

VRV 5 S-series Air Conditioning Technical Data RXYSA-AY1

RXYSA4A7Y1B RXYSA5A7Y1B RXYSA6A7Y1B

TABLE OF CONTENTS RXYSA-AY1

I	RXYSA-AY1	5
2	Specifications	6
3	Options	9
4	Combination table	10
5	Capacity tables Capacity Table Legend Capacity Correction Factor	11 11 12
5	Exchange efficiency	14
7	Dimensional drawings	15
3	Centre of gravity	16
9	Piping diagrams	17
10	Wiring diagrams Wiring Diagrams - Three Phase Notes & Legend	18 18 19
11	External connection diagrams	20
12	Sound data Sound Power Spectrum Sound Pressure Spectrum - Cooling Sound Pressure Spectrum - Heating Sound power spectrum at high ESP Sound level data Quiet mode	21 24 26 28 29
13	Installation Installation Method Refrigerant Pipe Selection	30 30 33
14	Operation range	35

15 Appropriate Indoors

36

Features

1 - 1 RXYSA-AY1

Lower CO2 equivalent and market-leading flexibility

- > Reduced CO2 equivalent thanks to the use of lower GWP R-32 refrigerant and lower refrigerant charge
- > Top sustainability over the entire lifecycle, thanks to market leading > Tackle small room applications without any additional measures, real-life seasonal efficiency
- > Compact (870mm high) and lightweight single fan design makes the unit unobtrusive, saves space and is easy to install
- > Easy to transport thanks to lightweight and compact design
- > Market-leading serviceability and handling, thanks to wide access area, 7-segment display and additional handle
- thanks to Shîrudo technology
- > Specially designed indoor units for R-32, ensuring low sound and maximum efficiency

Inverter

Specifications RXYSA-AY1

1 - 1

Technical Spe		ns		RXYSA4AY1	RXYSA5AY1	RXYSA6AY1		
Recommended con	nbination			3 x FXSA25A2VEB + 1 x	4 x FXSA32A2VEB	2 x FXSA32A2VEB + 2 x		
				FXSA32A2VEB		FXSA40A2VEB		
Cooling capacity	Prated,c		kW	12.1 (1)	14.0 (1)	15.5 (1)		
leating capacity	Nom.	6°CWB	kW	12.1 (2)	14.0 (2)	15.5 (2)		
	Prated,h		kW	12.1 (2)	14.0 (2)	15.5 (2)		
	Max.	6°CWB	kW	14.2 (2)	16.0 (2)	18.0 (2)		
ower input - 50Hz	Heating	Nom. 6°CWB	kW	2.69 (2)	3.33 (2)	3.78 (2)		
OP at nom.	6°CWB		kW/kW	4.49	4.20	4.10		
apacity								
COP				4.9		4.5		
EER				7.9	7.4	7.3		
			%	312.5	294.8	289.9		
S,C			%	193.1				
s,h	۸. ۲.	FED I	90		178.8	176.8		
Space cooling	A Condi-			3.4	3.1	3.0		
	tion (35°C	Pdc	kW	12.1	14.0	15.5		
	- 27/19)							
	B Condi-			5.6	5.1	4.8		
	tion (30°C	Pdc	kW	8.9	10.3	11.4		
	- 27/19)							
	C Condi-	EERd		10.4	9.5	9.3		
	tion (25°C	Pdc	kW	5.7	6.6	7.3		
	- 27/19)							
	D Condi-	EERd		17	7.5	17.9		
	tion (20°C		kW	4.9	4.5	4.9		
	- 27/19)	· -			5			
pace heating		COPd (declared COP)	-	2.7	2.5	2.4		
Average climate)	i pivaleiil	Pdh (declared heating cap)	kW	8.4	9.7	10.7		
(verage climate)				0.4		10.7		
		Tbiv (bivalent temperature)	°C		-10			
	TOL	COPd (declared COP)		2.7	2.5	2.4		
		Pdh (declared heating cap)	kW	8.4	9.7	10.7		
		Tol (temperature operating	°C		-10			
		limit)						
	A Con-	COPd (declared COP)		3.3		2.8		
	dition	Pdh (declared heating cap)	kW	7.4	8.5	9.5		
	(-7°C)							
	B Condi-	COPd (declared COP)		4.7	4.3	4.1		
		Pdh (declared heating cap)	kW	4.5	5.2	5.8		
		COPd (declared COP)	NVV	6.8		6.5		
		Pdh (declared heating cap)	kW		3.3	3.7		
			KVV					
	D Con-	COPd (declared COP)		8.6	8.4	8.7		
	dition	Pdh (declared heating cap)	kW	3	3.9	4.0		
	(12°C)							
apacity range			HP	4	5	6		
ED	Category				Category III			
	Most	Name			Accumulator			
	critical							
	part							
ED	Most	Ps*V	Bar*l		257			
	critical							
	part							
laximum number	•	able indoor units		13 (3)	16 (3)	18 (3)		
door index	Min.		-	50.0	62.5	70.0		
onnection	Nom.			100	125	140		
JIII ECUUII					 			
• •	Max.	11.2.14		130.0	162.5	182.0		
imensions	Unit	Height	mm		869			
		Width	mm		1,100			
		Depth	mm		460			
	Packed	Height	mm		1,050			
	unit	Width	mm		1,205			
		Depth	mm		569			
/eight	Unit	P :	kg		102			
c.g.n	Packed ur		kg		115			
acking		iii.	Ny					
acking	Material				Carton			
	Weight		kg		4			
acking 2	Material				Wood			
a c g =	Weight		kg		6			
_				Plastic				
_	Material							
acking 3			kg		1			
_	Material Weight Colour		kg					

2 Specifications

1 - 1 RXYSA-AY1

Technical Spe		ns			RXYSA4AY1	RXYSA5AY1	RXYSA6AY1		
Heat exchanger	Туре					Cross fin coil			
	Indoor sid					Air			
	Outdoors			3,11	Air				
	Air flow	Cooling	Rated	m³/h		5,342			
	rate	Heating	Rated	m³/h	5,519		204		
Fan	Quantity					1			
	External static	Max.		Pa		45			
	pressure								
Fan motor	Quantity					1			
	Туре					DC motor			
	Output			W		234			
Compressor	Quantity					1			
	Туре				H	lermetically sealed swing compress	sor		
	Crankcase			W		33			
Operation range	Cooling	Min.		°CDB		-5			
		Max.		°CDB		46			
	Heating	Min.		°CWB		-20			
Operation range	Heating	Max.		°CWB		16			
Sound power level		Nom.		dBA	67.0 (4)	68.1 (4)	69.0 (4)		
	Heating	Nom.		dBA	68.0 (4)	69.2 (4)	70.0 (4)		
Sound pressure	Cooling	Nom.		dBA	49.0 (6)	51.0	0 (6)		
level	Heating			dBA	50.0 (6)	52.	0 (6)		
Refrigerant	Туре					R-32			
	GWP				675.0				
	Charge			TCO2Eq		2.30			
	Charge			kg		3.40			
Refrigerant oil	Туре					FW68DE			
	Charged	volume		I	1.9				
Piping connections		Туре				Braze connection			
. •	•	OD		mm		10			
	Gas	Туре			Braze connection				
_		OD		mm	15.9				
	Total	System	Actual	m	300 (7)				
	piping length	,							
	Level dif- ference	OU - IU	Outdoor unit in highest position	m		50			
	rerence		Indoor unit in	m		40			
Canacity	Mother		highest position			Invocates as at 11 to 1			
Capacity control	Method					Inverter controlled			
Indication if the hea						no 0.000			
Supplementary heater	capacity	Heating	elbu	kW		0.000			
Power consump-	Crank-	Cooling	PCK	kW		0.000			
tion in other than active mode	case heater	Heating	PCK	kW		0.031			
	mode								
	Off mode	Cooling	POFF	kW		0.038			
	Jii iiiode	Heating	POFF	kW		0.038			
	Standby	Cooling		kW		0.038			
	mode	Heating		kW		0.038			
		Cooling	PTO	kW		0.006			
	stat-off	Heating		kW		0.006			
	mode	neaung	FIU	VAA		0.049			
Cooling	Cdc (Degi	radation o	nolina)			0.25			
		radation co							
Heating			leating)			0.25			
Safety devices	ltem	03				Inverter overload protector	~ ·		
		04			(Compressor motor thermal protect	UI		
		05				Fan driver overload protector			
		06				PC board fuse			
		07				High pressure switch (automatic)			
		08			High pressure switch (automatic) High pressure switch (manual)				

Standard accessories: Installation and operation manual; Quantity: 1;

Standard accessories: General safety precautions; Quantity: 1;

Standard accessories: Peel off F-gas label; Quantity: 1;

Standard accessories: Refrigerant label for F-gas regulation; Quantity: 1;

Standard accessories: Tie-wraps; Quantity: 2;

Standard accessories: Auxiliary piping set; Quantity: 1;

Standard accessories: Caution label; Quantity: 1;

Specifications

RXYSA-AY1

Electrical Sp	ecificatio	ons		RXYSA4AY1	RXYSA5AY1	RXYSA6AY1		
Power supply	Name				Y1			
	Phase			3N~				
	Frequenc	У	Hz		50			
	Voltage		V		380-415			
Power supply into	ake				Both indoor and outdoor unit			
Voltage range	Min.		%		-10			
	Max.		%		10			
Current - 50Hz	Nominal	Combina- Cooling			-			
	running	tion A						
	current	Combina- Cooling			-			
	(RLA)	tion B						
	Starting	current (MSC) - remark			See note 9			
	Zmax	List		No requirements				
	Minimum	n circuit amps (MCA)	A		13.6 (11)			
		n fuse amps (MFA)	A		16 (12)			
	Total ove	rcurrent amps (TOCA)	A	13.6 (13)				
	Full load	Total	A		1.3 (14)			
	amps							
	(FLA)							
Power Perfor-	Power	Combina- 35°C ISO - Full			-			
mance	factor	tion B 46°C ISO - Ful	l load		-			
Wiring connec-	For	Quantity			5G			
tions - 50Hz	power							
	supply							
	For	Quantity			2			
	connec-	Remark			F1,F2			
	tion with							
	indoor							

⁽¹⁾ Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: $0m \mid (2)$ Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: $0m \mid (2)$ Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: $0m \mid (2)$ Heating: $0m \mid (2)$ Heating: 0m

⁽³⁾ The actual number of units depends on the connection ratio (CR) and the restrictions for the system. | (4) Sound power level is an absolute value that a sound source generates. | (5) According to ENER Lot 21 |

⁽⁶⁾ Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. | (7) Refer to refrigerant pipe selection or installation manual |

⁽⁸⁾RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB |

(9)MSC means the maximum current during start up of the compressor. This unit uses only inverter compressors. Starting current is always ≤ max. running current. |

(10)In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply with Ssc ≥ minimum Ssc value

⁽¹³⁾MCA means the total value of each OC set. |

(13)MCA means the total value of each OC set. |

⁽¹⁴⁾FLA means the nominal running current of the fan \mid

3 Options

3 - 1 Options

RXYSA-AV1 RXYSA-AY1

VRV5-S Heat pump

Option list

Nr.	Item	RXYSA4~6A7V1B	RXYSA4~6A7Y1B
1	Refnet header	KHRQ22M29H	KHRQ22M29H
2	Refnet joint	KHRQ22M20TA	KHRQ22M20TA
3a	Cool/heat selector (switch)	KRC19-26	KRC19-26
3b	Cool/heat selector (fixing box)	KJB111A	KJB111A
4	VRV configurator	EKPCCAB4	EKPCCAB4
5	Bottom plate heater	EKBPH250D	EKBPH250D
6	Sound reduction enclosure	EKLN140A1	EKLN140A1

Notes

- 1 All options are kits
- 2 Cool/Heat selector PCB is standard in unit.
- 3 To mount option ·3a·, option ·3b· is required.

3D127872B

Combination table 4

4 - 1 Combination Table

RXYSA-AV1 RXYSA-AY1

VRV5-S Heat pump

Indoor unit combination restrictions

Combination table	RXYSA4~6A7V1B	RXYSA4~6A7Y1B
·VRV* R32 DX· indoor unit	0	0
·RA DX· indoor unit	X	X
Hydrobox unit	X	Х
Air handling unit (AHU)	X	Х

O: Allowed X: Not allowed

3D127866

RXYSA-AV1 RXYSA-AY1

Unit combination restrictions: ·VRV5· outdoor units (all models) + ·15·-class indoor units

Units in scope: ·FXZA15A· and ·FXAA15A·.

- In case the system contains these indoor units and the total connection ratio (\cdot CR \cdot) $\leq \cdot$ 100 \cdot %: no special restrictions. Follow the restrictions that apply to regular $\cdot VRV\ DX \cdot$ indoor units.
- In case the system contains these indoor units and the total connection ratio $(\cdot CR \cdot) > \cdot 100 \cdot \%$: special restrictions apply.
 - A. When the connection ratio (·CR1·) of the sum of all ·FXZA15A· and/or ·FXAA15A· units in the system \leq ·70·%, and ALL other ·VRV DX· indoor units have an individual capacity class > $\cdot 50 \cdot$: no special restrictions.
 - B. When the connection ratio (·CR1·) of the sum of all ·FXZA15A· and/or ·FXAA15A· units in the system ≤ ·70·%, and NOT ALL other ·VRV DX· indoor units have an individual capacity class > $\cdot 50 \cdot$: the restrictions below apply.
 - ° 100% < CR ≤ 105% -> ··CR1· of the sum of all ·FXZA15A· and/or ·FXAA15A· indoor units in the system must be ≤ ·70·%.
 - ° 105% < CR ≤ 110% -> ··CR1· of the sum of all ·FXZA15A· and/or ·FXAA15A· indoor units in the system must be ≤ ·60·%.
 - $^{\circ}$ 110% < CR \leq 115% -> CR1· of the sum of all ·FXZA15A· and/or ·FXAA15A· indoor units in the system must be \leq ·40·%.
 - ° 115% < CR ≤ 120% -> ·CR1· of the sum of all ·FXZA15A· and/or ·FXAA15A· indoor units in the system must be ≤ ·25·%.
 - ° 120% < CR \leq 125% -> CR1· of the sum of all ·FXZA15A· and/or ·FXAA15A· indoor units in the system must be \leq ·10·%. ° 125% < CR \leq 130% -> FXZA15A· and ·FXAA15A· cannot be used.

Remark

Only the ·15·-class indoor units explicitly mentioned on this page are in scope. Other indoor units follow the rules that apply to regular ·VRV DX- indoor units.

5 Capacity tables

5 - 1 Capacity Table Legend

In order to fulfill more your requirements on quick access of data in the format you require, we have developed a tool to consult capacity tables.

Below you can find the link to the capacity table database and an overview of all the tools we have to help you select the correct product:

- <u>Capacity table database:</u> lets you find back and export quickly the capacity information you are looking for based upon unit model, refrigerant temperature and connection ratio.
- You can access the capacity table viewer here: https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

 An overview of <u>all software tools</u> that we offer can be found here: https://my.daikin.eu/denv/en_US/home/applications/software-finder.html

Capacity tables

5 - 2 Capacity Correction Factor

RXYSA-AV1

RXYSA-AY1

VRV5-S Heat pump

Integrated heating capacity coefficient

The heating capacity tables do not take into account the capacity reduction in case of frost accumulation or defrost operation.

The capacity values that take these factors into account, or in other words, the integrated heating capacity values, can be calculated as follows:

Formula

A = Integrated heating capacity

B = Capacity characteristics value

C = Integrated correction factor for frost accumulation (see table)

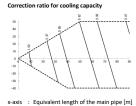
A = B * C

Inlet air temperature	of heat	exchan	ger					+		home	~~~
[°CDB/°CWB]	-7/-7.6	-5/-5.6	-3/-3.7	0/-0.7	3/2.2	5/4.1	7/6				
RXYSA4A7V1B	0,79	0,74	0,73	0,72	0,73	0,74	1,00		1		
									1		
								- °		4000000000000000	
								acity		1	Time
								capao		1	
								0 - -		1	
								₽		1	
								цеа		1 curlo	

Defrost operation

Notes

- 1. The figure shows the integrated heating capacity for a single cycle (from one defrost operation to the next).
- 2. When there is an accumulation of snow against the outdoor unit heat exchanger, there will always be a temporary reduction in capacity depending on the outdoor temperature (°C DB), relative humidity (RH) and the amount of frosting which occurs.


4D127879

Defrost operation

·1· cvcle

RXYSA4AY1 RXYSA4A7(V/Y)1B

RXYSA4AV1

: Height difference between outdoor unit and furthest indoor unit [m]

Correction ratio for heating capacity

y-axis Height difference between outdoor unit and furthest indoor unit [m]

Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures 2. With this outdoor unit, the following control is used:- in case of cooling: constant evaporating pressure control- in case of heating: constant condensing pressure control

3. Method of calculating the capacity of the outdoor units. The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less

The correction factor for the main pipe can be found in graphs above.
The correction factor for the longest branch is calculated separately. The maximum allowed branch length of -40- m corresponds with correction factor -0,02-.

If the equivalent piping length between the outdoor unit and the furthest indoor unit is ≥ -90· m, the size of the main gas pipe (between the new diameters, see below).

1. These figures illustrate the capacity correction factor due to the piping length for a standard indoor unit system at maximum load (with the thermostat set to maximum), under standard conditions

	Model	Standard liquid side Ø	Increased liquid side Ø	Standard gas side Ø	Increased gas side Ø		
	RXYSA4A7V1B	9,5	Not increased	15.0	19.1		
	RXYSA4A7Y1B	9,5	NOT IIICI eased	15,9	19,1		
5. Equipment length of the main nine							

Equivalent length of the main pipe Cooling mode

= 80 m x 0,5 = 40 m Cooling mode
 Heating mode = 80 m x 1,0 = 80 m

 Capacity correction ratio (height difference = 0)

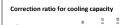
 • Cooling mode
 = 0,95 - (30/40) × 0,02 = 0,935

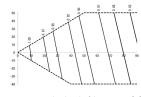
 • Heating mode
 = 0,972 - (30/40) × 0,02 = 0,957

Standard size

Equivalent length of the main pipe = Equivalent length of the main pipe x

Example Main gas pipe Main liquid pipe Equivalent length of the branch pipe of the furthest indoor unit




Capacity tables

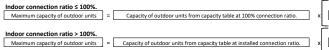
5 - 2 Capacity Correction Factor

RXYSA5AV1

RXYSA5AY1 RXYSA5A7(V/Y)1B

: Equivalent length of the main pipe [m] Height difference between outdoor unit and furthest indoor unit [m]

Correction ratio for heating capacity


x-axis : Equivalent length of the main pipe [m] Height difference between outdoor unit and furthest indoor unit [m]

1. These figures illustrate the capacity correction factor due to the piping length for a standard indoor unit system at maximum load (with the thermostat set to maximum), under standard conditions Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures.

2. With this outdoor unit, the following control is used:- in case of cooling: constant evaporating pressure control- in case of heating: constant condensing pressure control

3. Method of calculating the capacity of the outdoor units.

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less.

Correction factor for main pipe Correction factor for main pipe

40 m 0,02

The correction factor for the main pipe can be found in graphs above

The correction factor for the longest branch is calculated separately. The maximum allowed branch length of -40- m corresponds with correction factor -0,02-


If the equivalent piping length between the outdoor unit and the furthest indoor unit is ≥ -90·m, the size of the main gas pipe (between outdoor unit and first refrigerant branch kit) must be increased.
 For the new diameters, see below.

Model Standard liquid side Ø Increased liquid side Ø Standard gas side Ø

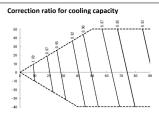
RXYSA5A7V1B RXYSA5A7Y1B 5. Equivalent length of the main pipe

Equivalent length of the main pipe = Equivalent length of the main pipe x Correction factor

Choose the correction factor from the following table

Equivalent length of the main pipe

Capacity correction ratio (height difference = 0)


= 0,928 - (30/40) x 0,02 = 0,913 Heating mode = 0.973 - (30/40) x 0.02 = 0.958

Example Equivalent length of the branch pipe of the furthest indoor unit

4D127880

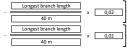
RXYSA6AV1 RXYSA6AY1

RXYSA6A7(V/Y)1B

: Equivalent length of the main pipe [m] Height difference between outdoor unit and furthest indoor unit [m] Correction ratio for heating capacity x-axis: Equivalent length of the main pipe [m]

y-axis: Height difference between outdoor unit and furthest indoor unit [m]

Notes


1. These figures illustrate the capacity correction factor due to the piping length for a standard indoor unit system at maximum load (with the thermostat set to maximum), under standard conditions.

Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, as shown in the above figures.

2. With this outdoor unit, the following control is used:- in case of cooling; constant evaporating pressure control- in case of heating; constant condensing pressure control

Method of calculating the capacity of the outdoor units.
 The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is less.

The correction factor for the main pipe can be found in graphs above.
The correction factor for the longest branch is calculated separately. The maximum allowed branch length of -40- m corresponds with correction factor -0,02-.

4. If the equivalent piping length between the outdoor unit and the furthest indoor unit is ≥ -90· m, the size of the main gas pipe (between outdoor unit and first refrigerant branch kit) must be increased. For the new diameters, see below.

Main gas pipe Main liquid pipe

	Model	Standard liquid side Ø	increased liquid side Ø	Standard gas side Ø	increased gas side Ø				
	RXYSA6A7V1B	9,5	Not increased	15.9	19,1				
	RXYSA6A7Y1B	5,5	Not increased	13,3					
5.	5. Equivalent length of the main pipe								

 Capacity correction ratio (height difference = 0)

 • Cooling mode
 = 0,92 - (30/40) × 0,02 = 0,905

 • Heating mode
 = 0,973 - (30/40) × 0,02 = 0,958

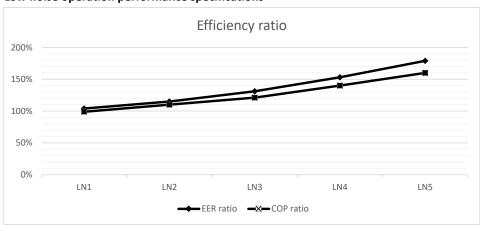
Equivalent length of the main pipe

Cooling mode Heating mode = 80 m x 0,5 = 40 m = 80 m x 1,0 = 80 m

Equivalent length of the main pipe = Equivalent length of the main pipe x Correction factor Choose the correction factor from the following table Example

Equivalent length of the branch pipe of the furthesi

6 Exchange efficiency


6 - 1 Exchange efficiency

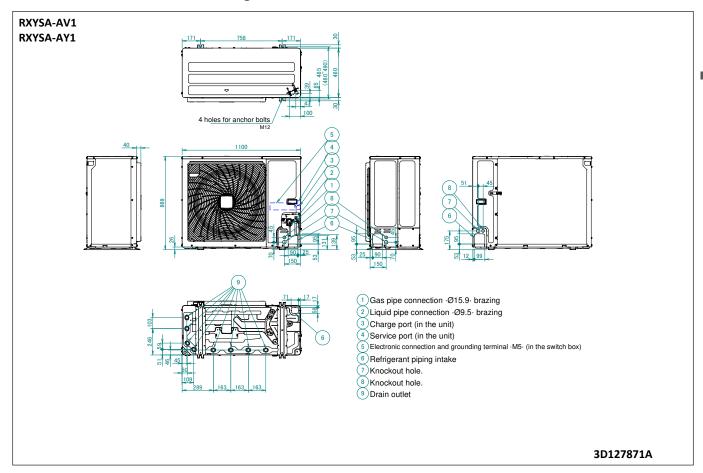
RXYSA-AV1 RXYSA-AY1

VRV5-S

Heat pump

Low noise operation performance specifications

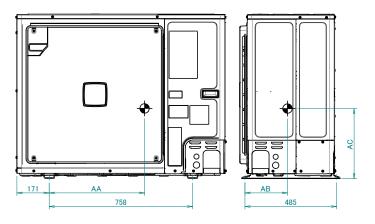
The capacity and efficiency ratios are calculated with reference to the nominal operation specifications.


LN1: Low noise level ·1·
LN2: Low noise level ·2·
LN3: Low noise level ·3·
LN4: Low noise level ·4·
LN5: Low noise level ·5·

	Capacity ratio				
LN1	90%				
LN2	75%				
LN3	60%				
LN4	45%				
LN5	30%				

7 Dimensional drawings

7 - 1 Dimensional Drawings

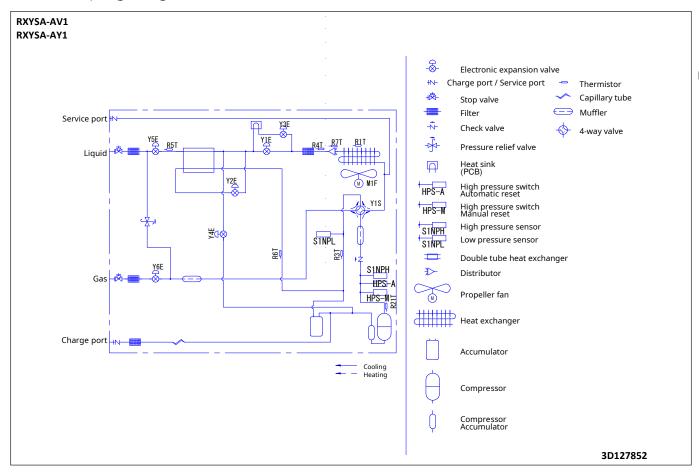


8 Centre of gravity

8 - 1 Centre of Gravity

RXYSA-AV1 RXYSA-AY1

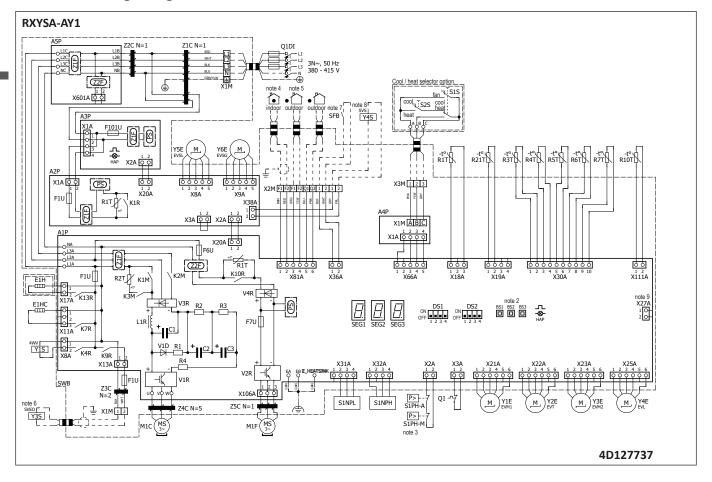
Model	AA	AB	AC
RZAG71N7V1B	520.3	238.7	357.8
RZAG71N7Y1B	525.9	224.7	359.8
RZAG100N7V1B	499.7	239.3	367.6
RZAG100N7Y1B	511.2	223.5	362.5
RZAG125/140N7V1B	486.3	229.2	371.8
RZAG125/140N7Y1B	493.4	215.8	372.2
RXYSA4/5/6A7V1B RXYSA4/5/6A7Y1B	530.4	249.9	389.0


4D120933B

8

9 Piping diagrams

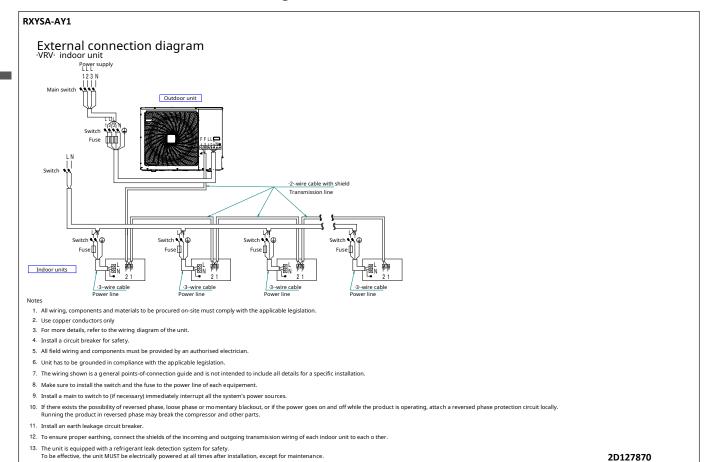
9 - 1 Piping Diagrams



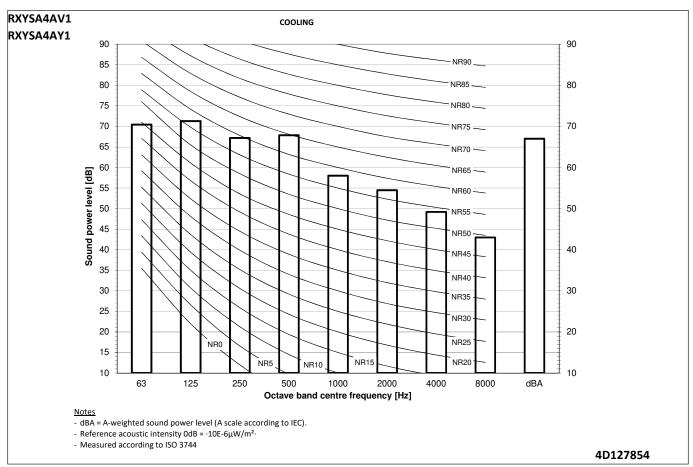
10 Wiring diagrams

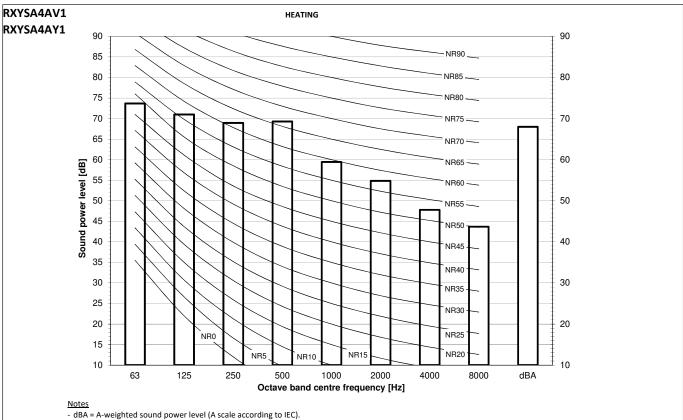
10 - 1 Wiring Diagrams - Three Phase

10 Wiring diagrams

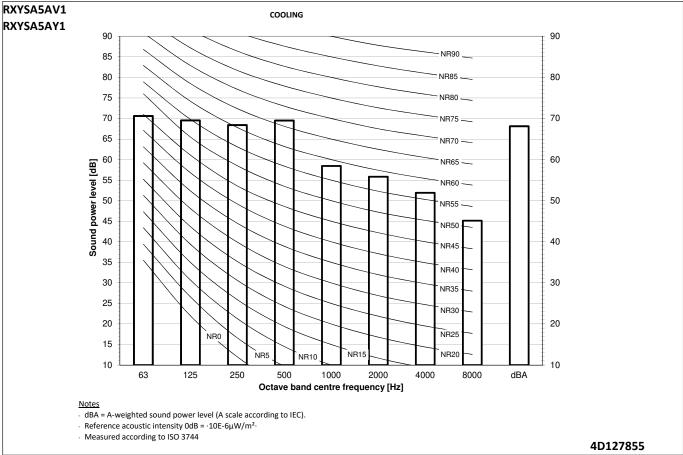

10 - 2 Notes & Legend

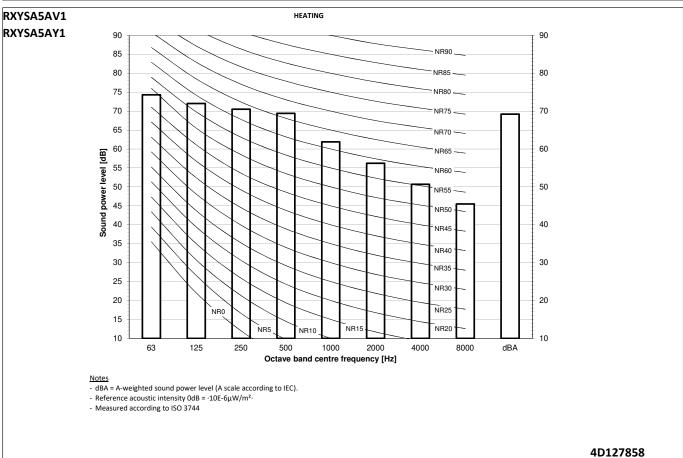
RXYSA-AY1 LEGEND NOTES to go through before starting the unit Part n° Description Part n° Description X1M : Main terminal A1P S1NPL main PCB low pressure sensor S1PH* sub PCB high pressure switch : Option ____ : Earth wiring air control switch A3P back up PCB S1S _____: Wire number 15 A4P cool / heat selector PCB S2S cool / heat switch A5P noise filter PCB : Wiring depending on model _ _ _ _ _ : Field wire 7-segment display (A1P) BS* (A1P) push button switch # mechanical ventilation error input : Field cable SFB C* (A1P) capacitors V*D diode Not mounted in switch box DS* (A1P) dipswitch V1R, V2R (A1P) : Screened conductor E1H bottom plate heater IGBT power module E1HC 1 crank case heater V3R, V4R (A1P) : Several wiring possibilities : PCB fuse T 6.3 A 250 V diode module F1U (A1P) 2. Refer to the installation or service manual on how to use BS3 push buttons and DS1-1 ~ DS1-2 DIP F1U (A2P) fuse T 3.15 A 250 V X*A PCB connector switches. 3. Do not operate the unit by short-circuiting protection device S1PH. S1PH-A automatically resets after high pressure has been exceeded, S1PH-M has to be manually reset after high pressure has been exceeded. 4. Refer to the installation manual for indoor-outdoor transmission F1+F2 wiring. 5. When using the central control system, connect outdoor-outdoor transmission F1+F2. 6. The capacity of the contact is 220-240V AC - 0,5A (Rush current needs 3A or less). 7. Use dry contact for micro-current (1 mA or less 12V DC). 8. Digital output: max 40V DC - 0,025A. Refer to installation manual for how to use this output. 9. For X27A refer to the installation manual of the option. F1U fuse T 1.0 A 250 V X*M terminal strip F6U (A1P) fuse T 6.3 A 250 V X*Y Y1E connector F7U (A1P) fuse T 5 A 250 V electronic exp. valve (main - EVM1) F101U (A3P) fuse T 2.0 A 250 V Y2E electronic exp. valve (EVT) Y3E electronic exp. valve (main - EVM2) HAP (A1P,A3P) running LED (service monitor-green) Y4E electronic exp. valve (EVL) K*M (A1P) contactor on PCB Y5E electronic exp. valve (EVSL) Y6E electronic exp. valve (EVSG) K*R (A*P) relay on PCB POSITION IN SWITCH BOX Y1S solenoïd valve (4-way valve) L1R (A1P) reactor Y3S # error operation output (SVEO) M1C motor (compressor) Y4S # leak sensor output (SVS) motor (fan) АЗР noise filter (ferrite core) PS* (A*P) switching power supply A2P Z*F (A*P) noise filter overload switch Q1DI # earth leakage circuit breaker : optional #: field supply R* (A1P) resistor A1P A4P thermistor (ambient) A5P R3T thermistor (suction) R4T thermistor (liquid) R5T thermistor (subcool) R6T thermistor (superheat X2M X1M R7T thermistor (heat exchanger) R10T thermistor (fin) R21T thermistor (discharge) PTC thermistor R*T (A*P) Front side Back side high pressure sensor 4D127737


11 External connection diagrams


11 - 1 External Connection Diagrams

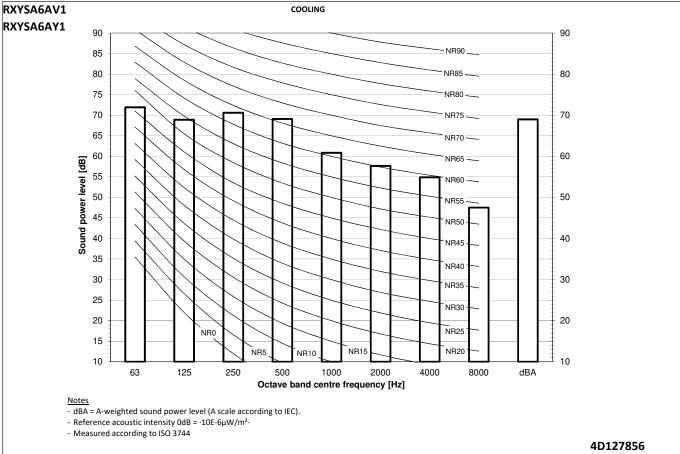
12 - 1 Sound Power Spectrum

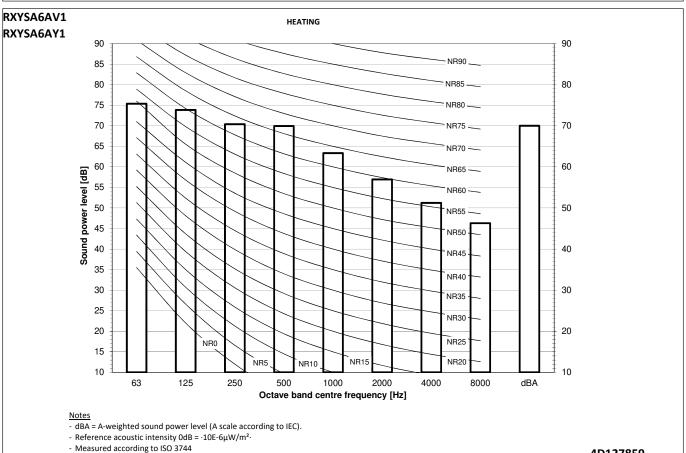



- Reference acoustic intensity 0dB = \cdot 10E-6 μ W/m²-

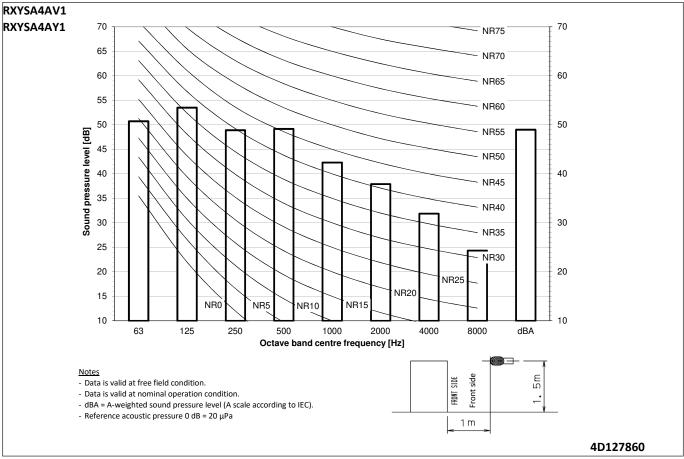
- Measured according to ISO 3744

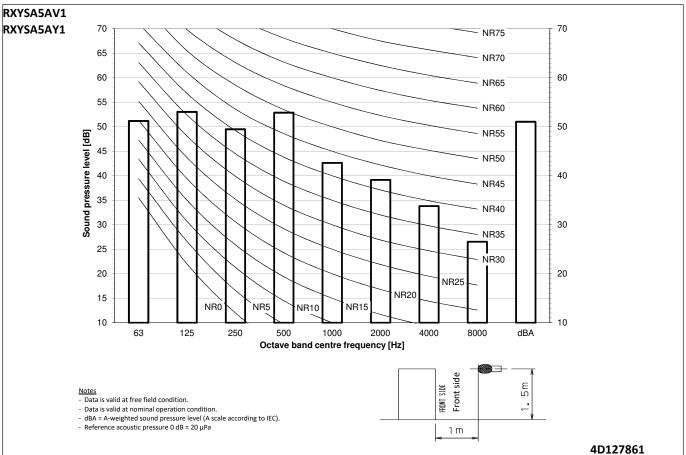
12 - 1 Sound Power Spectrum

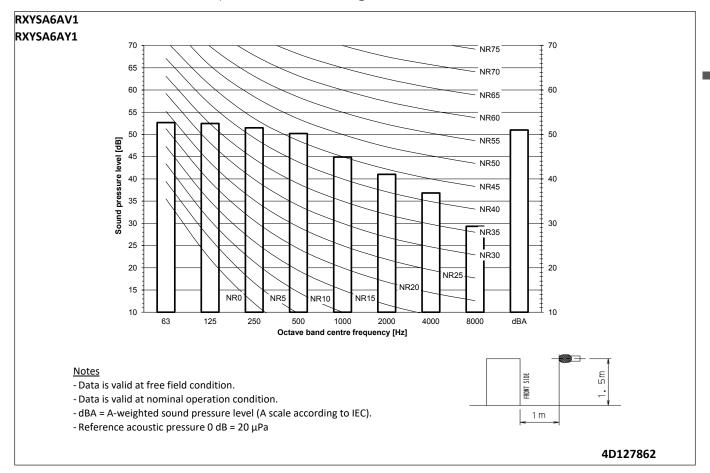


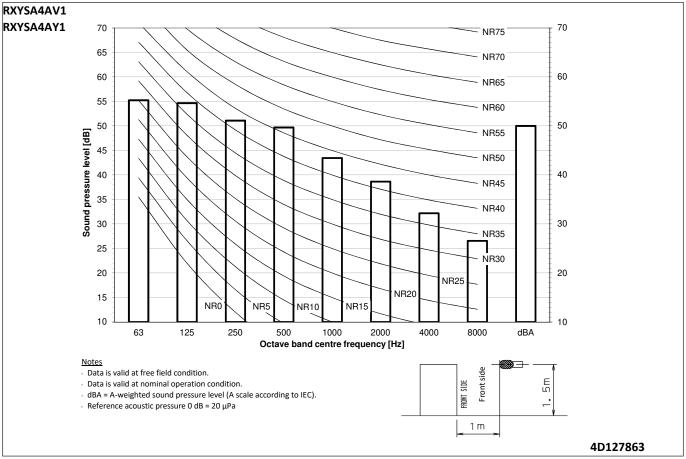


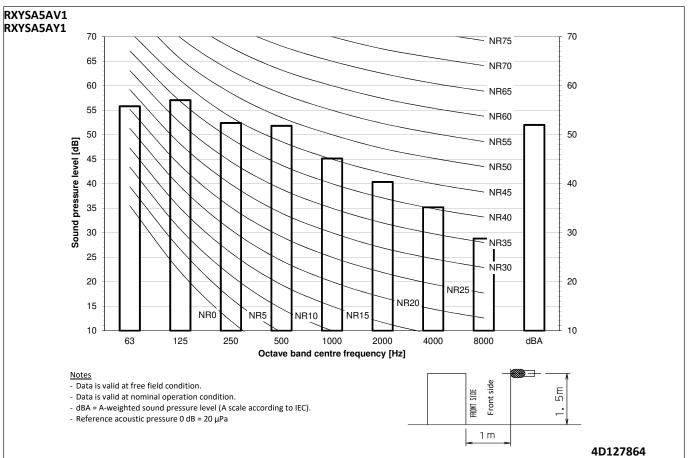
22


Sound Power Spectrum 12 - 1

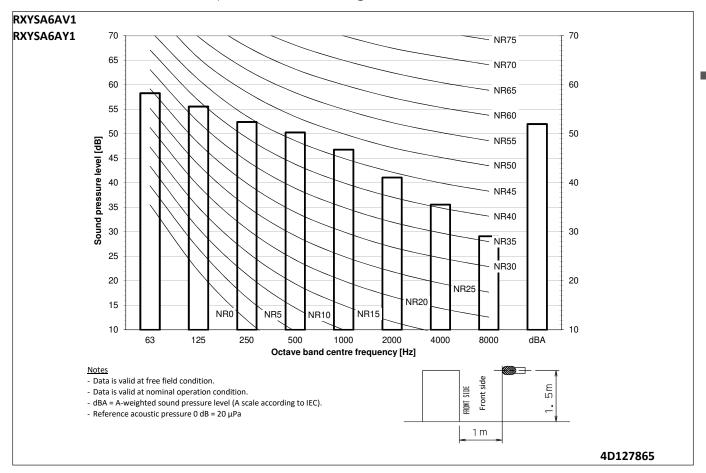



12 - 2 Sound Pressure Spectrum - Cooling




12 - 2 Sound Pressure Spectrum - Cooling

Sound Pressure Spectrum - Heating 12 - 3



26

12 - 3 Sound Pressure Spectrum - Heating

12 - 4 Sound power spectrum at high ESP

RXYSA-AV1 RXYSA-AY1

12

VRV5-S Heat pump High ESP

	Cooling	Heating	
4НР	Sound power [dBA]	Sound power [dBA]	
ESP1	70	72	
ESP2	75	77	

	Cooling	Heating	
5HP	Sound power	Sound power	
	[dBA]	[dBA]	
ESP1	71	76	
ESP2	75	77	

	Cooling	Heating		
6НР	Sound power [dBA]	Sound power [dBA]		
ESP1	71	78		
ESP2	75	78		

Sound power is measured on a freestanding unit.

Actual sound is depending on the installation of the duct.

12 - 5 Sound level data Quiet mode

RXYSA-AV1 RXYSA-AY1

VRV5-S Heat pump Low noise data (level ·1-5·)

4HP	Coolir	ng	Heating			
	Sound pressure [dBa]	· · · · · · · · · · · · · · · · · · ·		Sound power [dBA]		
LN1	47	65	48	66		
LN2	45	64	46	64		
LN3	43	62	44	62		
LN4	41	59	42	60		
LN5	39	57	40	58		

5HP	Coolir	ng	Heatiı	ng
	Sound pressure Sound power [dBa] [dBA]		Sound pressure [dBa]	Sound power [dBA]
LN1	48	66	51	68
LN2	46	64	48	66
LN3	44	62	46	64
LN4	42	60	44	62
LN5	40	58	42	60

6HP	Coolir	ng	Heating		
	Sound pressure Sound power [dBa] [dBA]		Sound pressure [dBa]	Sound power [dBA]	
LN1	49	67	51	69	
LN2	47	65	49	67	
LN3	45	63	47	65	
LN4	43	61	45	63	
LN5	41	59	43	61	

	Capacity ratio
LN1	90%
LN2	75%
LN3	60%
LN4	45%
LN5	30%

LN1: Low noise level ·1· LN2: Low noise level ·2· LN3: Low noise level ·3· LN4: Low noise level ·4· LN5: Low noise level ·5·

13 - 1 Installation Method

RXYSA-AV1 RXYSA-AY1

13

Single unit () | Single row of units ()

Suction side

In the illustration below, the service space at the suction side is based on 35°C DB and cooling operation. Foresee more space in the following cases:

- When the suction side temperature regularly exceeds this temperature.
- When the heat load of the outdoor units is expected to regularly exceed the maximum operating capacity.

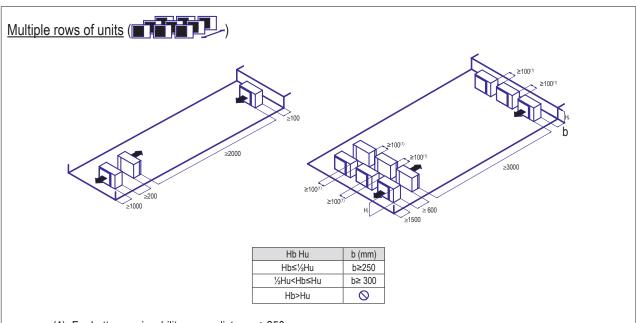
Discharge side

Take refrigerant piping work into account when positioning the units. If your lay out does not match with any of the layouts below, contact your dealer.

Single unit () | Single row of units ()

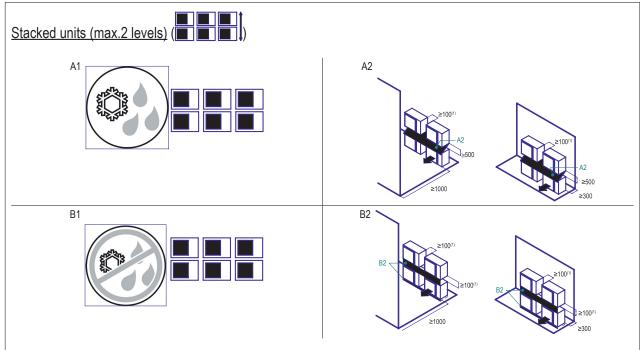
emigrature (E.) Single few of drings											
	A~E	ш	b Hd Hu				(mm)				
	A-L	11	TIDTIGTIG		b	С	d	е	e _B	e _D	
	В		- 2		≥ 100						
	A,B,C				≥ 100	≥ 100					
_	B,E		-		≥ 100			≥ 1000		≤500	
e _B	A,B,C,E		-	≥ 150(1)	≥ 150	≥ 150		≥ 1000		≤500]
$e_{\scriptscriptstyle D}$	D		-				≥ 500				
	D,E		-				≥ 500	≥ 1000	≤500		
	D D	I	Hd>Hu		≥ 100		≥ 500]
	B,D	I	Hd≤Hu		≥ 100		≥ 500				
H.I. V V(() To			Hb≤½Hu		≥ 250		≥ 750	≥ 1000	≤500		
H ₀		Hd>Hu	½Hu>Hb≤Hu		≥ 250		≥ 1000	≥ 1000	≤500		
a la	D.D.E.		Hb>Hu				0				
	B,D,E	Hd≤Hu	Hd≤½Hu		≥ 100		≥ 1000	≥ 1000		≤500	1
			½Hu <hd≤hu< td=""><td></td><td>≥ 200</td><td></td><td>≥ 1000</td><td>≥ 1000</td><td></td><td>≤500</td><td></td></hd≤hu<>		≥ 200		≥ 1000	≥ 1000		≤500	
			Hd>Hu				0				
	A,B,C		-	≥ 200(1)	≥ 300 ≥	1000					
	A,B,C,E	-		≥ 200(1)	≥ 300	≥ 1000		≥ 1000		≤500	1
e _B ∽	D	-					≥ 1000]
e _o .	D,E		-				≥ 1000	≥ 1000	≤500]
		-	Hd>Hu		≥ 300		≥ 1000				
e	B,D	Hd≤Hu	Hd≤½Hu		≥ 250		≥ 1500				
1 1/0/2		пи≥пи	½Hu <hd≤hu< td=""><td></td><td>≥ 300</td><td></td><td>≥ 1500</td><td></td><td></td><td></td><td></td></hd≤hu<>		≥ 300		≥ 1500				
HI AND			Hb≤½Hu		≥ 300		≥ 1000	≥ 1000	≤500		
H _D		Hd>Hu	½Hu <hb≤hu< td=""><td></td><td>≥ 300</td><td></td><td>≥ 1250</td><td>≥ 1000</td><td>≤500</td><td></td><td></td></hb≤hu<>		≥ 300		≥ 1250	≥ 1000	≤500		
			Hb>Hu				0				
	B,D,E		Hd≤½Hu		≥ 250		≥ 1500	≥ 1000		≤500	1+2
		Hd≤Hu	½Hu <hd≤hu< td=""><td></td><td>≥ 300</td><td></td><td>≥ 1500</td><td>≥ 1000</td><td></td><td>≤500</td><td></td></hd≤hu<>		≥ 300		≥ 1500	≥ 1000		≤500	
a A		i iu=i iu	Hd>Hu				0				

- (1) For better serviceability, use a distance ≥250 mm
- A,B,C,D Obstacles (walls/baffle plates)
 - E Obstacle (roof)
- a,b,c,d,e Minimum service space between the unit and obstacles A, B, C, D and E
 - $e_{\scriptscriptstyle B}$ Maximum distance between the unit and the edge of obstacle E, in the direction of obstacle B
 - e_D Maximum distance between the unit and the edge of obstacle E, in the direction of obstacle D
 - Hu Height of the unit
 - Hb,Hd Height of obstacles B and D
 - 1 Seal the bottom of the installation frame to prevent discharged air from flowing back to the suction side through the bottom of the unit.
 - 2 Maximum two units can be installed.
 - Not allowed



13 - 1 Installation Method

RXYSA-AV1 RXYSA-AY1


- (1) For better serviceability, use a distance ≥250 mm
- Not allowed

13 - 1 Installation Method

RXYSA-AV1 RXYSA-AY1

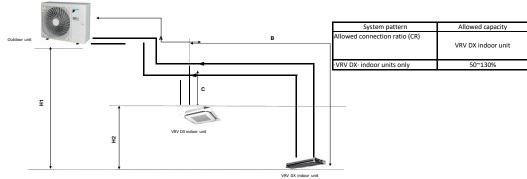
- (1) For better serviceability, use a distance ≥250 mm
- A1=>A2 (A1) If there is danger of drainage dripping and freezing between the upper and lower units...
 - (A2) Then install a roof between the upper and lower units. Install the upper unit high enough above the lower unit to prevent ice buildup at the upper unit's bottom plate.
- B1=>B2 (B1) If there is no danger of drainage dripping and freezing between the upper and lower units...
 - (B2) Then it is not required to install a roof, but seal the gap between the upper and lower units to prevent discharged air from flowing back to the suction side through the bottom of the unit.

Refrigerant Pipe Selection 13 - 2

RXYSA-AV1

RXYSA-AY1

VRV5-S Heat p **Piping restriction**


VRV DX

pump Maximum piping length			Maximu			
ions ·1/2·		Longest pipe	After first branch	Indoor-to-outdoor	Indoor-to-indoor	Total piping length
·		(A+B) Actual / (Equivalent) See note ·1·.	(B, C) Actual	(H1) Outdoor above indoor / (indoor above outdoor)	(H2)	See note ·2·.
X indoor unit	SA4~6A7V1B SA4~6A7Y1B	120/(150)m	40m	50/(40)m	15m	300m

- Notes

 1. Assume equivalent piping length of refnet joint = ·0.5· m and refnet header = ·1· m (for calculation purposes of equivalent piping length, not for refrigerant charge calculations).

 2. Maximum total piping length also depends on refrigerant charge limitations. See ·4D128599·.

Notes

- 1. Schematic indication
- Illustrations may differ from the actual appearance of the unit.
- 2. This is only to illustrate piping length limitations. Refer to combination table ·3D127866· for details about the allowed combinations.

4D127886

RXYSA-AV1 RXYSA-AY1

VRV5-S Heat pump Piping restrictions ·2/2·

System pattern	Allowed capacity
Allowed connection ratio (CR)	VRV DX indoor unit
·VRV DX· indoor units only	50~130%

13

Installation 13

13 - 2 Refrigerant Pipe Selection

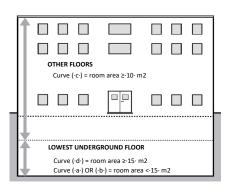
RXYSA-AV1 Refrigerant charge restrictions

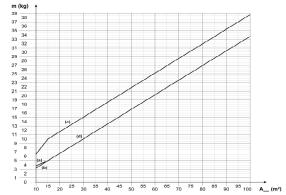
RXYSA-AY1

The total amount of refrigerant in the system shall be less than or equal to the maximum allowed total refrigerant amount.

For more information, refer to the installation manual.

Determine the area of the smallest room in order to derive the total refrigerant charge limit in the system.


Depending on the installation height of the indoor units, different values may be used in the next step IF:


- Installation height is ·1.8·sx<·2.2· m, then use the charge limit of the graph for wall-mounted units.
 Installation height is ≥·2.2· m, then use the charge limit of the graph for ceiling-mounted units.

. Use the graph or table to determine the total refrigerant charge limit in the system.

In case there are any underground floors in the building, there are special requirements for the maximum allowable charge.

- The maximum allowable charge is determined by using graph (·a·), (·b·) or (·d·) for room with the smallest area on the lowest underground floor.
- The maximum allowable charge has to be assessed for the room with the smallest room area in both the lowest underground floor and the other floors.
- The lowest maximum allowable charge of both MUST be used.

- (a) Ceiling-mounted (b) Wall-mounted
- (c) Smallest room not in underground floor

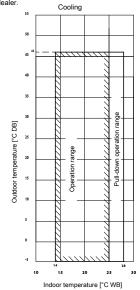
4D128599 (d) Smallest room in underground floor

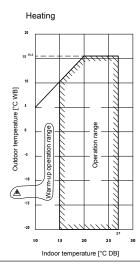
Operation range

14 - 1 Operation Range

RXYSA-AV1 RXYSA-AY1

Notes


1. These figures assume the following operation conditions Indoor and outdoor units


Equivalent piping length: 5m Level difference: 0m

- 2. Depending on operation and installation conditions, the indoor unit can change over to freeze-up operation (indoor de-icing).
- 3. To reduce the freeze-up operation (indoor de-icing) frequency, it is recommended to install the outdoor unit in a location not exposed to wind.
- 4. Operation range is valid in case direct expansion indoor units are used. If other indoor units are used, refer to the documentation of the respective indoor units.
- 5. If the unit is selected to operate at ambient temperatures <-5°C for 5 days or more, with relative humidity levels >95%, it is recommended to apply a Daikin range specifically designed for such

application.

For more information, contact your dealer.

3D094664A

15 Appropriate Indoors

15 - 1 Appropriate Indoors

RXYSA-AV1 RXYSA-AY1

15

Recommended indoor units for ·RXYSA*A*· outdoor units

·· HP	4	5	6
	3xFXSA25	4vEVC 4.2.2	2xFXSA32
	1xFXSA32	4xFXSA32	2xFXSA40

For details about the allowed combinations, see the engineering databook.

Appropriate indoor units for ·RXYSA*A*· outdoor units

Covered by ·ENER LOT21·

FXFA20-25-32-40-50-63-80-100-125

FXZA15-20-25-32-40-50

FXDA10-15-20-25-32-40-50-63

FXSA15-20-25-32-40-50-63-80-100-125-140

FXAA15-20-25-32-40-50-63

Daikin Europe N.V. Naamloze Vennootschap · Zandvoordestra	at 300 · 8400 Oos	stende · Belgium	· www.daikin.eu · BE 0412 120 336 · RPR Oostende (Responsible Editor)
			Daikin Europe N.V. participates in the ECP programmes for Fan Coil Units and Variable Refrigerant Flow systems. Daikin Applied Europe S.p.A. participates in the ECP programmes for Fan Coil Units and Variable Refrigerant Flow systems. Daikin Applied Europe S.p.A. participates in the ECP programmes for Liquid Chilling Packages and Hydronic Heart Pumps. Check ongoing validity of certificate: www.eurovent-certification.com
	## R 150 9001-150 14001	12/2021	The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V. / Daikin Central Europe HandelsGmbH. Daikin Europe N.V. / Daikin Central Europe HandelsGmbH have compiled the content of this publication to the best of their knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. / Daikin Central Europe HandelsGmbH explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Daikin Europe N.V.