

Серия VRV 5 S Кондиционирование воздуха Технические данные RXYSA-AV1

RXYSA4A7V1B RXYSA5A7V1B RXYSA6A7V1B

содержание RXYSA-AV1

	Характеристики RXYSA-AV1	5
2	Specifications	6
3	Опции Опции	9
1	Таблица сочетания Таблица сочетания	10 10
5	Таблицы производительности Условные обозначения таблицы производительностей Поправочный коэффициент для производительности	11 11 12
5	Эффективность теплообмена Эффективность теплообмена	14 14
7	Размерные чертежи Размерные чертежи	15 15
3	Центр тяжести Центр тяжести	16 16
)	Схемы трубопроводов Схемы трубопроводов	17 17
0	Монтажные схемы Монтажные схемы - Одна фаза Примечания и условные обозначения	18 18 19
1	Схемы внешних соединений Схемы внешних соединений	20
2	Данные об уровне шума Спектр звуковой мощности Спектр звукового давления - Охлаждение Спектр звукового давления - Нагрев Данные по уровню шума в тихом режиме Спектр звуковой мощности при высоком ВСД	21 24 26 28 29

13	Установка	30
	Способ монтажа	30
	Выбор труб с хладагентом	33
14	Рабочий диапазон	35
	Рабочий диапазон	35
15	Подходящие внутренние блоки	36
	Полхолящие внутренние блоки	36

1 Характеристики

1 - 1 RXYSA-AV1

Меньший эквивалент СО2 и лучшая на рынке универсальность

- > Снижение эквивалента CO2 благодаря использованию хладагента R-32 с более низким показателем ПГП и меньшей необходимой загрузкой
- Максимальная экологичность на протяжении всего срока службы благодаря лучшей в мире реальной сезонной эффективности
- > Компактная (высотой 870 мм) и легкая конструкция с одним вентилятором проста в установке, позволяет экономно использовать пространство и делает блок малозаметным
- Простота транспортировки благодаря легкой и компактной конструкции
- Ориентированное на потребности рынка удобство обслуживания и обращения с оборудованием благодаря широкой области доступа, 7-сегментному дисплею и дополнительной ручке
- Технология Shîrudo позволяет решать проблемы установки оборудования в небольших помещениях без принятия дополнительных мер
- > Специально разработанные внутренние блоки на R-32, обеспечивающие низкий уровень шума и максимальную эффективность

Specifications RXYSA-AV1

1 - 1

Technical Spe		ns		RXYSA4AV1	RXYSA5AV1	RXYSA6AV1
Recommended combination				3 x FXSA25A2VEB + 1 x	4 x FXSA32A2VEB	2 x FXSA32A2VEB + 2 x
Колодопроизво-	Prated,c		kW	FXSA32A2VEB 12,1 (1)	14,0 (1)	FXSA40A2VEB 15,5 (1)
цительность	i rateu,e		KVV	12,1 (1)	17,0 (1)	15,5 (1)
Геплопроизводи-	Ном.	6°С вл.т.	kW	12,1 (2)	14,0 (2)	15,5 (2)
ельность	Prated,h		kW	12,1 (2)	14,0 (2)	15,5 (2)
	Max.	6°CWB	kW	14,2 (2)	16,0 (2)	18,0 (2)
Входная мощ-	Нагрев	Ном. 6°С вл.т.	kW	2,69 (2)	3,33 (2)	3,78 (2)
ность - 50 Гц						
СОР при ном.	6°С вл.т.		kW/kW	4,49	4,20	4,10
произв-сти SCOP				5,1		4,7
SEER				8,2	7,7	7,6
			%		·	
ηs,c			%	324,5	306,1	301,0
ıs,h		FED.I	%	200,5	185,7	183,6
Охлаждение	Условие		114/	3,4	3,1	3,0
омещений	A (35°C - 27/19)	Pac	kW	12,1	14,0	15,5
	Условие	FERd		5,8	5,3	5,0
	В (30°С -		kW	8,9	10,3	11,4
	27/19)	1 dc	KVV	0,7	درن	11,77
	Условие	EERd	-	10,9		9,8
	C (25°C -		kW	5,7	6,6	7,3
	27/19)			-/·	-,~	,,5
	Условие	EERd		18,5	19,4	19,0
	D (20°C -		kW	4,9	4,5	4,9
	27/19)			.,-	٠,٠	1/2
Отопление (Уме-		COPd (заявленный COP)	<u> </u>	2,8	2,6	2,5
ренный климат)		Pdh (заявленная теплопро-	kW	8,4	9,7	10,7
,		изводительность)			,	,
		Tbiv (bivalent temperature)	°C		-10	-
	TOL	COPd (заявленный COP)		2,8	2,6	2,5
		Pdh (заявленная теплопро-	kW	8,4	9,7	10,7
		изводительность)		2,1	-7-	12,
		Tol (предельное значение	°C		-10	'
		рабочей температуры)	-			
	Условие	COPd (заявленный COP)		3,4		2,9
	A (-7°C)	Pdh (заявленная теплопро-	kW	7,4	8,5	9,5
	(,	изводительность)		,,.	0,5	
	Условие	COPd (заявленный COP)		4,9	4,5	4,3
	B (2°C)	Pdh (заявленная теплопро-	kW	4,5	5,2	5,8
	, ,	изводительность)		,-	-,	
	Условие	COPd (заявленный COP)		7,0	6,7	7,0
	C (7°C)	Pdh (заявленная теплопро-	kW	3,3		3,7
	- (-,	изводительность)		.,.		,
	Условие	COPd (заявленный COP)		2,8	9	9,0
	D (12°C)		kW	5,2	3,9	1 2/0
	/	изводительность)			- /-	
	дительно		HP	4	5	6
PED	Категори				Category III	
	Наи-	Наименование			Аккумулятор	
	более	-			, , , , , ,	
	важная					
	часть					
PED	Наи-	Ps*V	Bar*l		257	
	более					
	важная					
	часть					
Максимальное кол	пичество г	одсоединяемых внутренних	к блоков	13 (3)	16 (3)	18 (3)
Индекс произ-	Мин.			50,0	62,5	70,0
водительности	Ном.			100	125	140
одсоединяемых	Макс.			130,0	162,5	182,0
внутренних						
блоков						
Размеры	Unit	Высота	mm		869	
		Width	mm		1.100	
		Depth	mm		460	
	Упако-	Высота	mm		1.050	
	ванный	Ширина	mm		1.205	
	блок	Глубина	mm		569	
			kg		102	
bec	271011					

Specifications RXYSA-AV1

1 - 1

Technical Spe					RXYSA4AV1	RXYSA5AV1	RXYSA6AV		
Упаковка	Материал	1				Картон_			
	Bec			kg	4				
Упаковка 2	Материал	1							
	Bec			kg		6			
Упаковка 3	Материал	1				Пластик			
	Bec			kg		1			
Корпус	Цвет					Слоновая кость_			
	Материал	1			Окраше	— енная оцинкованная сталь	ная пластина		
Heat exchanger	Туре					ник с поперечным соедин			
reac exeriariye.	На сторог	де поменн	ДШИД		rennieedmen	воздух	стист ореоретии		
	Внешняя		СПИИ			воздух			
		Cooling	Rated	m³/h		5.342			
	rate	Heating	Rated	m³/h	5.519	3.342	6.204		
Г	Количест		nateu	m/n	5.519	1	0.204		
Fan				_		1			
	Внешнее	Макс.		Pa		45			
	стати-								
	ческое								
	давле-								
	ние								
Двигатель венти-	Количест	во				1			
пятора						Двигатель постоянного	тока		
	Выход W			W		234			
Компрессор	Количест	во_			1				
	Туре				Герметичный компрессор ротационного типа				
	Картернь	ій нагрева	атель	W	33				
Рабочий диапазон		Мин.		°CDB	-5				
	дение	Макс.		°CDB	46				
Нагрев Мин. °CWB			-20						
	-	Макс.		°CWB		16			
Уровень звуковой		Ном.		dBA	67,0 (4)	68,1 (4)	69,0 (4)		
		I IOW.		ub/	07,0 (4)	00,1 (4)	09,0 (4)		
мощности	дение	11		-IDA	60.0 (4)	(0.2 (4)	70.0 (4)		
V	Нагрев	Ном.		dBA	68,0 (4)	69,2 (4)	70,0 (4)		
Уровень звуково-		Ном.		dBA	49,0 (6)		51,0 (6)		
го давления	дение								
	Нагрев			dBA	50,0 (6)		52,0 (6)		
Хладагент	Тип					R-32			
	GWP					675,0			
	Заправка			TCO2Eq		2,30			
	Заправка			kg	3,40				
Refrigerant oil	Type					FW68DE			
	Объем за	правки		1		1,9			
Подсоединение	Жид-	Тип				Соединение пайкой			
труб	кость	НД		mm		10			
	Газ	Тип				Соединение пайкой			
		OD		mm		15,9			
	Общая		Фактическая	m		300 (7)			
	длина	CFICTCIVIA	- unin iccnun			500 (7)			
	трубо-								
	прово-								
	дов	LIE DE							
	перепад	HP - RP	Наружный блок	rn		50			
	уровня		в наивысшем						
			положении						
			Внутренний блок	m		40			
			в наивысшем						
			положении						
	Method					С инверторным управле	нием		
Capacity control		ель обору	дован дополнител	тыным <u></u>		no			
	о нагреват								
Указатель того, что	о нагреват								
Capacity control Указатель того, что нагревателем Дополнительный	·	Нагрев	elbu	kW		0,000			
Указатель того, что нагревателем	·		elbu	kW		0,000			

Specifications

RXYSA-AV1

Technical Spe	cificatio	ns			RXYSA4AV1	RXYSA5AV1	RXYSA6AV1
Потребляемая	Режим	Охлаж-	PCK	kW		0,000	
мощность не в	нагре-	дение					
активном режиме	вателя	Нагрев	PCK	kW		0,031	
	картера						
	Режим	Охлаж-	POFF	kW		0,040	
	ВЫКЛ	дение					
		Нагрев	POFF	kW		0,015	
	Режим	Охлаж-	PSB	kW		0,040	
	ожида-	дение					
_	ния	Нагрев	PSB	kW		0,015	
	Tep-	Охлаж-	PTO	kW		0,004	
	мостат	дение					
	ВЫКЛ	Нагрев	PTO	kW		0,049	
Охлаждение	Cdc (Сних	кение охл	аждения)			0,25	
Отопление	Cdh (Сни	жение отс	пления)			0,25	
Защитные устро-	Обору-	03			3	Ващита от перегрузки инвертора	a
йства	дование	04			Устройство термической защиты двигателя компрессора		
		05			Устройство з	защиты от перегрузки привода в	вентилятора
		06				Плавкий предохранитель платы	
		07			Переключа	атель высокого давления (автом	атический)
		08			Перек	лючатель высокого давления (р	учной)

Standard accessories: Руководство по установке и эксплуатации; Quantity: 1;

Standard accessories: Общие меры предосторожности; Quantity: 1;

Standard accessories: Отклеиваемая информационная табличка об F-газах; Quantity: 1;

Standard accessories: Ярлык хладагента для нормы по F-газам; Quantity: 1;

Standard accessories: Хомуты; Quantity: 2;

Standard accessories: Набор дополнительных трубопроводов; Quantity: 1;

Standard accessories: Предупредительная табличка; Quantity: 1;

Electrical Spe	cificatio	ns		RXYSA4AV1	RXYSA5AV1	RXYSA6AV1
Электропитание				V1		
•	Фаза				1~	
	Частота Hz				50	
	Напряже	ние	V		220-240	
Power supply intake					Внутренний и наружный блок	
Диапазон напря-	Мин.		%		-10	
жений	Макс.		%		10	
Current - 50Hz	Ном.	Combination A Cooling			-	
	рабочий Combination B Cooling				-	
	ток (RLA)					
	Starting c	urrent (MSC) - remark			См. прим. 9	
	Z макс. Список			Требования отс-т		
	Minimum	Ssc value	kVa	123 (10)	154 (10)	173 (10)
N	Мин. ток цепи (МСА) А				27,0 (11)	
		предохранителя (МҒА)	Α		32 (12)	
	Полный и	иаксимальный ток (ТОСА)	Α		27,0 (13)	
	Ток	Общая	Α		1,3 (14)	
	полной					
	нагрузки					
	(FLA)					
Производитель-		Combination B 35°C ISO - Full loa			-	
ность	циент	46°C ISO - Full loa	d		-	
Соединительная	Для	Количество			3G	
проводка - 50 Гц	электро-					
	питания					
	Для	Количество			2	
	подсое-	Примечание			F1,F2	
	динения					
	с внутр. бл.					
	UJI.			l		

⁽¹⁾Охлаждение: темп. в помещении: 27°CDB, 19°CWB; темп. наружного воздуха 35°CDB; эквивалентная длина трубопроводов: 7,5м; перепад уровня: 0 м

(5)Согласно ENER Lot 21 |

⁽²⁾ Нагрев: темп. в помещении: 20°CDB; темп. наружного воздуха 7°CDB, 6°CWB; эквивалентная длина труб с хладагентом: 7,5м; перепад уровня: 0 м | (3)Фактическое количество блоков зависит от показателя подключения (СR) и ограничений системы. |

⁽⁴⁾Уровень звуковой мощности является абсолютной величиной, производимой источником звука.

⁽б) Это относительная величина, которая зависит от указанного расстояния и акустики среды. Более подробно см. чертежи с описанием уровней шума.

⁽⁷⁾См. раздел выбора трубопровода хладагента или руководство по установке | (8)RLA основан на следующих условиях: темп. в помещении: 27°CDB, 19°CWB; темп. наружного воздуха 35°CDB |

⁽⁹⁾MSC означает макс. ток при пуске компрессора. В этом блоке используются только инверторные компрессоры. Всегда: пусковой ток ≤ макс. рабочий ток.

(10)В соответствии с EN/IEC 61000-3-12 может быть необходимо проконсультироваться у оператора системы коммуникаций для обеспечения подсоединения оборудования исключительно к питанию с Ssc ≥ минимальное значение Ssc |

⁽¹¹⁾⁾Для выбора правильного сечения подключаемых на месте проводов необходимо использовать МСА. МСА можно рассматривать как максимальный рабочий ток. | (12)МFА используется для выбора автоматического выключателя и выключатель цепи при замыкании на землю (автоматический выключатель утечек на землю) |

⁽¹³⁾TOCA означает полное значение каждой группы ОС. | (14)FLA означает номинальный рабочий ток вентилятора |

3 Опции

3 - 1 Опции

RXYSA-AV1 RXYSA-AY1

VRV5-S Тепловой насос

Список опций

Nº	Позиция	RXYSA4~6A7V1B	RXYSA4~6A7Y1B
1	Разветвитель Refinet насадка	KHRQ22M29H	KHRQ22M29H
2	Рефнет-разветвитель	KHRQ22M20TA	KHRQ22M20TA
3a	Селекторный переключатель охлаждения/нагрева (переключатель)	KRC19-26	KRC19-26
3b	Селекторный переключатель охлаждения/нагрева (блок крепления)	KJB111A	KJB111A
4	Конфигуратор VRV	EKPCCAB4	EKPCCAB4
5	Нагреватель поддона	EKBPH250D	EKBPH250D
6	Sound reduction enclosure	EKLN140A1	EKLN140A1

Примечания

1 Комплектная поставка дополнительного оборудования

2 У агрегата в стандартной комплектации есть печатная плата переключателя режима охлаждения/нагрева.

3 Для монтажа опции За требуется опция 3b.

3D127872B

4 Таблица сочетания

4 - 1 Таблица сочетания

RXYSA-AV1 RXYSA-AY1

VRV5-S Тепловой насос

Ограничения на сочетания внутренних агрегатов

- .		
Таблица сочетаний	RXYSA4~6A7V1B	RXYSA4~6A7Y1B
Внутренний блок VRV* R32 DX	0	0
Внутренний блок RA DX	X	Х
Блок Hydrobox	X	X
Центральный кондиционер (AHU)	Х	Х

О: Разрешено

х: Не допускается

3D127866

RXYSA-AV1 RXYSA-AY1

Ограничения на сочетания блоков: наружные агрегаты VRV5 (все модели) + внутренние агрегаты класса 15

Блоки в составе системы: FXZA15A и FXAA15A.

- Если система содержит эти внутренние агрегаты и общий коэффициент соединения (CR) ≤ 100%: специальные ограничения отсутствуют.
 Соблюдайте ограничения, которые применяются для стандартных внутренних агрегатов VRV DX.
- 2. Если система содержит эти внутренние агрегаты и общий коэффициент соединения (CR) > 100%: применяются специальные ограничения.
 - А. Если сумма коэффициентов соединения (CR1) всех блоков FXZA15A и/или FXAA15A в системе ≤ 70%, и ВСЕ остальные внутренние агрегаты VRV DX имеют индивидуальный класс производительности > 50: специальные ограничени
 - В. Если сумма коэффициентов соединения (CR1) всех блоков FXZA15A и/или FXAA15A в системе ≤ 70%, и НЕ ВСЕ остальные внутренние агрегаты VRV DX имеют индивидуальный класс производительности > 50: применяются специал
 - ° 100% < CR ≤ 105% -> Суммарное значение CR1 для всех внутренних агрегатов FXZA15A и/или FXAA15A в системе должно быть ≤ 70%.
 - ° 105% < CR ≤ 110% -> Суммарное значение CR1 для всех внутренних агрегатов FXZA15A и/или FXAA15A в системе должно быть ≤ 60%.
 - $^{\circ}$ 110% < CR \leq 115% -> Суммарное значение CR1 для всех внутренних агрегатов FXZA15A и/или FXAA15A в системе должно быть \leq 40%.
 - $^\circ$ 115% < CR \le 120% -> Суммарное значение CR1 для всех внутренних агрегатов FXZA15A и/или FXAA15A в системе должно быть \le 25%.
 - ° 120% < CR ≤ 125% -> Суммарное значение CR1 для всех внутренних агрегатов FXZA15A и/или FXAA15A в системе должно быть ≤ 10%.
 - $^{\circ}$ 125% < CR \leq 130% -> Невозможно использовать FXZA15A и FXAA15A.

Примечание

Только внутренние агрегаты класса 15, явно указанные на этой странице, входят в состав системы. На остальные внутренние агрегаты распространяются правила, которые применяются для стандартных внутренних агрегатов VRV DX.

5 Таблицы производительности

5 - 1 Условные обозначения таблицы производительностей

Для удовлетворения потребностей клиентов в быстром доступе к данным в удобном формате мы разработали инструмент, позволяющий воспользоваться таблицами производительности.

Ниже приведена ссылка на базу данных таблиц производительности и обзор всех инструментов, которые мы предлагаем, чтобы помочь вам выбрать наиболее подходящий продукт:

- <u>База данных таблиц производительности:</u> позволяет быстро найти и экспортировать данные производительности, соответствующие модели блока, температуре хладагента и соотношению подключений.
- Для получения доступа к средству просмотра таблиц производительности посетите сайт: https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

 Обзор <u>всех программных инструментов</u> приведен здесь: https://my.daikin.eu/denv/en_US/home/applications/software-finder.html

5 Таблицы производительности

5 - 2 Поправочный коэффициент для производительности

RXYSA-AV1

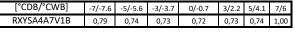
RXYSA-AY1

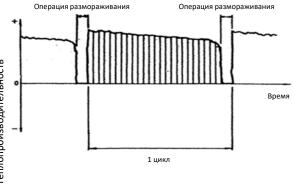
VRV5-S Тепловой насос

Общий коэффициент производительности по отоплению

В таблицах нагревательной способности не учитывается уменьшение производительности в случае обледенения или размораживания. Значения производительности, для которых учитываются эти коэффициенты (т. е. интегральные показатели нагревательной способности), можно рассчитать следующим образом:

Формула

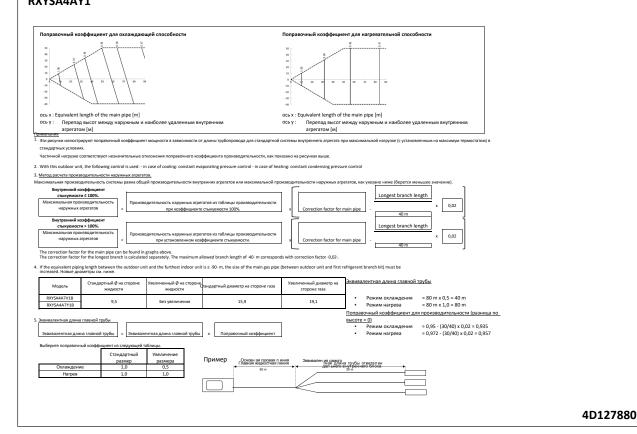

А = Интегрированная производительность по отоплению


В = Характеристики производительности

С = Интегральный поправочный коэффициент для обледенения (см. таблицу)

A = B * C

Температура воздуха на входе в теплообменник

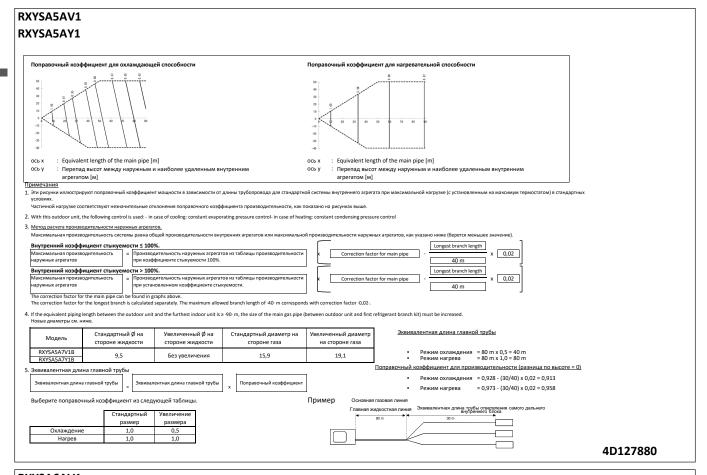


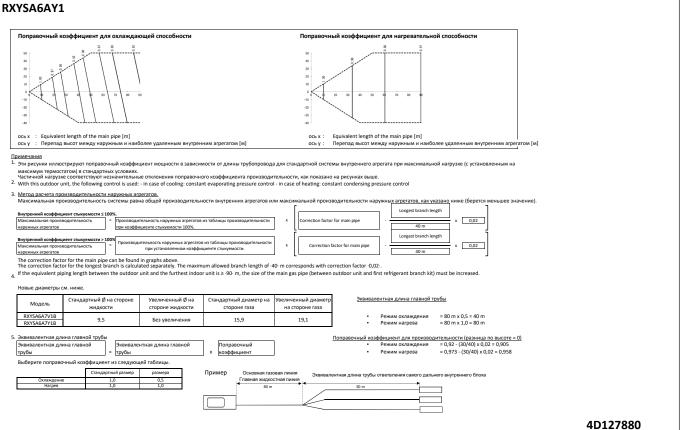
Примечания

- 1. На рисунке показана интегральная нагревательная способность для одного цикла (от размораживания до следующего цикла).
- 2. Если на теплообменнике наружного агрегата скапливается снег, происходит временное уменьшение производительности в зависимости от температуры снаружи (°C DB), относительной влажности (RH) и степени обледенения.

4D127879

RXYSA4AV1 RXYSA4AY1



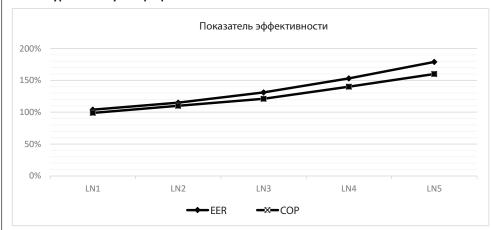


5 Таблицы производительности

5 - 2 Поправочный коэффициент для производительности

RXYSA6AV1

6 Эффективность теплообмена


6 - 1 Эффективность теплообмена

RXYSA-AV1 RXYSA-AY1

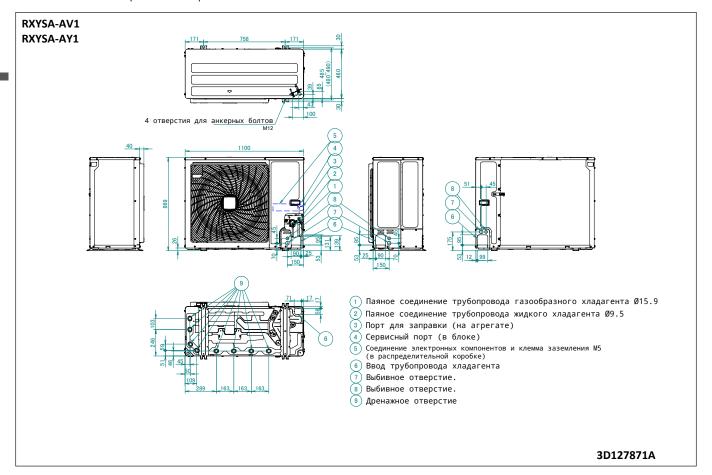
VRV5-S

Тепловой насос

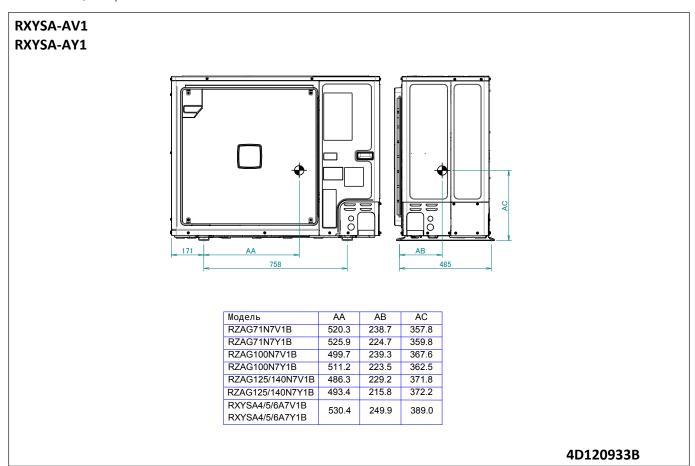
Низкий уровень шума при работе

Показатели производительности и эффективности рассчитываются для номинальных условий эксплуатации.

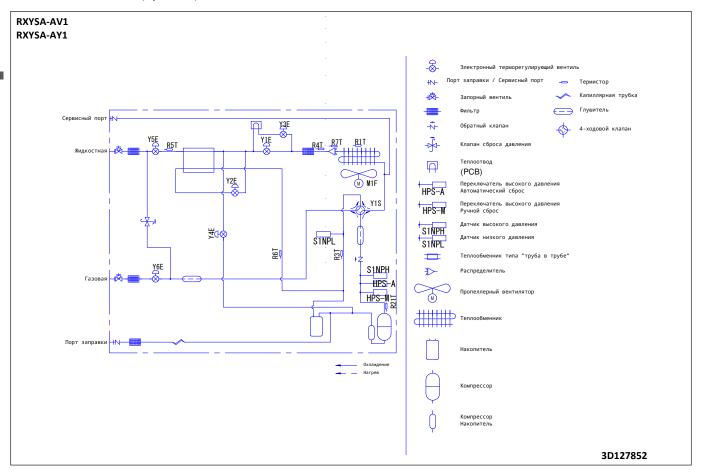
LN1: Низкий уровень шума-1 LN2: Низкий уровень шума-2 LN3: Низкий уровень шума-3 LN4: Низкий уровень шума-4 LN5: Низкий уровень шума-5


	Показатель производительности
LN1	90%
LN2	75%
LN3	60%
LN4	45%
LN5	30%

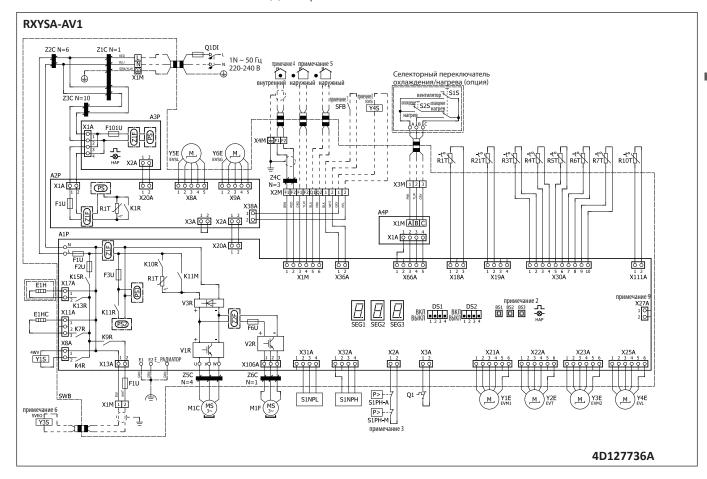
7 Размерные чертежи


7 - 1 Размерные чертежи

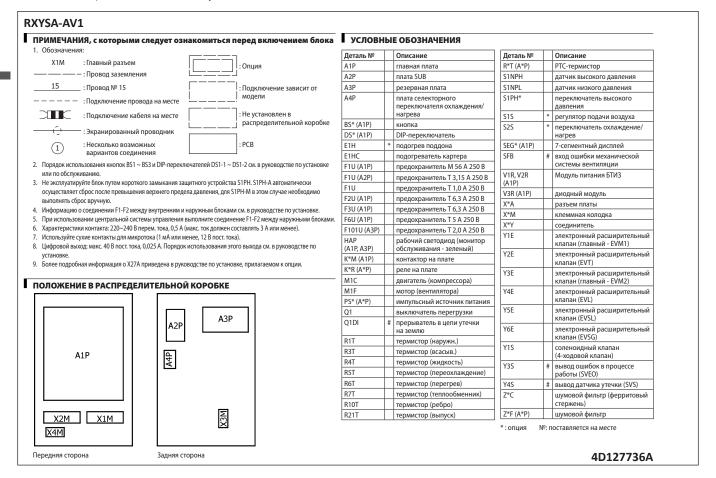
8 Центр тяжести


8 - 1 Центр тяжести

9 Схемы трубопроводов


9 - 1 Схемы трубопроводов

10 Монтажные схемы


10 - 1 Монтажные схемы - Одна фаза

10 Монтажные схемы

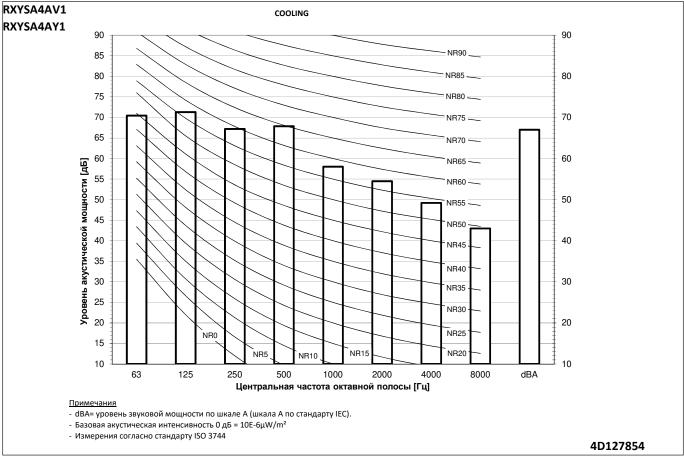
10 - 2 Примечания и условные обозначения

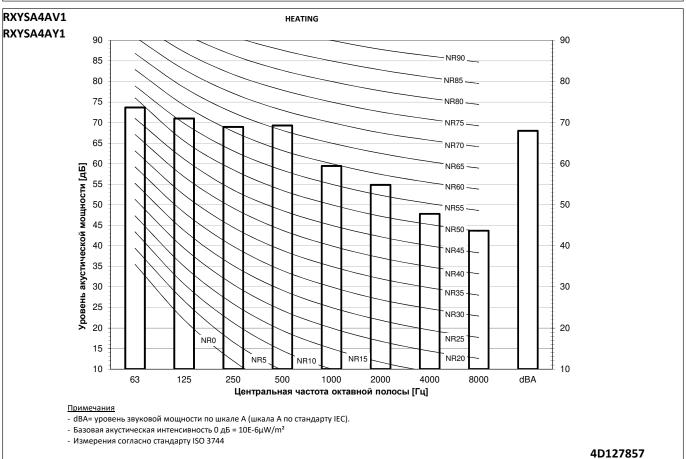
11 Схемы внешних соединений

11 - 1 Схемы внешних соединений

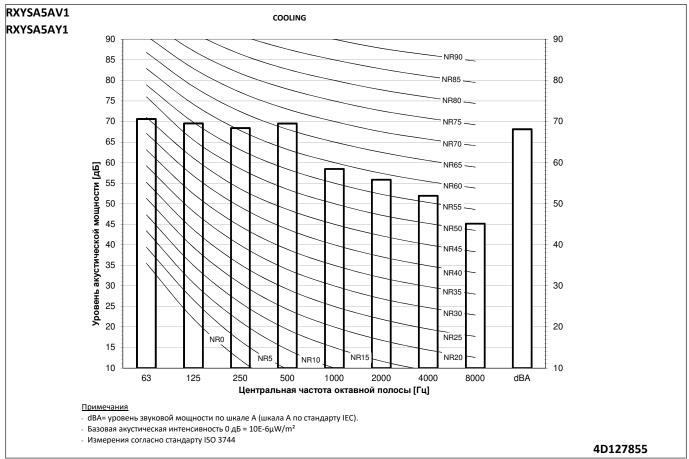
10. Установите автоматический выключатель защиты от замыкания на землю.

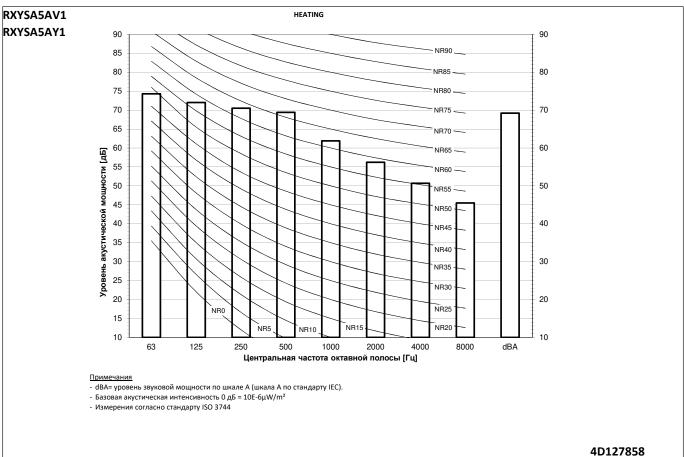
11. Чтобы обеспечить надлежащее заземление, соедините вместе экраны входящих и выходящих проводов управления каждого внутреннего агрегата.

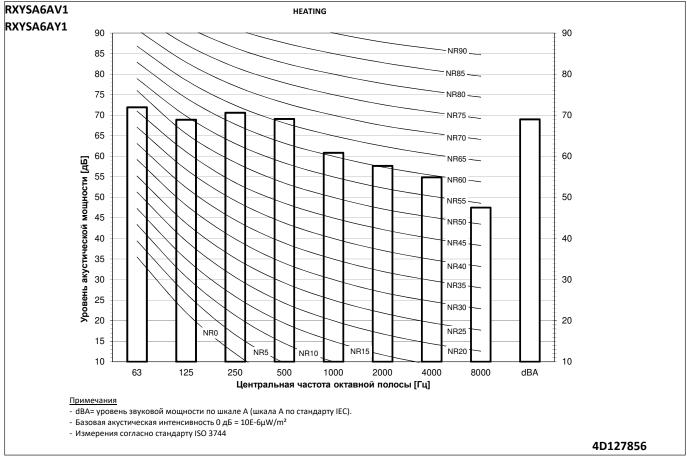

12. The unit is equipped with a refrigerant leak detection system for safety.

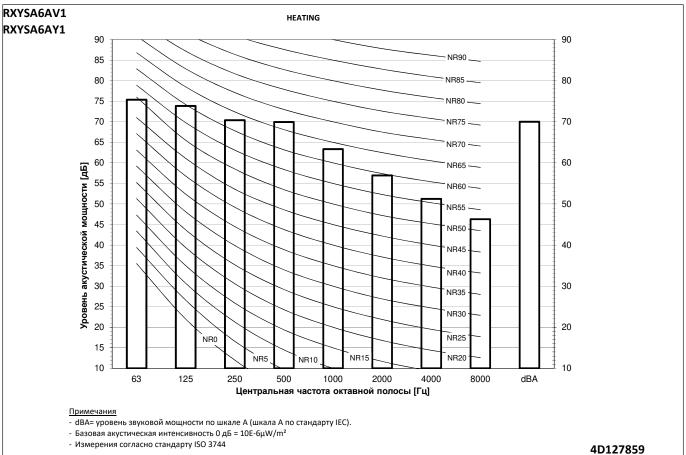

To be effective, the unit MUST be electrically powered at all times after installation, except for maintenance.

Внутренний блок VRV Заксуруствания Гозовай высовательной распоративной распоративной распоративной достовательной достовательного достователь

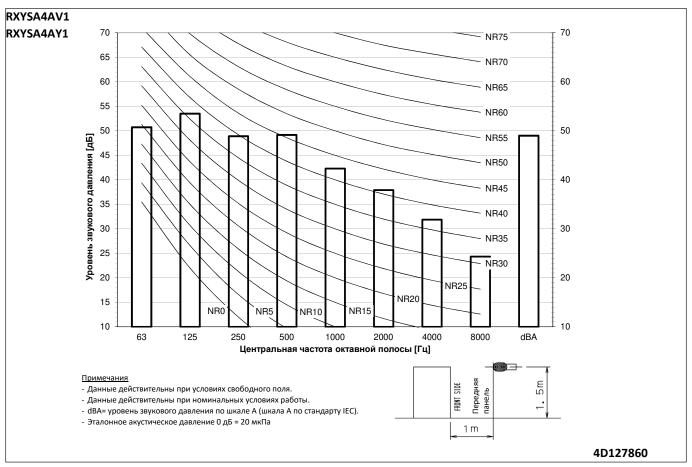

12 - 1 Спектр звуковой мощности

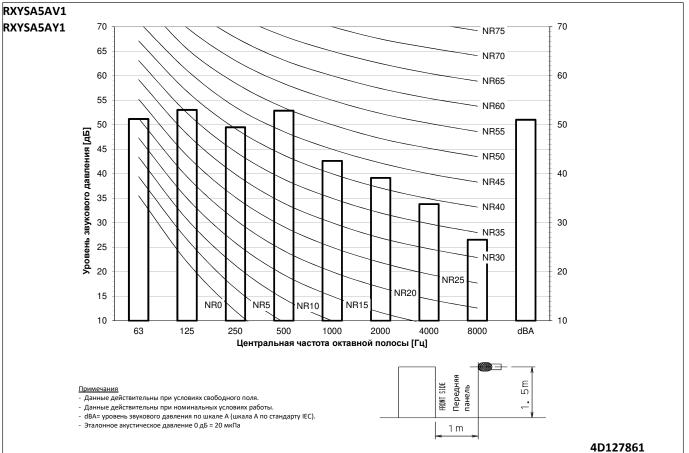



12 - 1 Спектр звуковой мощности

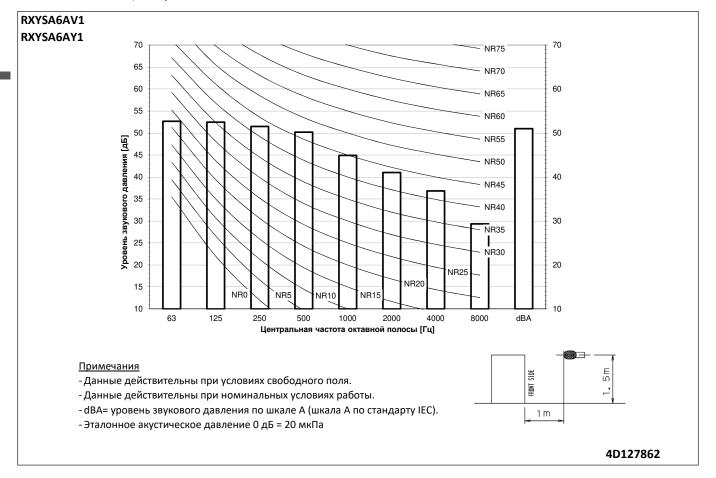


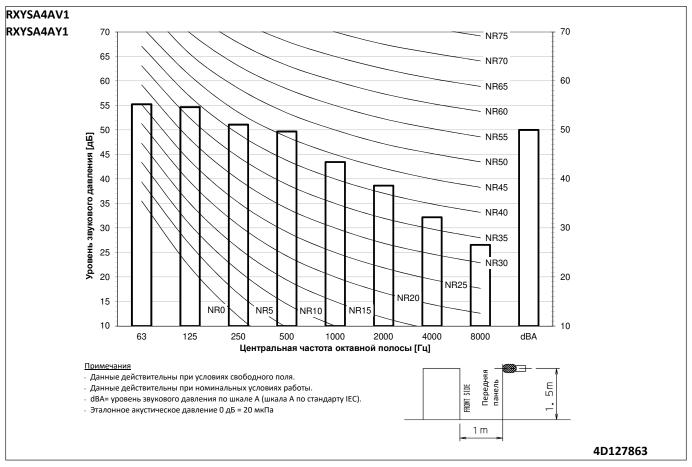
Спектр звуковой мощности

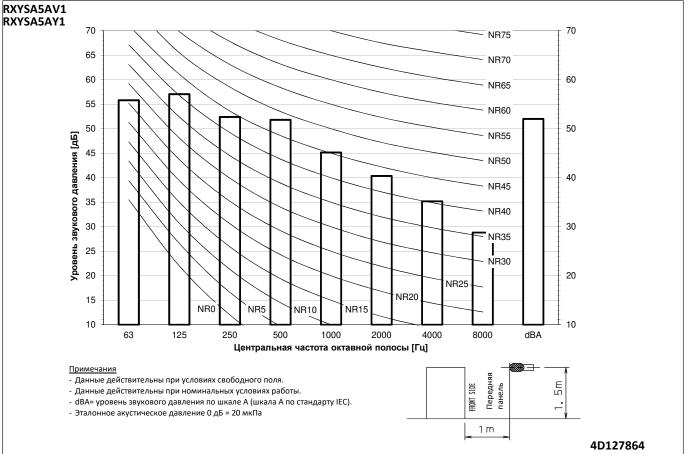


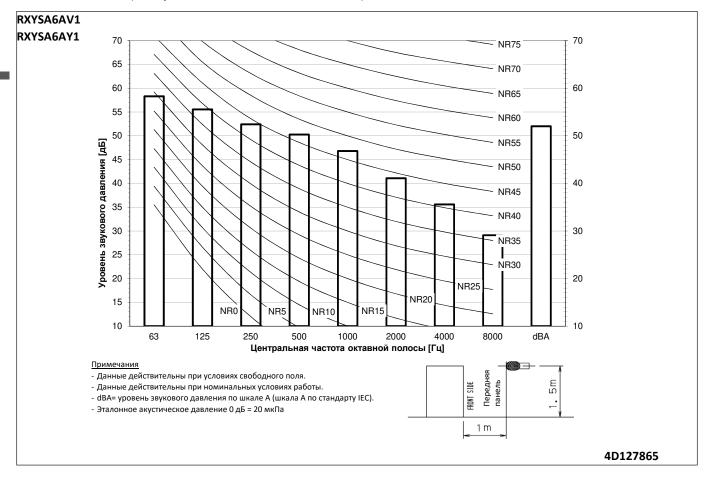


23


12 - 2 Спектр звукового давления - Охлаждение




12 - 2 Спектр звукового давления - Охлаждение


12 - 3 Спектр звукового давления - Нагрев

12 - 3 Спектр звукового давления - Нагрев

12 - 4 Данные по уровню шума в тихом режиме

RXYSA-AV1 RXYSA-AY1

VRV5-S Тепловой насос Данные тихого режима (уровень 1-5)

4HP	Охлажде	ние	Нагре	В
	Звуковое давление (дБА)	Акустическая мощность [dBA]	Звуковое давление (дБА)	Акустическая мощность [dBA]
LN1	47	65	48	66
LN2	45	64	46	64
LN3	43	62	44	62
LN4	41	59	42	60
LN5	39	57	40	58

5HP	Охлажде	ние	Нагре	B
	Звуковое давление (дБА)	Акустическая мощность [dBA]	Звуковое давление (дБА)	Акустическая мощность [dBA]
LN1	48	66	51	68
LN2	46	64	48	66
LN3	44	62	46	64
LN4	42	60	44	62
LN5	40	58	42	60

6НР	Охлажде	ние	Нагрев		
	Звуковое давление (дБА)	Акустическая мощность [dBA]	Звуковое давление (дБА)	Акустическая мощность [dBA]	
LN1	49	67	51	69	
LN2	47	65	49	67	
LN3	45	63	47	65	
LN4	43	61	45	63	
LN5	41	59	43	61	

	Capacity ratio	
LN1	90%	
LN2	75%	
LN3	60%	
LN4	45%	
LN5	30%	

LN1: Низкий уровень шума 1 LN2: Низкий уровень шума 2 LN3: Низкий уровень шума 3 LN4: Низкий уровень шума 4 LN5: Низкий уровень шума 5

12

12 Данные об уровне шума

12 - 5 Спектр звуковой мощности при высоком ВСД

RXYSA-AV1 RXYSA-AY1

VRV5-S Тепловой насос

Высокое внешнее статическое давление

	Охлаждение	Нагрев		
4НР	Акустическая мощность [dBA]	Акустическая мощность [dBA]		
ESP1	70	72		
ESP2	75	77		

	Охлаждение	Нагрев		
6НР	Акустическая мощность [dBA]	Акустическая мощность [dBA]		
ESP1	71	78		
ESP2	75	78		

	Охлаждение	Нагрев		
5HP	Акустическая мощность [dBA]	Акустическая мощность [dBA]		
ESP1	71	76		
ESP2	75	77		

Sound power is measured on a freestanding unit. Actual sound is depending on the installation of the duct.

13 - 1 Способ монтажа

RXYSA-AV1 RXYSA-AY1

Один блок () | Один ряд блоков (

Сторона всасывания

На приведенной ниже иллюстрации пространство для обслуживания на стороне всасывания рассчитано, исходя из 35°C (сух.т.) и работы в режиме охлаждения. Предусмотрите больше места в следующих случаях:

- Если температура на стороне всасывания регулярно превышает указанное значение.
- Если тепловая нагрузка наружных блоков, как ожидается, будет регулярно превышать максимальную рабочую производительность.

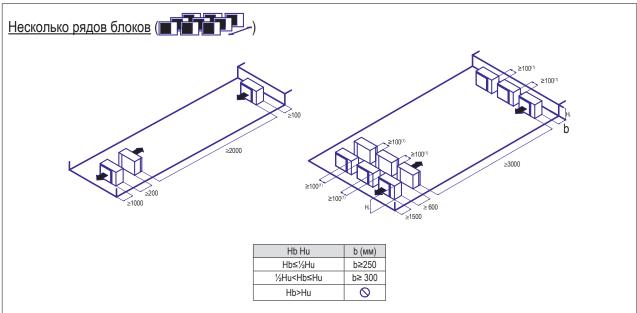
Сторона выпуска

При размещении блоков учитывайте пространство, необходимое для установки труб с хладагентом. Если ваша схема расположения не соответствует ни одной из приведенных ниже, обратитесь к своему дилеру.

Один блок () | Один ряд блоков (

Odam oner () Odam one ()											
	A~E	ш	b Hd Hu	(мм)							
	ATE	no na na		а	b	С	d	е	e _B	e _D	
	В		-		≥ 100]
	A,B,C		-	≥ 100(1)	≥ 100	≥ 100					1
	B,E	-			≥ 100			≥ 1000		≤500	1
e _B	A,B,C,E	-		≥ 150(1)	≥ 150	≥ 150		≥ 1000		≤500	1
e_{D}	D	-					≥ 500				1
	D,E		-				≥ 500	≥ 1000	≤500		1
	D D	I	Hd>Hu		≥ 100		≥ 500				1
	B,D	I	Hd≤Hu		≥ 100		≥ 500				1
$\sim H_{\rm B}$			Hb≤½Hu		≥ 250		≥ 750 ≥ 1000	≥ 1000	≤500		
H _D		Hd>Hu	½Hu>Hb≤Hu		≥ 250		≥ 1000	≥ 1000	≤500		
a la			Hb>Hu				0				1.
	B,D,E	Hd≤Hu	Hd≤½Hu		≥ 100		≥ 1000	≥ 1000		≤500	- 1 - 1
			½Hu <hd≤hu< td=""><td></td><td>≥ 200</td><td></td><td>≥ 1000</td><td>≥ 1000</td><td></td><td>≤500</td></hd≤hu<>		≥ 200		≥ 1000	≥ 1000		≤500	
			Hd>Hu				0				1
	A,B,C	-		≥ 200(1)	≥ 300 ≥	1000					
	A,B,C,E	-		≥ 200(1)	≥ 300	≥ 1000		≥ 1000		≤500	1
l e _B ∽	D	-		. ,			≥ 1000				
e _n	D,E	-					≥ 1000	≥ 1000	≤500		
	,		Hd>Hu		≥ 300		≥ 1000				1
e	B,D	Hd≤Hu	Hd≤½Hu		≥ 250		≥ 1500				1
I TION		па≤пи	½Hu <hd≤hu< td=""><td></td><td>≥ 300</td><td></td><td>≥ 1500</td><td></td><td></td><td></td><td>1</td></hd≤hu<>		≥ 300		≥ 1500				1
H			Hb≤½Hu		≥ 300		≥ 1000	≥ 1000	≤500		
2100 ⁽¹⁾ B		Hd>Hu	½Hu <hb≤hu< td=""><td></td><td>≥ 300</td><td></td><td>≥ 1250</td><td>≥ 1000</td><td>≤500</td><td></td><td>1</td></hb≤hu<>		≥ 300		≥ 1250	≥ 1000	≤500		1
H _D H _B			Hb>Hu				0				1
	B,D,E	B,D,E	Hd≤½Hu		≥ 250		≥ 1500	≥ 1000		≤500	1+2
		Hd≤Hu	½Hu <hd≤hu< td=""><td></td><td>≥ 300</td><td></td><td>≥ 1500</td><td>≥ 1000</td><td></td><td>≤500</td><td></td></hd≤hu<>		≥ 300		≥ 1500	≥ 1000		≤500	
a//		i iu=i iu	Hd>Hu				0				

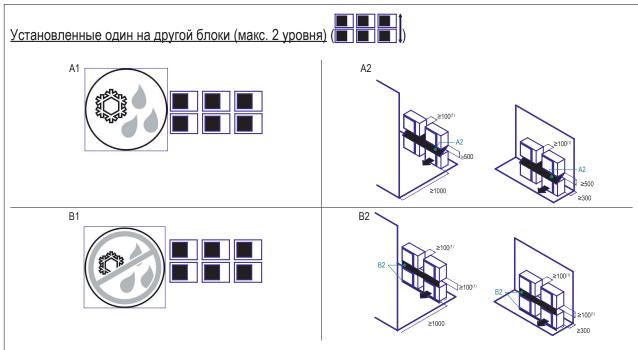
- (1) Для улучшения возможностей обслуживания используйте расстояние ≥250 мм
 - А, В, С, D Препятствия (стены/перегородки)
 - Е препятствие (крыша)
- а, b, c, d, e Минимальное пространство для обслуживания между блоком и препятствиями A, B, C, D и E
 - ев Максимальное расстояние между блоком и границей препятствия Е в направлении препятствия В
 - ев Максимальное расстояние между блоком и границей препятствия Е в направлении препятствия D
 - Ни Высота блока
 - Hb, Hd Высота препятствий В и D
 - 1 Уплотните нижнюю часть монтажной рамы так, чтобы выпускаемый воздух не возвращался на сторону всасывания через низ блока.
 - 2 Можно установить максимум два блока.
 - О Не допускается


13

13 **Установка**

13 - 1 Способ монтажа

RXYSA-AV1 RXYSA-AY1

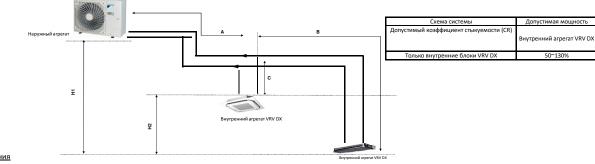

(1) Для улучшения возможностей обслуживания используйте расстояние ≥250 мм О Не допускается

13 - 1 Способ монтажа

RXYSA-AV1 RXYSA-AY1

Установленные один на другой блоки (макс. 2 уровня) (

- (1) Для улучшения возможностей обслуживания используйте расстояние ≥250 мм
 - А1=>А2 (А1) Если существует опасность стекания и замерзания дренажа между верхним и нижним блоками...
 - (A2) В этом случае расположите верхний и нижний блоки таким образом, чтобы между ними находилась крыша. Установите верхний блок достаточно высоко над нижним блоком, чтобы предотвратить накопление льда на нижней плите верхнего блока.
 - В1=>В2 (В1) Если нет опасности стекания и замерзания дренажа между верхним и нижним блоками...
 - (B2) В этом случае нет необходимости в размещении блоков по обе стороны крыши, но нужно уплотнить зазор между верхним и нижним блоками так, чтобы выпускаемый воздух не возвращался на сторону всасывания через низ блока.


13 - 2 Выбор труб с хладагентом

RXYSA-AV1 RXYSA-AY1

VRV5-S Тепловой насос Максимальная длина трубопровода Максимальный перепад высот Максимальна
Наиболее длинны
трубопровод
(А+В)
Фактическая /
(эквивалентная) После первого Ограничения трубопровода 1/2 (Н1) Наружный выше утреннего/(внутрен выше наружного) Внутренний агрегат VRV DX 120/(150)m 40m 50/(40)m 15m 300m

- Примечания

 1. Assume equivalent piping length of refnet joint = ·0.5· m and refnet header = ·1· m (for calculation purposes of equivalent piping length, not for refrigerant charge calculations).
 - $2. \ \ \text{Maximum total piping length also depends on refrigerant charge limitations. See } \cdot 4\text{D128599} \cdot .$

Примечания

- 1. Схематическая индикация
 - Рисунки могут отличаться от фактического внешнего вида блока
- 2. Только для иллюстрации ограничений длины трубопровода. Информация о допустимых сочетаниях приведена в таблице сочетаний 3D127866.

4D127886

RXYSA-AV1 RXYSA-AY1

VRV5-S Тепловой насос Ограничения трубопровода 2/2

Схема системы	Допустимая мощность
Допустимый коэффициент стыкуемости (CR)	Внутренний агрегат VRV DX
Только внутренние блоки VRV DX	50~130%

13 - 2 Выбор труб с хладагентом

RXYSA-AV1 RXYSA-AY1

Ограничения в отношении заправки хладагента

Общее количество хладагента в системе должно быть меньшим или равным максимально допустимому количеству хладагента.

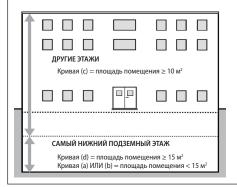
Дополнительная информация приведена в руководстве по установке.

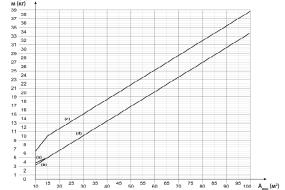
3-a- 1

Определение площади наименьшего помещения для расчета предельного значения общей загрузки хладагента в системе.

Этап 2

В зависимости от высоты установки внутренних блоков на следующем этапе могут применяться различные значения. ЕСЛИ:


- Высота установки составляет 1,8 ≤х< 2,2 м, используется предельное значение заправки, указанное на графике для настенных блоков.
- Высота установки составляет ≥ 2,2 м, используется предельное значение заправки, указанное на графике для потолочных блоков.


Этап 3

Использование графика или таблицы для расчета предельного значения общей загрузки хладагента в системе.

В случае, если в здании есть подземные этажи, предусмотрены особые требования к максимально допустимой заправке.

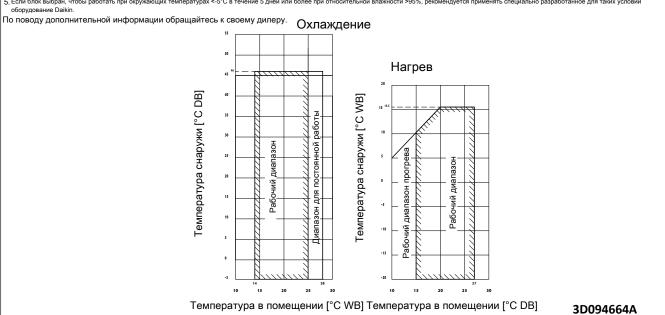
- Максимально допустимая заправка определяется по графику (a), (b) или (d) для помещения с наименьшей площадью на самом нижнем подземном этаже.
- Максимально допустимая заправка должна определяться для помещения с наименьшей площадью как на самом нижнем подземном этаже, так и на других этажах.
- ДОЛЖНО использоваться наименьшее из указанных двух значений.

- (а) Потолочный
- (b) Настенный
- (с) Наименьшее помещение за пределами подземного этажа
- (d) Наименьшее помещение на подземном этаже

Рабочий диапазон 14

14 - 1 Рабочий диапазон

RXYSA-AV1 **RXYSA-AY1**


Примечания

14

- , 1.Эти рисунки соответствуют следующим рабочим условиям Внутренние и наружные агрегаты Эквивалентная длина трубопровода: 5м
- Разность уровней: 0 м 2. В зависимости от условий работы и монтажа внутренний агрегат может переключаться в режим защиты от замерзания (предотвращение обледенения). 3. Чтобы уменьшить частоту размораживания (защита от обледенения внутреннего агрегата), рекомендуется устанавливать наружный агрегат в защищенном от ветра месте.
- 4. Рабочий диапазон действителен в случае использования внутренних агрегатов с непосредственным расширением.

Если используются другие внутренние агрегаты, руководствуйтесь соответствующей документацией.

5. Если блок выбран, чтобы работать при окружающих температурах <-5°C в течение 5 дней или более при относительной влажности >95%, рекомендуется применять специально разработанное для таких условий оборудование Daikin.

15 Подходящие внутренние блоки

15 - 1 Подходящие внутренние блоки

RXYSA-AV1 RXYSA-AY1

Рекомендуемые внутренние агрегаты для наружных агрегатов RXYSA*A*

л. с.	4	5	6
	3xFXSA25	4×EVCA22	2xFXSA32
	1xFXSA32	4xFXSA32	2xFXSA40

Сведения о допустимых сочетаниях приведены в технических характеристиках.

Подходящие внутренние агрегаты для наружных агрегатов RXYSA*A*

Закрывается ENER LOT21

FXFA20-25-32-40-50-63-80-100-125

FXZA15-20-25-32-40-50

FXDA10-15-20-25-32-40-50-63

FXSA15-20-25-32-40-50-63-80-100-125-140

FXAA15-20-25-32-40-50-63

Daikin Europe N.V. Naamloze Vennootschap · Zandvoordestraat 300 · 8400 Oostende · Belgium · www.daikin.eu · BE 0412 120 336 · RPR Oostende (Responsible Editor) EUROVENT CERTIFIED PERFORMANCE ECP для фанкойлов и систем с переменным расходом хладагента. Daikin Applied Europe S.p.A. принимает участие в программах ЕСР для жидкостных холодильных установок и водяных тепловых насосов. Проверьте действие EEDRU22 12/2021 Настоящий буклет составлен только для справочных целей и не является предложением обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели ее содержания, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.