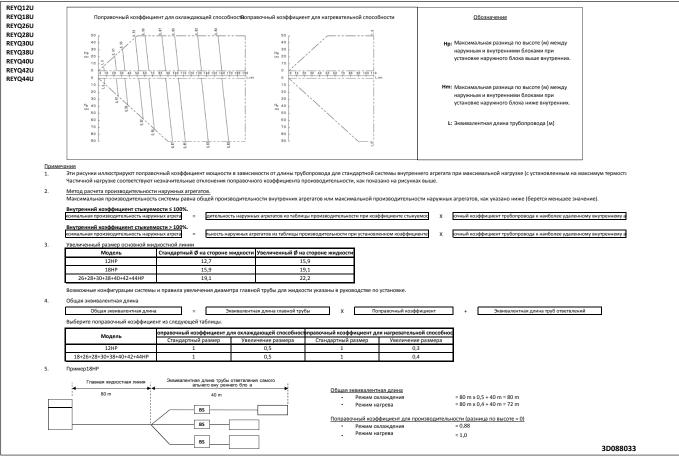

- А= Интегрированная производительность по отоплению
- В= Характеристики производительности
- С= Интегральный поправочный коэффициент для обледенения (см. таблицу)

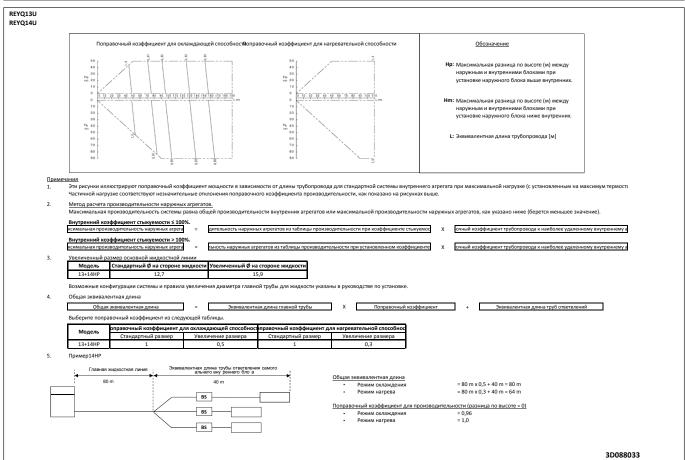
Температура воздуха на входе в теплообменник

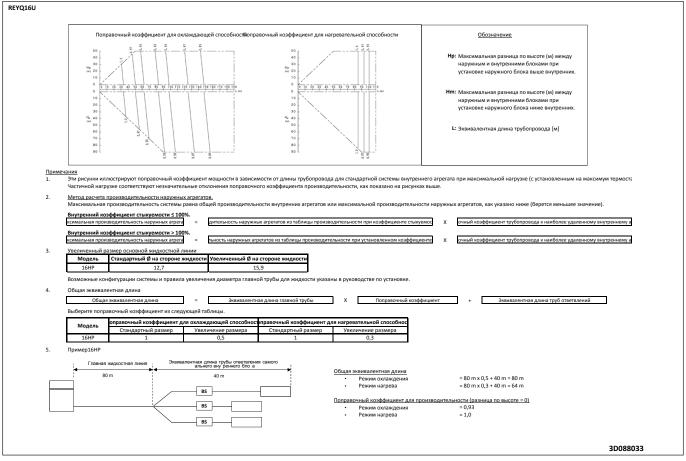

	[°CDB/°CWB]	-7/-7,6	-5/-5,6	-3/-3,7	0/-0,7	3/2,2	5/4,1	7/6
	Общий поправочн	ый коэфф	ициент на	накоплен	ие замора:	живания (c)	
0 6	8HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
된	10HP	0,95	0,93	0,87	0,79	0,80	0,88	1,00
дел	12HP	0,95	0,92	0,87	0,75	0,76	0,85	1,00
a o	14HP	0,95	0,92	0,86	0,72	0,73	0,84	1,00
Ŧ Ŧ	16HP	0,95	0,92	0,86	0,72	0,72	0,83	1,00
Для монтажа отдельного бл	18HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
Ě	20HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
	10HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
	13HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
	16HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00
	18HP	0,95	0,93	0,88	0,82	0,83	0,89	1,00
	20HP	0,95	0,93	0,88	0,80	0,81	0,88	1,00
	22HP	0,95	0,92	0,87	0,77	0,78	0,86	1,00
	24HP	0,95	0,92	0,87	0,75	0,76	0,85	1,00
ŘΚ	26HP	0,95	0,92	0,86	0,73	0,74	0,84	1,00
Для многоблочной установки	28HP	0,95	0,92	0,86	0,73	0,74	0,84	1,00
УČ	30HP	0,95	0,93	0,87	0,80	0,81	0,88	1,00
身	32HP	0,95	0,92	0,86	0,71	0,72	0,83	1,00
обло	34HP	0,95	0,92	0,87	0,78	0,79	0,87	1,00
НОТ	36HP	0,95	0,92	0,87	0,78	0,79	0,87	1,00
ᅜ	38HP	0,95	0,93	0,88	0,83	0,84	0,89	1,00
₫	40HP	0,95	0,93	0,87	0,80	0,81	0,88	1,00
	42HP	0,95	0,92	0,86	0,73	0,74	0,84	1,00
	44HP	0,95	0,92	0,86	0,72	0,73	0,84	1,00
	46HP	0,95	0,92	0,86	0,72	0,72	0,83	1,00
	48HP	0,95	0,92	0,86	0,71	0,72	0,83	1,00
	50HP	0,95	0,92	0,87	0,76	0,77	0,86	1,00
	52HP	0,95	0,93	0,87	0,80	0,81	0,88	1,00
	54HP	0,95	0,93	0,88	0,84	0,85	0,90	1,00

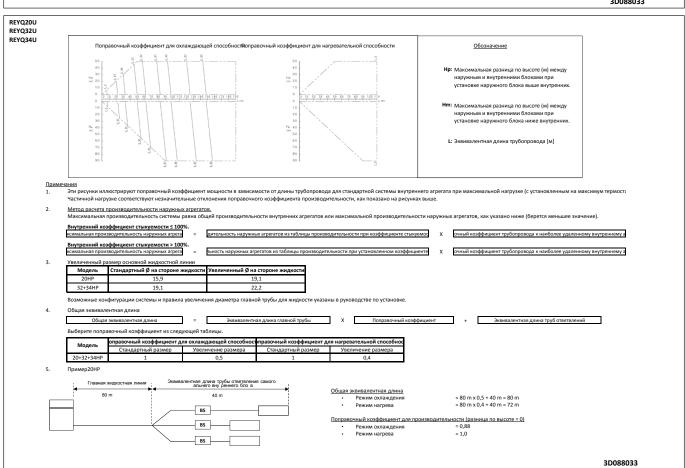

Примечания

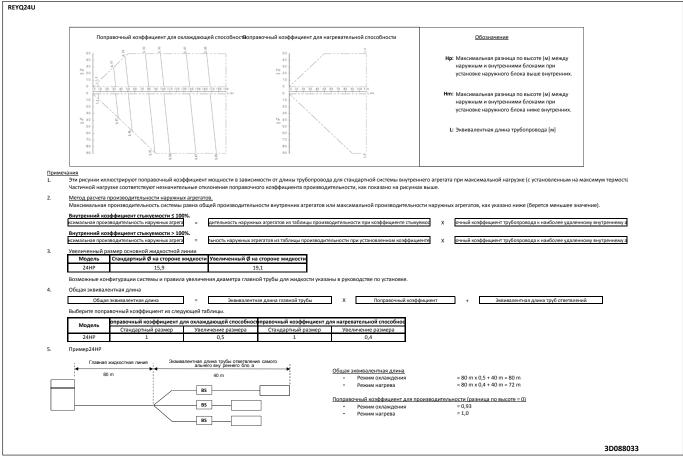
- 1. На рисунке показана интегральная нагревательная способность для одного цикла (от размораживания до следующего цикла).
- 2. Если на теплообменнике наружного агрегата скапливается снег, происходит временное уменьшение производительности в зависимости от температуры снаружи (*C DB), относительной влажности (RH) и степени обледенения.
- 3. Данные для мультисочетаний VRV4 соответствуют стандартным мультисочетаниям на чертеже 3D088011.

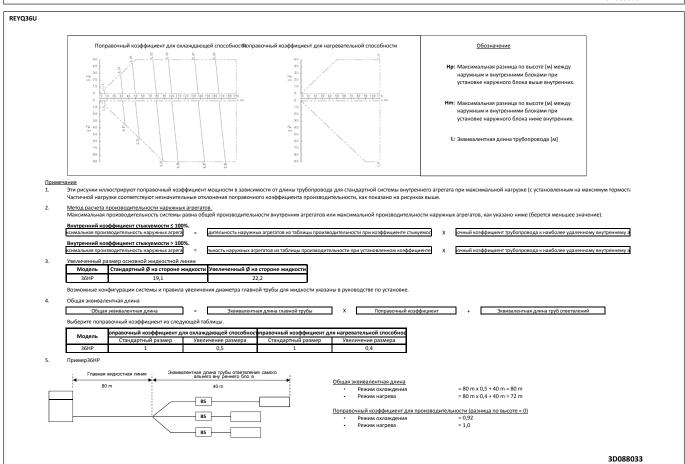


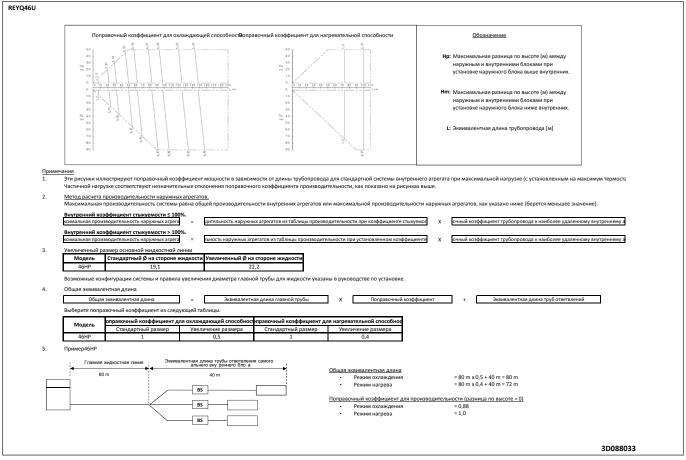


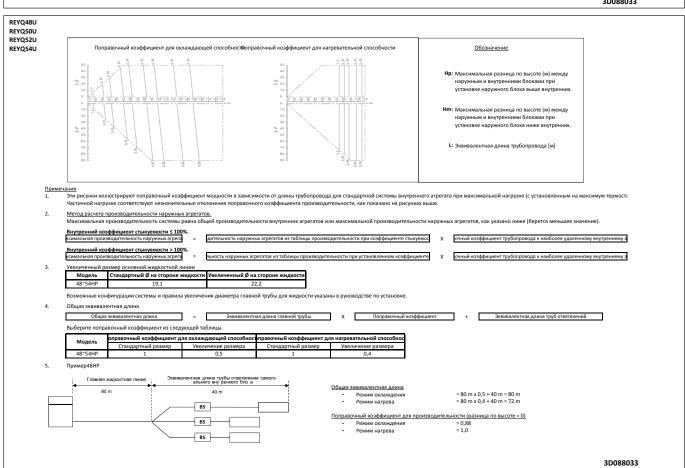


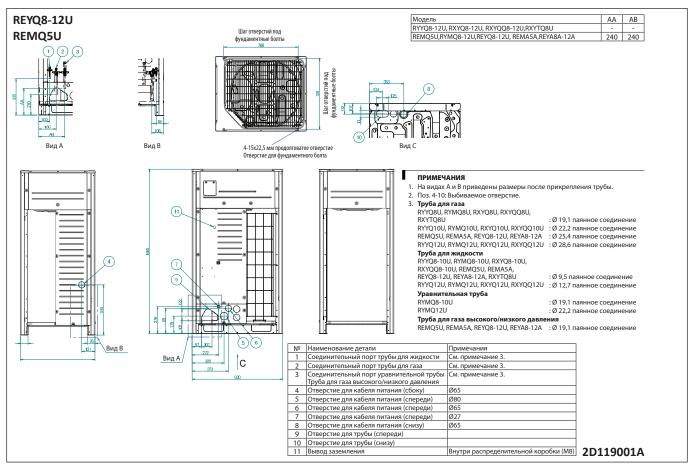


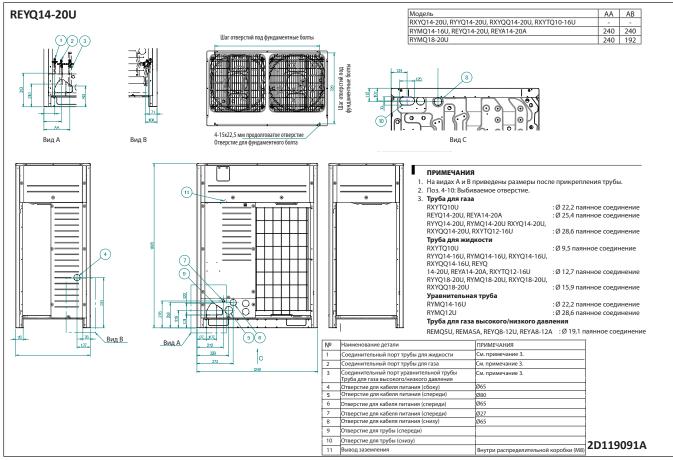






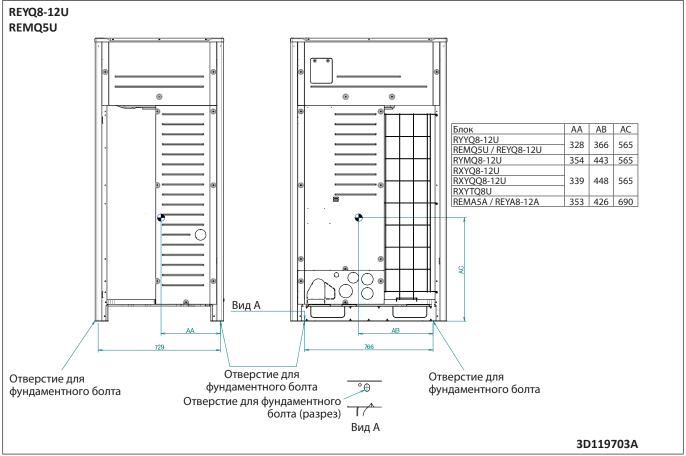


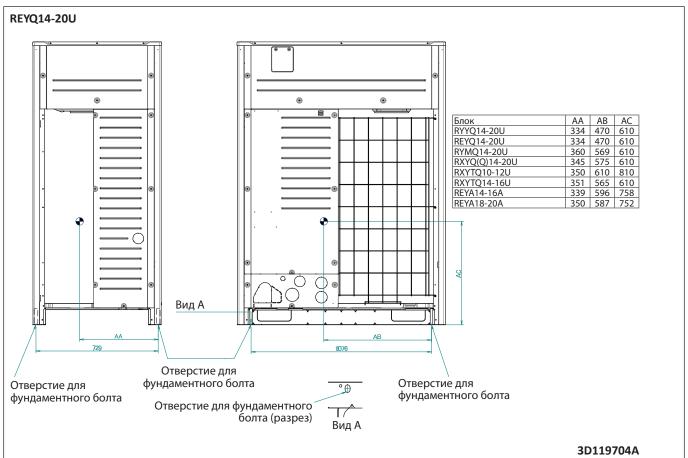




6 Размерные чертежи

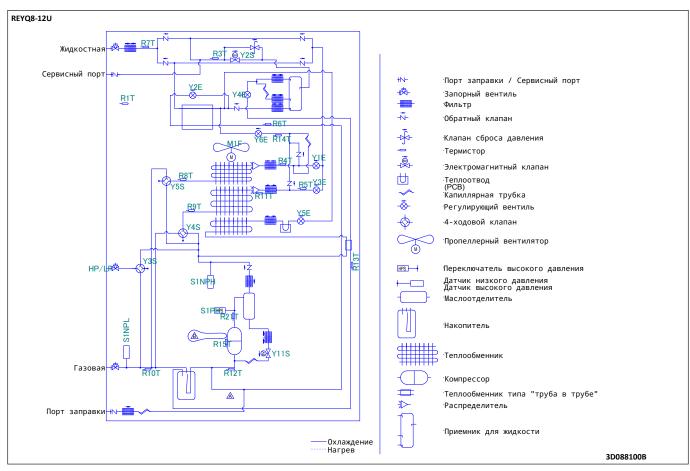
6 - 1 Размерные чертежи

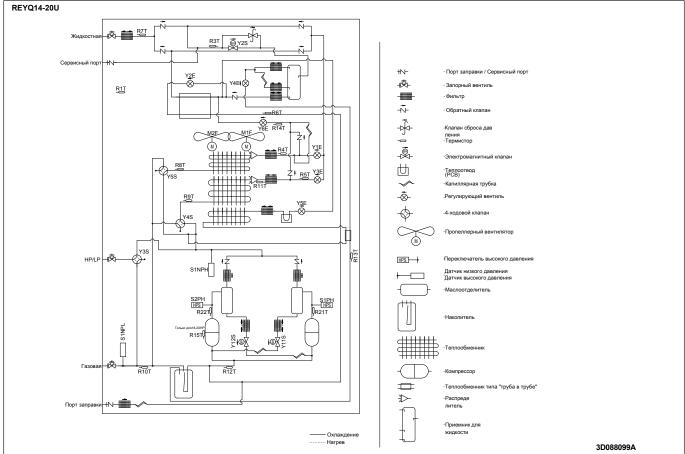




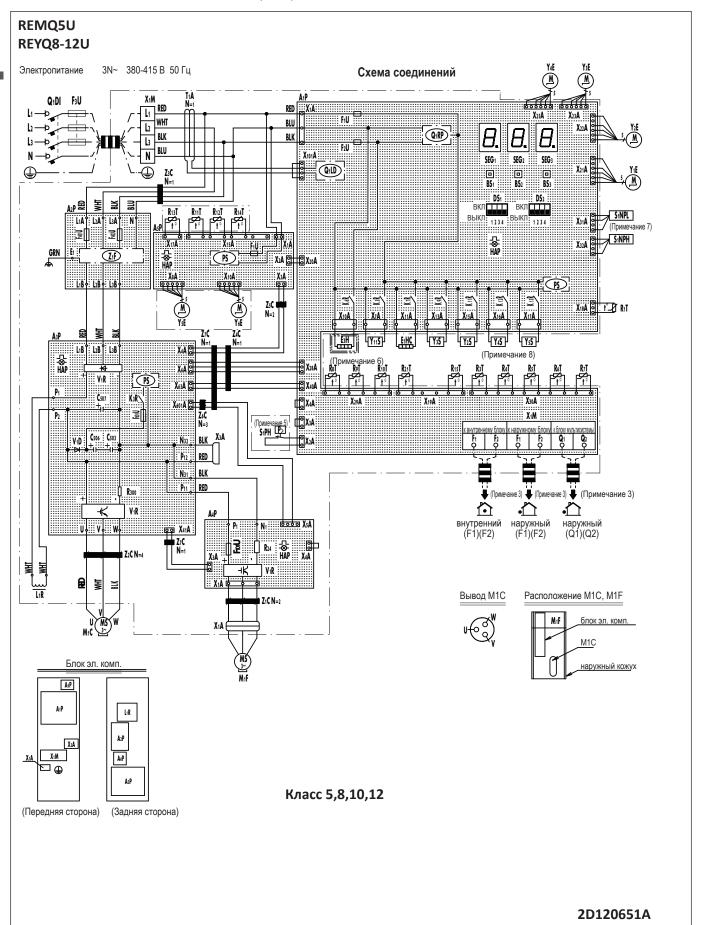
7 Центр тяжести

7 - 1 Центр тяжести





8 Схемы трубопроводов


8 - 1 Схемы трубопроводов

9 - 1 Монтажные схемы - Три фазы

9 - 1 Монтажные схемы - Три фазы

REMQ5U REYQ8-12U

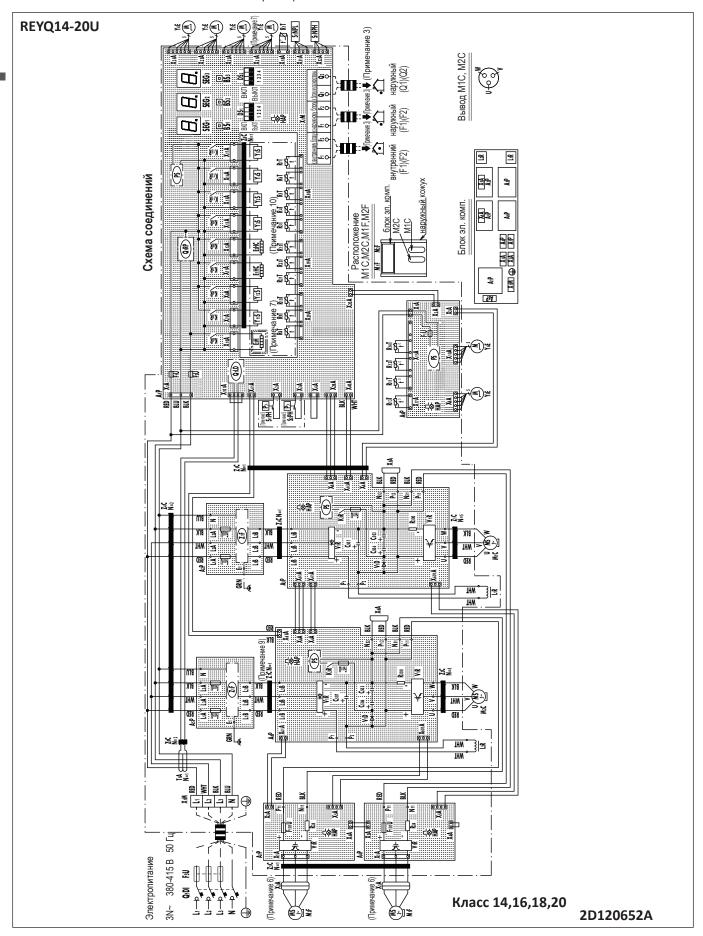
A1P	Печатная плата (главная)	R8T	Термистор (теплообменник, газ, верхний)	
A2P	Печатная плата (шумовой фильтр)	R9T	Термистор (теплообменник, газ, нижний)	
A3P	Печатная плата (инв)	R10T	Термистор (всасывание)	
A4P	Печатная плата (вентилятор)	R11T	Термистор (противообледенитель, теплообменник	
A5P	Печатная плата (Sub)	R12T	Термистор (всасывание, компрессор)	
BS1~3 (A1P)	Кнопка (режим, установка, возврат)	R13T	Термистор (приемник, газ)	
C503,C506,C507 (A3P)	Конденсатор	R14T	Термистор (автоматическая загрузка)	
DS1,DS2 (A1P)	DIP-переключатель	R15T	Термистор (корпус компрессора)	
E1HC	Подогреватель картера	R21T	Термистор (расход M1C)	
E3H	Подогреватель сливного поддона (опция)	S1NPH	Датчик давления (высокое)	
F1U,F2U (A1P)	Предохранитель (Т, 3,15 A, 250 В)	S1NPL	Датчик давления (низкое)	
F3U	Устанавливаемый на месте предохранитель	S1PH	Реле давления (выпуск)	
F101U (A4P)	Предохранитель	SEG1~SEG3 (A1P)	7-сегментный дисплей	
F401U,F403U (A2P)	Предохранитель	T1A	Датчик тока	
F601U (A3P)	Предохранитель	V1D (A3P)	Диод	
HAP	Сигнальная лампа (монитор обслуживания -	V1R (A3P,A4P)	Модуль питания	
(A1P,A3P, A4P,A5P)	зеленая)	X*A	Соединитель	
K3R (A1P)	Магнитное реле (Y11S)	X1M	Клеммная колодка	
K6R (A1P)	Магнитное реле (ЕЗН)	X1M (A1P)	Клеммная колодка (управление)	
K7R (A1P)	Магнитное реле (Е1НС)	Y1E	Электронный расширительный клапан	
K9R (A1P)	Магнитное реле (Y3S)	Y I E	(теплообменник, верхний)	
K11R (A1P)	Магнитное реле (Y2S)	Y2E	Электронный расширительный клапан (переохлажд., теплообменник)	
K12R (A1P)	Магнитное реле (Y4S)	1ZE		
K13R (A1P)	Магнитное реле (Y5S)	Y3E	Электронный расширительный клапан	
L1R	Реактор	130	(теплообменник, нижний)	
M1C	Двигатель (Компрессор)	Y4E	Электронный расширительный клапан	
M1F	Мотор (Вентилятор)	140	(приемник, газ)	
PS (A1P,A3P,A5P)	Импульсный источник питания Устанавливаемый на месте прерыватель	Y5E	Электронный расширительный клапан (инвертор, охлаждение)	
Q1DI	утечки в землю Устанавливаемый на месте детектор утечки	Y6E	Электронный расширительный клапан (автоматическая загрузка)	
Q1LD (A1P)	в землю	Y2S	Соленоидный клапан (трубка для жидкости)	
Q1RP	Схема определения обращения фазы (А1Р)		Соленоидный клапан (трубка для газа	
R24 (A4P)	Резистор (датчик тока)	Y3S	высокого/низкого давления)	
R300 (A3P)	Резистор (датчик тока)	Y4S	Соленоидный клапан (теплообменник, нижний)	
R1T	Термистор (воздух)	Y5S	Соленоидный клапан (теплообменник, верхний	
R3T	Термистор (жидкость, главный)	Y11S	Соленоидный клапан (М1С, возврат масла)	
R4T	Термистор (теплообменник, верхний, жидкость)	Z*C	Шумовой фильтр (ферритовый стержень)	
R5T	Термистор (теплообменник, нижний, жидкость)	Z*F (A2P)	Шумовой фильтр (с разрядником)	
R6T	Термистор (переохлажденный газ, теплообменник)	,	Соединитель для опций	
R7T	Термистор (переохлажденная жидкость, теплообменник)	X10A	Соединитель (нижний пластинчатый нагреватель	

ПРИМЕЧАНИЯ

- 1. Эта схема подключений относится только к наружному блоку.
- 2. ::■■:: подключения на месте, ____: клеммная колодка, © соединитель, ->: вывод, ⊕ : защитное заземление (болт),

 ф: функциональное заземление, —: провода заземления, —: поставляется на месте, ____: плата,

_____: распределительная коробка, [______: опция


- 3. Обратитесь к руководству по установке для получения информации о подключениях: внутренний-наружный F1 F2, наружный-наружный F1 F2, наружный-мульти Q1 Q2.
- 4. Порядок использования переключателя BS1~3. См. табличку «меры предосторожности при обслуживании» на крышке блока эл. комп.
- 5. При работе не замыкайте защитные устройства (S1PH).
- 6. При использовании дополнительного адаптера см. руководство по установке.
- 7. Цвета: BLK: Черный, RED: Красный, BLU: Синий, WHT: Белый, GRN: Зеленый.

2D120651A

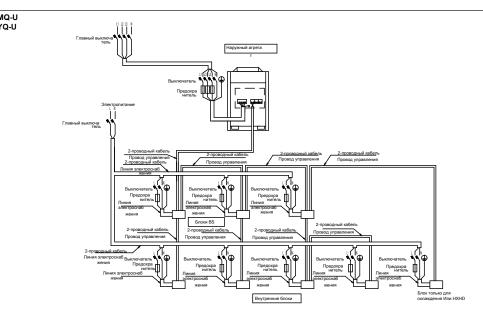
9 - 1 Монтажные схемы - Три фазы

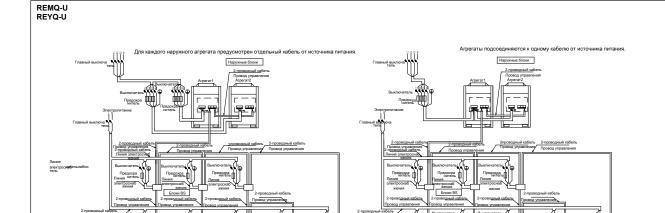
9 - 1 Монтажные схемы - Три фазы

REYQ14-20U				
A1P	Печатная плата (главная)	R7T	Термистор (переохлажденная жидкость,	
A2P,A5P	Печатная плата (шумовой фильтр)	IN/ I	теплообменник)	
A3P,A6P	Печатная плата (инв)	R8T	Термистор (теплообменник, газ, верхний)	
A4P,A7P	Печатная плата (вентилятор)	R9T	Термистор (теплообменник, газ, нижний)	
A8P	Печатная плата (Sub)	R10T	Термистор (всасывание)	
BS1~3 (A1P)	Кнопка (режим, установка, возврат)	R11T	Термистор (противообледенитель,	
C503,C506,C507 (A3P,A6P)	Конденсатор	R12T	теплообменник) Термистор (всасывание, комп.)	
DS1,DS2 (A1P)	DIР-переключатель	R13T	Термистор (приемник, газ)	
E1HC,E2HC	Подогреватель картера	R14T	Термистор (автоматическая загрузка)	
E3H	Подогреватель картера	R15T	Термистор (корпус компрессора)	
F1U,F2U (A1P)	Предохранитель (Т, 3,15 A, 250 В)	R21T,R22T	Термистор (корпус компрессора)	
F1U (A8P)	Предохранитель (Т, 3,15 A, 250 В)	S1NPH	Датчик давления (высокое)	
F3U	Устанавливаемый на месте предохранитель	S1NPL	Датчик давления (высокое)	
F101U (A4P,A7P)	1_	S1PH,S2PH	Реле давления (низкое)	
	Предохранитель			
F401U,F403U (A2P,A5P)	1_1_1_1	SEG1~SEG3 (A1P) T1A	7-сегментный дисплей	
F601U (A3P,A6P)	Предохранитель		Датчик тока	
HAP (A1P A3P,A4P, A6P,A8P)	Сигнальная лампа (монитор обслуживания - зеленая)	V1D (A3P,A6P) V1R (A3P,A4P,A6P,A7P)	Диод	
	,	X*A	Модуль питания	
K3R (A3P,A6P)	Магнитное реле		Соединитель	
K3R (A1P)	Магнитное реле (Y12S)	X1M	Клеммная колодка	
K4R (A1P)	Магнитное реле (Y11S)	X1M (A1P)	Клеммная колодка (управление)	
K6R (A1P) K7R (A1P)	Магнитное реле (E3H) Магнитное реле (E1HC)	Y1E	Электронный расширительный клапан (теплообменник, верхний)	
K8R (A1P)	Магнитное реле (Е2НС)	V0E	Электронный расширительный клапан	
K9R (A1P)	Магнитное реле (Y3S)	Y2E	(переохлажд., теплообменник)	
K11R (A1P)	Магнитное реле (Y2S)	V0E	Электронный расширительный клапан	
K12R (A1P)	Магнитное реле (Y4S)	Y3E	(теплообменник, нижний)	
K13R (A1P)	Магнитное реле (Y5S)	V/4E	Электронный расширительный клапан	
L1R,L2R	Реактор	Y4E	(приемник, газ)	
M1C,M2C	Двигатель (Компрессор)	V55	Электронный расширительный клапан	
M1F,M2F	Мотор (Вентилятор)	Y5E	(инвертор, охлаждение)	
PS (A1P,A3P,A6P,A8P)	Импульсный источник питания	Y6E	Электронный расширительный клапан	
Q1DI	Устанавливаемый на месте прерыватель	TOL	(автоматическая загрузка)	
QIDI	утечки в землю	Y2S	Соленоидный клапан (трубка для жидкости)	
Q1LD (A1P)	Устанавливаемый на месте детектор утечки в землю	Y3S	Соленоидный клапан (трубка для газа высокого/низкого давления)	
R24 (A4P,A7P)	Резистор (датчик тока)	Y4S	Соленоидный клапан (теплообменник, нижний)	
R300 (A3P,A6P)	Резистор (датчик тока)	Y5S	Соленоидный клапан (теплообменник, верхний	
R1T	Термистор (воздух)	Y11S	Соленоидный клапан (М1С, возврат масла)	
R3T	Термистор (жидкость, главный)	Y12S	Соленоидный клапан (М2С, возврат масла)	
R4T	Термистор (теплообменник, верхний, жидкость)	Z*C	Шумовой фильтр (ферритовый стержень)	
R5T	Термистор (теплообменник, нижний, жидкость)	Z*F (A2P,A5P)	Шумовой фильтр (с разрядником)	
	Термистор (переохлажденный газ,		Соединитель для опций	
R6T	теплообменник)	X10A	Соединитель для опции	

ПРИМЕЧАНИЯ

- 1. Эта схема подключений относится только к наружному блоку.
- 3. Обратитесь к руководству по установке для получения информации о подключениях: внутренний-наружный F1 F2, наружный-наружный F1 F2, наружный-мульти Q1 Q2.
- 4. Порядок использования переключателя BS1~3. См. табличку «меры предосторожности при обслуживании» на крышке блока эл. комп.
- 5. При работе не замыкайте защитные устройства (S1PH, S2PH).
- 6. Соединитель X1A (M1F) красный, соединитель X2A (M2F) белый.
- 7. При использовании дополнительного адаптера см. руководство по установке.
- 8. Цвета: BLK: Черный, RED: Красный, BLU: Синий, WHT: Белый, GRN: Зеленый.
- 9. Только для 14,16 класса.
- 10. Только для 18,20 класса.

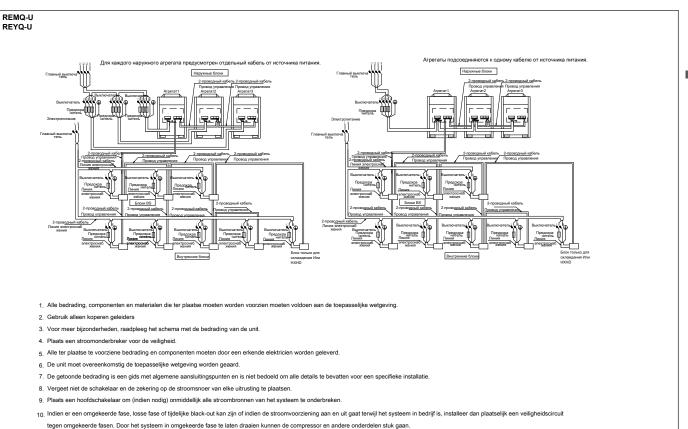

2D120652A


10 Схемы внешних соединений

10 - 1 Схемы внешних соединений

- 1. Вся электропроводка, компоненты и материалы, которые приобретаются на месте, должны соответствовать действующим нормативам
- 2. Используйте только медные провода
- 3. Более подробная информация приведена на электрической схеме блока
- 4. Установите автоматический выключатель для безопасности.
- 5. Монтаж электропроводки и других электрических компонентов должен выполнять только электрик с соответствующим допуском
- 6. Агрегат должен заземляться в соответствии с действующими нормативами
- 7. Показанная проводка содержит общие рекомендации для точек подключения и не содержит всех подробностей для монтажа конкретной системы
- 8. Убедитесь в том, что в линиях питания всех компонентов оборудования установлен выключатель и предохранитель
- 9. Установите главный выключатель, чтобы немедленно отключ ать все источники питания системы (при необходимости)
- 10. Если существует вероятность возникновения обратной фазы, отключения фазы или мгновенного отключения питания или если питание выключается и выключается во время работы изделия, подключите местную цепь защиты от обратной фазы. Работа устройства в обратной фазе может послужить причиной поломки компрессора и других компонентов.
- 11.Установите автоматический выключатель защиты от замыкания на земл

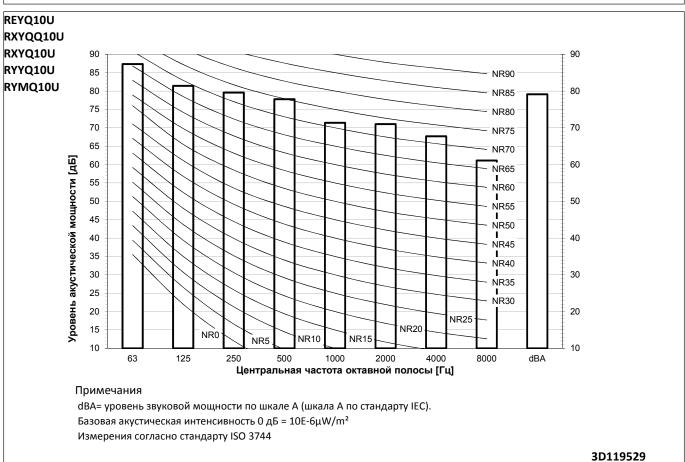
3D088095


- Alle bedrading, componenten en materialen die ter plaatse moeten worden voorzien moeten voldoen aan de toepasselijke wetgeving
- 2. Gebruik alleen koperen geleiders
- 3. Voor meer bijzonderheden, raadpleeg het schema met de bedrading van de unit.
- 4. Plaats een stroomonderbreker voor de veiligheid.
- 5. Alle ter plaatse te voorziene bedrading en componenten moeten door een erkende elektricien worden geleverd
- 6. De unit moet overeenkomstig de toepasselijke wetgeving worden geaard.
- 7. De getoonde bedrading is een gids met algemene aansluitingspunten en is niet bedoeld om alle details te bevatten voor een specifieke installatie.
- 8. Vergeet niet de schakelaar en de zekering op de stroomsnoer van elke uitrusting te plaatsen.
- $9. \ \ Plaats \ een \ hoofdschakelaar \ om \ (indien \ nodig) \ onmiddellijk \ alle \ stroombronnen \ van \ het \ systeem \ te \ onderbreken.$
- 10. Indien er een omgekeerde fase, losse fase of tijdelijke black-out kan zijn of indien de stroomvoorziening aan en uit gaat terwijl het systeem in bedrijf is, installeer dan plaatselijk een veiligheidscircuit tegen omgekeerde fasen. Door het systeem in omgekeerde fase te laten draaien kunnen de compressor en andere onderdelen stuk gaan.
- 11.Plaats een aardlekschakelaa
- 12. Когда агрегаты подсоединены к одному кабелю питания, производительность АГРЕГАТА 1 должна быть больше производительности АГРЕГАТА 2

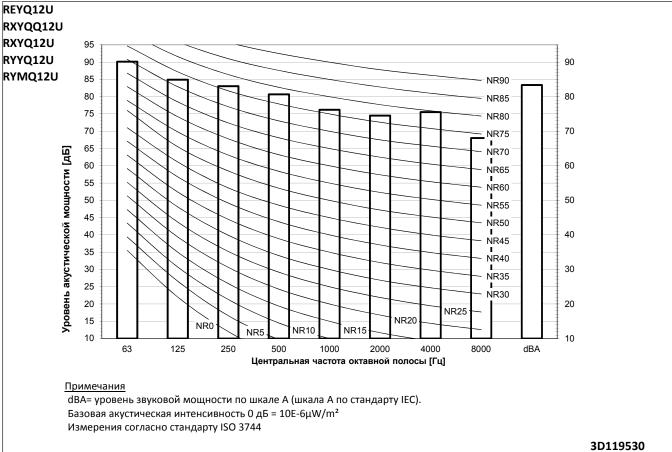
3D088094

Схемы внешних соединений 10

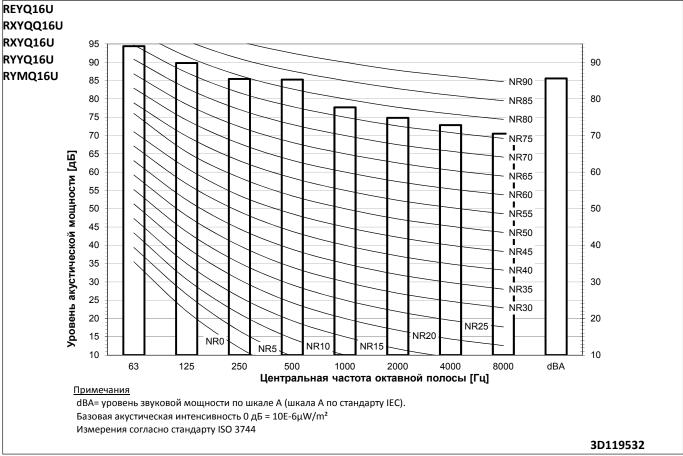
10 - 1 Схемы внешних соединений

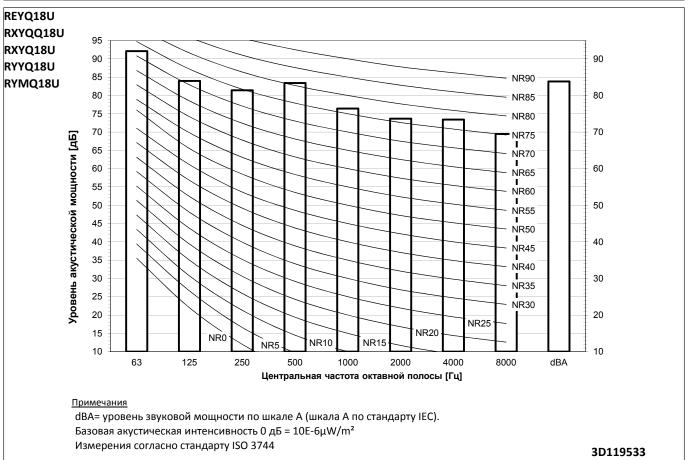

- 11.Plaats een aardlekschakelaar.
 12. Когда агрегаты подсоединены к одному кабелю питания, производительность АГРЕГАТА 1 должна быть больше производительности АГРЕГАТА 2.

3D088016


11 - 1 Спектр звуковой мощности

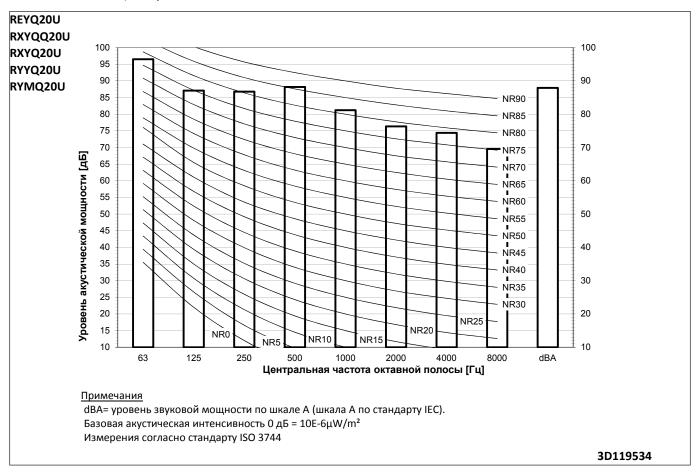
REMQ5U **REYQ8U** RXYQQ8U RXYQ8U 90 **RXYTQ8UYF** 85 RYYQ8U 80 80 NR85 RYMQ8U 75 NR80 70 70 NR75 65 NR70 Уровень акустической мощности [дБ] 60 60 NR65 55 NR60 50 I NR55 50 45 NR50 40 NR45 40 35 NR40 30 30 NR35 25 NR30 20 20 NR25 15 NR15 10 125 250 500 1000 2000 Центральная частота октавной полосы [Гц] <u>Примечания</u> dBA= уровень звуковой мощности по шкале A (шкала A по стандарту IEC). Базовая акустическая интенсивность 0 дБ = $10E-6\mu W/m^2$ Измерения согласно стандарту ISO 3744 3D119528


11 - 1 Спектр звуковой мощности

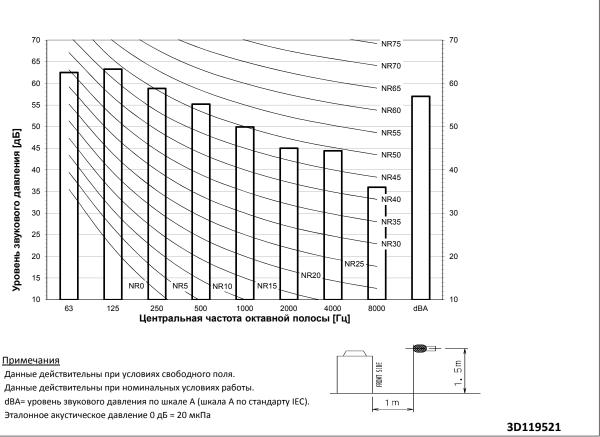


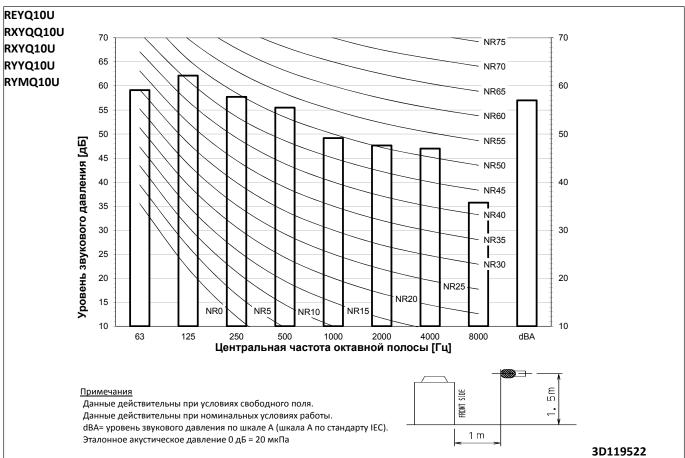
REYQ14U RXYQQ14U 90 90 RXYQ14U 85 NR90 RYYQ14U 80 80 NR85 RYMQ14U 75 **NR80** 70 70 NR75 Уровень акустической мощности [дБ] 65 NR70 60 60 NR65 55 NR60 50 50 NR55 45 NR50 40 40 NR45 35 NR40 30 30 NR35 25 NR30 20 20 NR25 15 NR0 NR10 NR15 . NR5 10 63 125 4000 8000 dBA 1000 2000 Центральная частота октавной полосы [Гц] Примечания dBA= уровень звуковой мощности по шкале A (шкала A по стандарту IEC). Базовая акустическая интенсивность 0 дБ = $10E-6\mu W/m^2$ Измерения согласно стандарту ISO 3744 3D119531

11 - 1 Спектр звуковой мощности



53


11 - 1 Спектр звуковой мощности



11 - 2 Спектр звукового давления

REMQ5U REYQ8U RXYQQ8U RXYQ8U RXYTQ8UYF RYYQ8U RYMQ8U

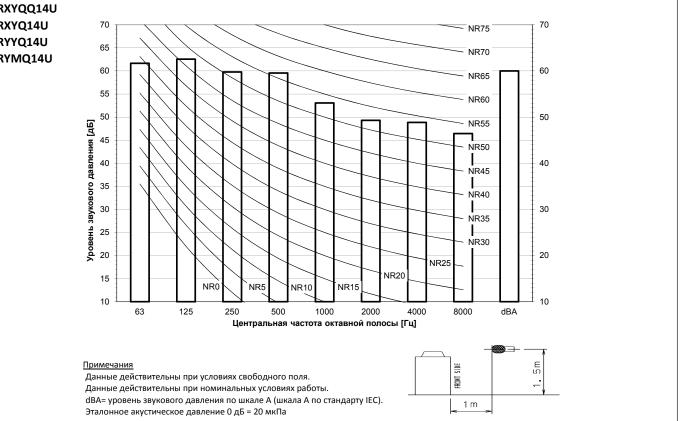
FRONT

1 m

3D119523

3D119524

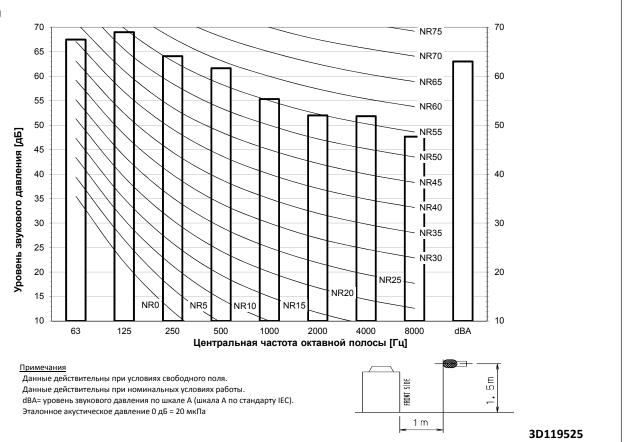
Данные об уровне шума

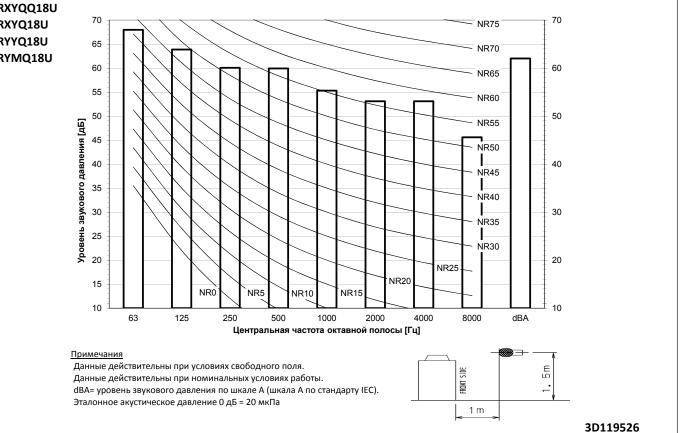

11 - 2 Спектр звукового давления

REYQ12U RXYQQ12U 70 70 NR75 RXYQ12U RYYQ12U 65 NR70 RYMQ12U 60 60 NR65 55 NR60 50 50 Уровень звукового давления [дБ] NR55 NR50 40 40 NR45 35 NR40 30 30 NR35 25 **NR30** 20 20 NR25 NR20 15 NRO NR5 NR15 10 10 63 125 4000 dBA 1000 2000 8000 Центральная частота октавной полосы [Гц] Примечания Данные действительны при условиях свободного поля. 5 B Данные действительны при номинальных условиях работы.

dBA= уровень звукового давления по шкале A (шкала A по стандарту IEC).

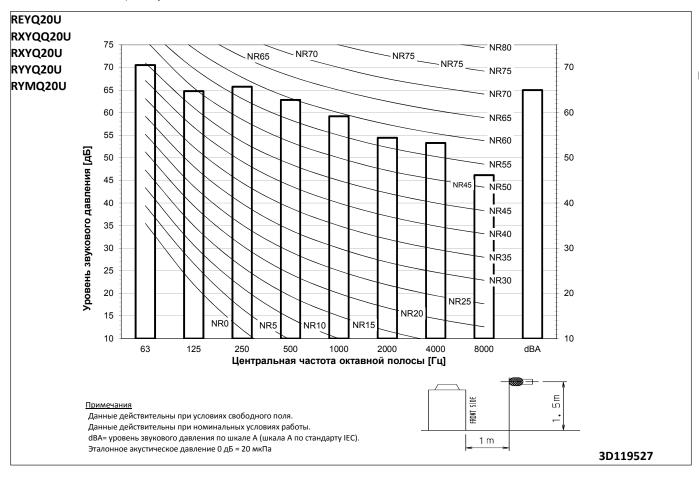
Эталонное акустическое давление 0 дБ = 20 мкПа

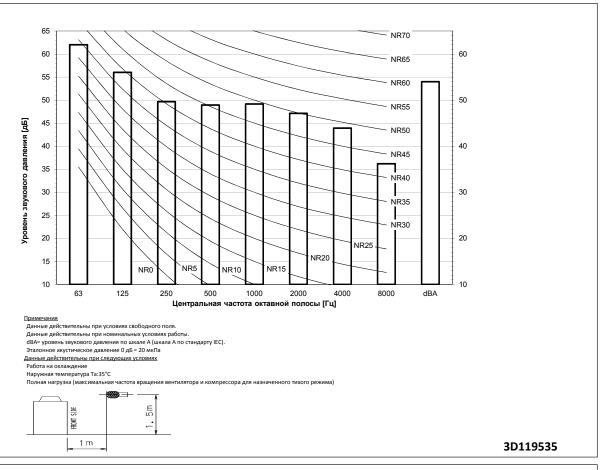


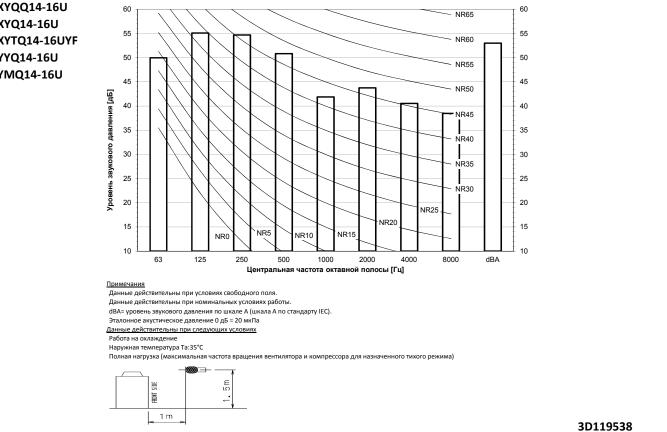


11 - 2 Спектр звукового давления

REYQ16U RXYQQ16U RXYQ16U RYYQ16U RYMQ16U

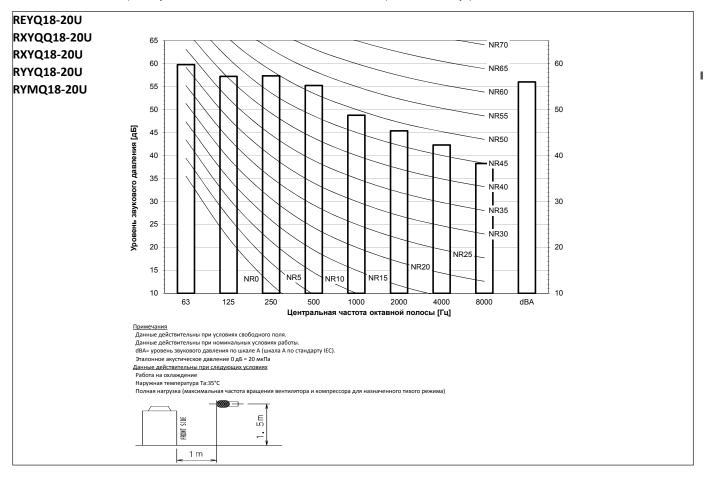



11 - 2 Спектр звукового давления

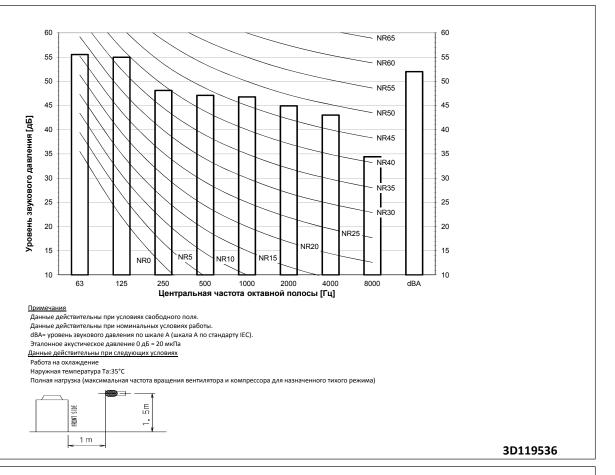


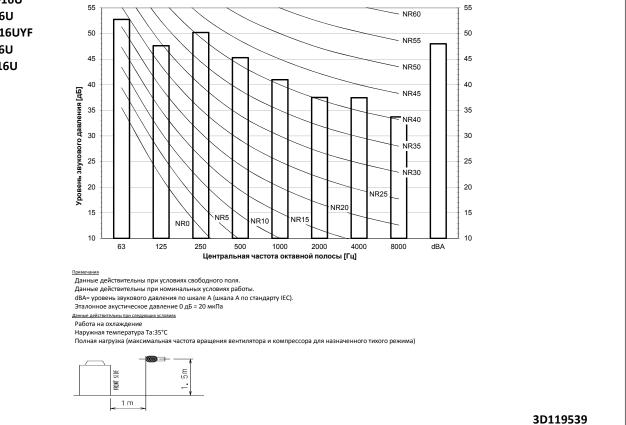
11 - 3 Спектр звукового давления в тихом режиме, уровень 1

REMQ5U REYQ8-12U RXYQQ8-12U RXYQ8-12U RXYTQ8UYF RYYQ8-12U RYMQ8-12U



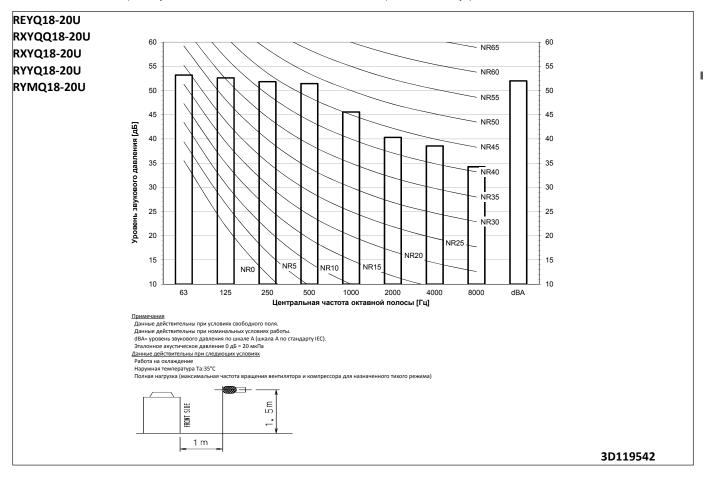
REYQ14-16U RXYQQ14-16U RXYQ14-16U RXYTQ14-16UYF RYYQ14-16U RYMQ14-16U


11 - 3 Спектр звукового давления в тихом режиме, уровень 1

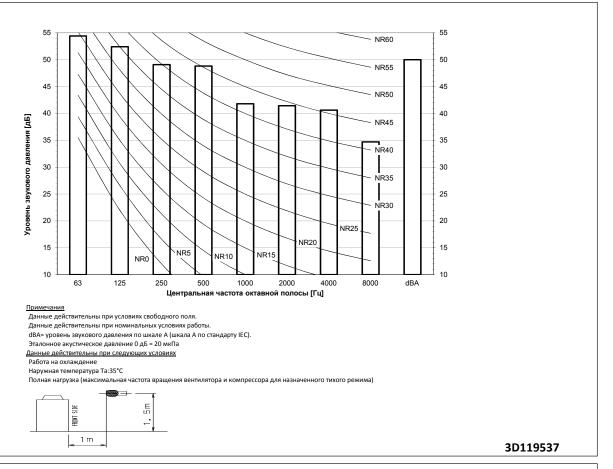


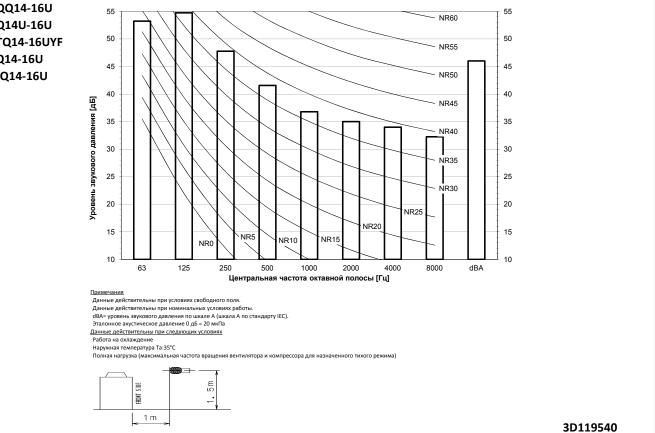
11 - 4 Спектр звукового давления в тихом режиме, уровень 2

REMQ5U REYQ8-12U RXYQQ8-12U RXYQ8-12U RXYTQ8UYF RYYQ8-12U RYMQ8-12U



REYQ14-16U RXYQQ14-16U RXYQ14-16U RXYTQ14-16UYF RYYQ14-16U RYMQ14-16U


11 - 4 Спектр звукового давления в тихом режиме, уровень 2

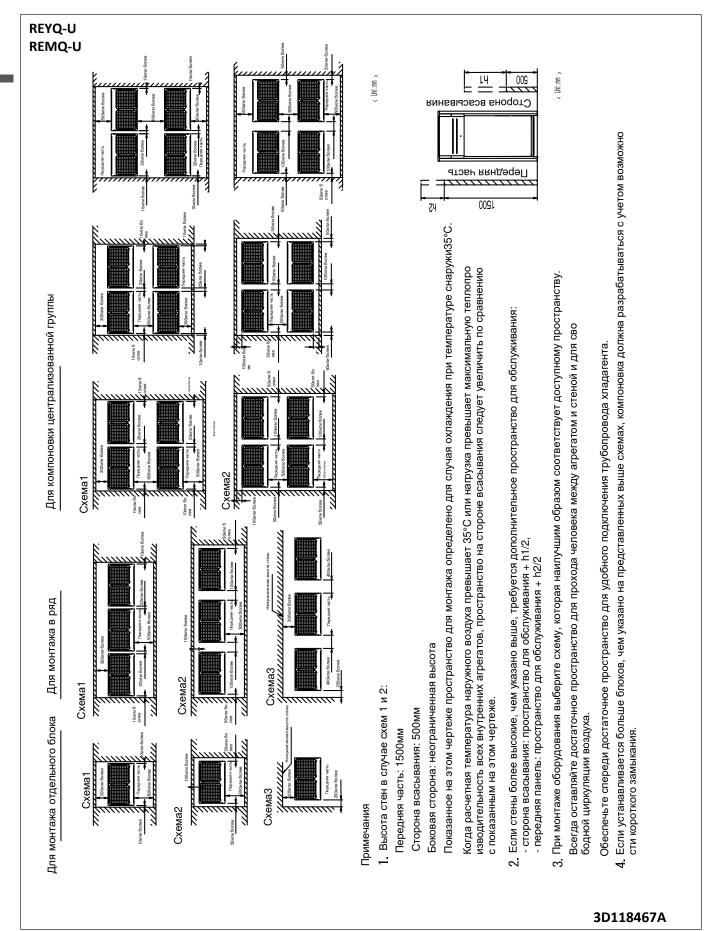


11 - 5 Спектр звукового давления в тихом режиме, уровень 3

REMQ5U REYQ8-12U RXYQQ8-12U RXYQ8-12U RXYTQ8UYF RYYQ8-12U RYMQ8-12U

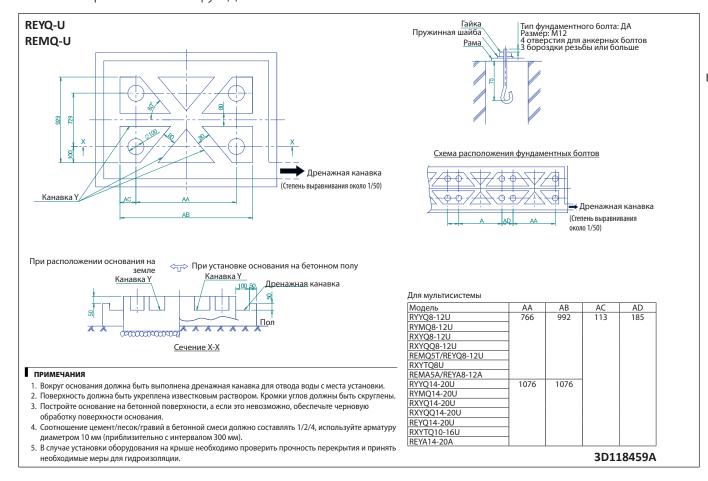
REYQ14-16U RXYQQ14-16U **RXYQ14U-16U** RXYTQ14-16UYF **RYYQ14-16U** RYMQ14-16U

11 - 5 Спектр звукового давления в тихом режиме, уровень 3

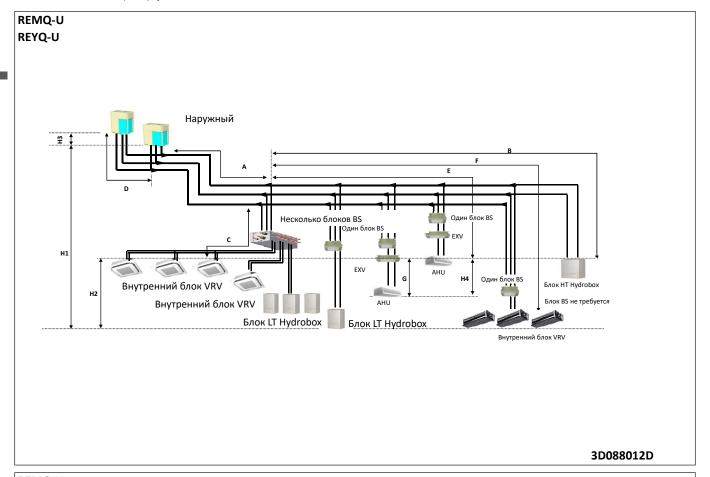

REYQ18-20U RXYQQ18-20U RXYQ18-20U 50 RYYQ18-20U 45 45 RYMQ18-20U NR50 40 40 35 35 NR40 30 30 NR35 25 25 NR30 20 15 15 NR15 10 250 500 1000 2000 40 Центральная частота октавной полосы [Гц] 63 125 dBA Примечания

Данные действительны при условиях свободного поля.

Данные действительны при номинальных условиях работы. dBA= уровень звукового давления по шкале А (шкала А по стандарту IEC). Эталонное акустическое давление 0 дБ = 20 мкПа <u>Данные действительны при следующих условиях</u> Работа на охлаждение Наружная температура Та:35°C Полная нагрузка (максимальная частота вращения вентилятора и компрессора для назначенного тихого режима) FRONT SIDE 1 m 3D119543



12 - 1 Способ монтажа



12 - 2 Крепление и фундаменты блоков

Выбор труб с хладагентом 12 - 3

REMQ-U REYQ-U

VRV4

Рекуперация тепла

Ограничения по трубопроводам

		Bcero	Допустимая мощность						
	Мощность	Максимальное количество внутренних блоков (VRV, RA, AHU, Hvdrobox) (*1)	Внутренний агрегат VRV	Внутренний блок VRV без блока BS Только охлаждение (*4)	Блок HT Hydrobox	Блок LT Hydrobox	Центральный кондиционер (AHU)		
олько внутренние блоки VRV	50 ~ 130%	64	50 ~ 130 %	0~50%	-	-	-		
нутренний блок VRV + блок LT lydrobox	50 ~ 130%	32	50 ~ 130 %	0 ~ 50 %	÷	0 ~ 80%	-		
нутренний блок VRV + блок HT lydrobox	50 ~ 200%	32	50~110%	-	0 ~ 100 %	-	-		
энутренний arperat VRV + блок LT lydrobox + блок HT Hydrobox)	ний arperaт VRV + блок LT 50 ~ 200%		50~110%		0 ~ 100 %	0~80%			
де (внутренний arperat VRV + блок LT lydrobox)	50 ~ 130%	32	30 110%	-	-	0 80%	-		
олько АНU (парная система и пультисистема)	-	-	-	ē	-	-	-		
нутренний блок VRV + AHU	50~110% (*5)	64	50~110%	0 ~ 50 %	÷	-	0 ~ 60 %		

- ния

 1. Исилочая блоки ВS и включая комплекты EXV.

 2. Парный АНU = система с 1 центральным кондиционером, соединенным с 1 наружным агрет Мультисистика АНU = система с нескольким центральными кондиционерами, соединенны

 3. Сочетания, отличные от умазанных в этой таблице сочетаний, не допускаются.

 4. Предказамиенные только для сокаждения внутрением агретаты VVV не могут использовать

 5. Ограничения, касающиеся производительности центрального кондиционера

	BS1Q10	BS1Q16	BS1Q25	Мульти BS на ответвление	Мульти BS при сочетании 2 ответвлений			
	(*6)	(*6)	(*6)	(*6)	(*5) (*6)			
Внутренний блок VRV	Максимум 6 блоков	Максимум 8 блоков	Максимум 8 блоков	Максимум 5 блоков	Максимум 5 блоков			
Центральный кондиционер (AHU)	Максимум 100 класс	Максимум 160 класс	Максимум 250 класс	Максимум 140 класс	Максимум 250 класс			
	Максимум 100 класс	Максимум 160 класс	Максимум 250 класс	Максимум 140 класс	Максимум 250 класс			
Блок LT Hydrobox	= 1 x HXY080	= Максимум 2 x HXY080 Или максимум 1 x HXY125	= Максимум 3 x HXY080 Или максимум 2 x HXY125	= Максимум 1 x HXY080 Или максимум 1 x HXY125	= Максимум 3 x HXY080 Или максимум 2 x HXY125			
			Или НХҮ080 + НХҮ125		Или НХҮ080 + НХҮ125			

- При сочетании 2 ответвлений максимальная длина трубопровода между блоком ВS и внутренним блоком ≤ 20 м. Если длина трубопровода > 20 м., увеличьте размер трубы для жидкости.

3D088012D

12 - 3 Выбор труб с хладагентом

REMQ-U REYQ-U

VRV4

Рекуперация тепла

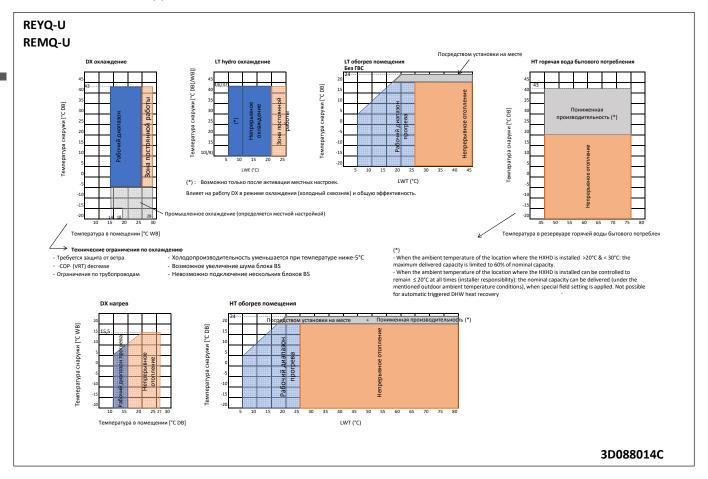
Ограничения по трубопроводам

ограничения по трубопроводам								
	Максимал	льная длина трубог	ровода	Макс	имальный перепад	высот	Общая длина труб	
		Самая длинная труба от наружного блока или последнего ответвления трубы в сочетании нескольких наружных блоков фактическая / эквивалентная Максимум: (A+B, A+C, A+E, A+F)	Самая длинная труба после первого ответвления Фактическая Максимум: (B,C,E,F)	Самая длинная труба от наружного блока до последнего ответвления трубы в сочетании нескольких наружных блоков фактическая / эквивалентная Максимум: (D)	Внутренний- Нарумный блок расположен выше внутреннего блока / Внутренний блок расположен выше наружного блока Максимум: (Н1)	Внутренний- Максимум: (H2)	От наружного до Максимум: (Н3)	Длина трубопровода
	VPV	165/190 m (*3)	40 m (*1)		50/40 m (*2)	15 m		1000 m
Отдельные наружные агрегаты и стандартные сочетания нескольких		120/165m (*3)	40 m (*1)	10/13 m	50/40 m (*2)	30m	5 m	1000 m
	Блок Hydrobox	135/160 m (*3)	40 m	10/13111	50/40 m	15m	3111	300 m (*4)/600 m (*5)
Стандартные мультисочетания наружных блоков ≤ 20hp и произвольные мультисочетания	AHU (*6)	165/190 m (*3)	40 m		50/40 m	13111		1000 m
	Только внутренние блоки VRV		40 m (*1)		50/40 m (*2)		5 m	500 m
	Блок Hydrobox	135/160 m (*3)	40 m	10/13 m	50/40 m	15 m		300 m (*4)/500 m (*5)
наружных блоков	AHU (*6)		40 m		50/40 m			500 m

	Максимальная длина трубопровода	Максимальный перепад высот
	EXV> AHU: G	EXV> AHU: H4
AHU (*6)	5 m	5 m

Ппименания

- 1.1 Если используются блоки ВБ1Q, длина трубопровода между всеми внутренними агрегатами и ближайшим комплектом разветвителя не должна превышать 40м.
- 1 Если используются блоки BS, длина трубопровода между всеми внутренними агрегатами и блоком BS не должна превышать 40
- Необходимо увеличить размер трубы для жидкости между первым набором ответвл В отличие от блоков BS. блоки BS10 не считаются наборами ответвлений.
- Если увеличенный размер трубопровода больше размера основного трубопровода, увеличьте размер последнего
- ссли увеличен размер труоопровода, в расчетах следует использовать двоиную длину труос
 Обшая длина трубопровода должна находиться в пределах допустимого диапазона.
- 2. Длины трубопроводов от бликайшего внутрениего агрегата до наружного агрегата и от наиболее удаленного внутреннего агрегата до наружного агрегата не должны отличаться больше чем на 40 м
- . Если выполняются все представленные ниже условия, предельное значение можно увеличить до 90 м.
- 2.1.1 Минимальный коэффициент соединения: 80%
- 2.1.2 Увеличение размера трубы для жидкости
- дополнительная информация приведена 2.2 Если наружные блоки расположены ниже вну
- 2.2.1 Без технологического охлаждения
- 2.2.2 Увеличение размера трубы для жидкости
- 2.2.3 Установка наружного блока
- 2.4 Минимальный коэффициент соединения
- -40°-b0т: Минимальный коэффициент соединения: 80% -60°-65т: Минимальный коэффициент соединения: 90%
- -65°80m: Минимальный коэффициент соединения: 90%
 -65°80m: Минимальный коэффициент соединения: 100%
- в в минимальным коэффициент соединения: 110% эквивалентная длина трубопровода > 90 м, необходимо увеличить размер главной трубы для жидкос
- 1. Наружный блок ≤ 20hp 5. Наружный блок >20hp
- паружный олок > zonp
 Смешанное сочетание блоков DX и АНО
 Пом отгототиче и менятория
 Том отгототиче и менятория
- При отсутствии комплекта ответвлений в системе длина самой длинной трубы после мультиблока BS должна быть ≤ 40.


3D088012D

примстания. В Если выполняются все представленные ниже условия, предельное значение можно увеличить до 90 м.

13 Рабочий диапазон

13 - 1 Рабочий диапазон

Подходящие внутренние блоки 14

14 - 1 Подходящие внутренние блоки

REYQ-U REMQ5U

Рекомендуемые внутренние агрегаты для наружных агрегатов REYQ*U* + REMQ5U*

л. с.	8	10	12	13	14	16	18	20
	4xFXMQ50	0 4EVM063	CHEVINOEO	3xFXMQ50	1xFXMQ50	4XFXMQ63	3xFXMQ50	2xFXMQ50
		4xFXMQ50 4xFXMQ63 6xFXMQ50	3XFXMQ63	5XFXMQ63	2xFXMQ80	5XFXMQ63	6xFXMQ63	

В случае нескольких наружных агрегатов >16НР рекомендуемое количество внутренних агрегатов соответствует сумме внутренних агрегатов, определенных для одного наружного агрегата

Сведения о допустимых сочетаниях приведены в технических характеристиках.

Подходящие внутренние агрегаты для наружных агрегатов REYQ*U* + REMQ5U*

Закрывается ENER LOT21

FXFQ20-25-32-40-50-63-80-100-125 FXZQ15-20-25-32-40-50 FXCQ20-25-32-40-50-63-80-125 FXKQ25-32-40-63 FXDQ15-20-25-32-40-50-63 FXSQ15-20-25-32-40-50-63-80-100-125-140 FXMQ50-63-80-100-125-200-250 FXMQ15-20-25-32-40-50-63 FXHQ32-63-100 FXUQ71-100 FXNQ20-25-32-40-50-63 FXLQ20-25-32-40-50-63

HXY080-125 HXHD125-200 VKM50-80-100 CYVS100-150-200-250 CYVM100-150-200-250 CYVL100-150-200-250

3D118461D

Daikin Europe N.V. Naamloze Vennootschap · Zandvoordestraat 300 · 84	00 Oostende · Belgium · wv	ww.daikin.eu	Настоящий буклет составлен только для справочных целей и не является
	EEDRU22	08/2022	предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели ее содержания, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.