

VRV IV+ heat pump, without continuous heating Air Conditioning Technical Data RXYQ-U

RXYQ10U7Y1B RXYQ12U7Y1B RXYQ14U7Y1B RXYQ16U7Y1B RXYQ18U7Y1B RXYQ20U7Y1B RXYQ22U7Y1B RXYQ24U7Y1B RXYQ26U7Y1B RXYQ28U7Y1B RXYQ30U7Y1B RXYQ32U7Y1B RXYQ34U7Y1B RXYQ36U7Y1B RXYQ38U7Y1B RXYQ40U7Y1B RXYQ42U7Y1B RXYQ44U7Y1B RXYQ46U7Y1B RXYQ48U7Y1B RXYQ50U7Y1B RXYQ52U7Y1B RXYQ54U7Y1B

RXYQ8U7Y1B

TABLE OF CONTENTS RXYQ-U

1	Features RXYQ-U	4 4
2	Specifications	5
3	Options	23
4	Combination table	24
5	Capacity tables Capacity Table Legend Capacity Correction Factor	27 27 28
6	Dimensional drawings	41
7	Centre of gravity	42
8	Piping diagrams	43
9	Wiring diagrams Wiring Diagrams - Three Phase	44 44
10	External connection diagrams	47
11	Sound data Sound Power Spectrum Sound Pressure Spectrum Sound Pressure Spectrum Quiet Mode Level 1 Sound Pressure Spectrum Quiet Mode Level 2 Sound Pressure Spectrum Quiet Mode Level 3	49 53 57 59 61
12	Installation Installation Method Fixation and Foundation of Units Refrigerant Pipe Selection	63 63 64 65
13	Operation range	68
14	Appropriate Indoors	69

1 Features 1 - 1 RXYO-U

Daikin's solution for comfort & low energy consumption

- > By choosing this product with LOOP by Daikin you support the reuse of refrigerant
- Covers all thermal needs of a building via a single point of contact: accurate temperature control, ventilation, hot water, air handling units and Biddle air curtains
- Wide range of indoor units: possibility to combine VRV with stylish indoor units (Daikin Emura, Perfera)
- Incorporates VRV IV standards & technologies: Variable Refrigerant Temperature, VRV configurator, 7 segment display and full inverter compressors, 4-side heat exchanger, refrigerant cooled PCB, new DC fan motor, ...
- Customize your VRV for best seasonal efficiency & comfort with the weather dependant Variable Refrigerant Temperature function. Increased seasonal efficiency with up to 28%. No more cold draft by supply of high outblow temperatures
- > Free combination of outdoor units to meet installation space or efficiency requirements

- > Fits any building as also indoor installation is possible as a result of high external static pressure of up to 78.4 Pa. Indoor installation leads to less piping length, lower installation costs, increased efficiency and better visual aesthetics
- Simplified installation & guaranteed optimal efficiency with automatic charging & testing
- > Easy compliance with F-gas regulation thanks to automated refrigerant containment check
- > Wide piping flexibility: 30m indoor height difference, maximum piping length: 190m, total piping length: 1,000m
- The ability to control each conditioned zone individually keeps VRV system running costs to an absolute minimum
- > Spread your installation cost by phased installation
- Keep your system in top condition via the Daikin Cloud Service: 24/7 monitoring for maximum efficiency, extented lifetime and immediate service support thanks to failure prediction
- > Available as heating only by irreversible field setting

Technical Sp			RXYQ8U	RXYQ10U	RXYQ12U	RXYQ14U	RXYQ16U
Recommended co	ombination		4 x FXFQ50AVEB	4 x FXFQ63AVEB	6 x FXFQ50AVEB		4 x FXFQ63AVEB + 2
						x FXFQ63AVEB	x FXFQ80AVEB
Recommended co	ombination 2		4 x FXSQ50A2VEB	4 x FXSQ63A2VEB	6 x FXSQ50A2VEB	1 x FXSQ50A2VEB + 5 x FXSQ63A2VEB	4 x FXSQ63A2VEB + 2 x FXSQ80A2VEB
Recommended co	ombination 3		4 x FXMQ50P7VEB	4 x FXMQ63P7VEB	6 x FXMQ50P7VEB	1 x FXMQ50P7VEB + 5 x FXMQ63P7VEB	4 x FXMQ63P7VEB - 2 x FXMQ80P7VEB
Cooling capacity	Prated,c	kW	22.4 (1)	28.0 (1)	33.5 (1)	40.0 (1)	45.0 (1)
Heating capacity	Nom. 6°CWB	kW	22.4 (2)	28.0 (2)	33.5 (2)	40.0 (2)	45.0 (2)
5.1.1.7	Prated,h	kW	22.4 (2)	28.0 (2)	33.5 (2)	40.0 (2)	45.0 (2)
	Max. 6°CWB	kW	25.0 (2)	31.5 (2)	37.5 (2)	45.0 (2)	50.0 (2)
Power input - 50H		kW	-	7.58 (2)	9.65 (2)	10.69 (2)	12.54 (2)
COP at nom. capacity	6°CWB	kW/kW	4.15 (2)	3.69 (2)	3.47 (2)	3.74 (2)	3.59 (2)
ESEER - Automatic	•		7.53	7.20	6.96	6.83	6.50
ESEER - Standard			6.37	5.67	5.50	5.31	5.05
SCOP				.3	4.1	1	.0
SCOP recommend	led combination 2		4.2	4.3	4.1	4.0	4.1
SCOP recommend			4.2		li		.0
SEER			7.6	6.8	1	.3	6.0
SEER recommend	ed combination 2		6.9	6.8	5.9	6.3	5.9
SEER recommend			7.5	6.8		.2	5.8
ηs,c		%	302.4	267.6	247.8	250.7	236.5
ns,c recommende	d combination 2	70	273.6	270.5	233.5	250.0	234.2
ns,c recommende			295.2	267.1	235.5	230.0	230.4
ηs,h		%	167.9	168.2	161.4	155.4	157.8
ns,h recommende	d combination 2	70	165.4	170.6	161.3	157.2	159.5
ns,h recommende			165.6	162.0	160.6	155.7	156.8
Space cooling	A Condi- EERd		3.0	2.3	2.4	2.6	2.1
space cooling	tion (35°C Pdc	kW	22.4	28.0	33.5	40.0	45.0
	- 27/19)		5.2	47	4.2	41	20
	B Condi- EERd	1.147	5.2	4.7	4.3	4.1	3.9
	tion (30°C Pdc - 27/19)	kW	16.5	20.6	24.7	29.5	33.2
	C Condi- EERd		9.5	8.3	7.7	7.8	7.7
	tion (25°C Pdc - 27/19)	kW	10.6	13.3	15.9	18.9	21.3
	D Condi- EERd		18.8	17.0	13.9	14.3	14.2
	tion (20°C Pdc - 27/19)	kW	8.0	9.3	9.4	8.4	9.5
Space cooling	A Condi- EERd		2.6	2	.4	2.6	2.1
recommended combination 2	tion (35°C Pdc - 27/19)	kW	22.4	28.0	33.5	40.0	45.0
	B Condi- EERd		4.9	4.7	4.0	4.1	3.8
	tion (30°C Pdc - 27/19)	kW	16.5	20.6	24.7	29.5	33.2
	C Condi- EERd tion (25°C - 27/19)		8.8	8.5	7.1	7.9	7.6
Space cooling recommended combination 2	C Condi- Pdc tion (25°C - 27/19)	kW	10.6	13.3	15.9	18.9	21.3
	D Condi- EERd		15.1	17.2	13.1	14	1.0
	tion (20°C Pdc - 27/19)	kW	8.8	9.3	9.1	8.4	9.5
Space cooling	A Condi- EERd		3.0	2.3	2.4	2.6	2.1
recommended	tion (35°C Pdc	kW	22.4	28.0	33.5	40.0	45.0
combination 3	- 27/19) B Condi- EERd		E 1	4.7	4.2	4.0	27
	tion (30°C Pdc	kW	5.1 16.5	20.6	4.2 24.7	4.0 29.5	3.7 33.2
	- 27/19)						
	C Condi- EERd		9.6	8.4		.7	7.4
	tion (25°C Pdc - 27/19)	kW	10.6	13.3	15.9	19.0	21.3
	D Condi- EERd		16.0	16.9	13.7	14.0	14.1
	tion (20°C Pdc - 27/19)	kW	9.1	9.3	9.4	8.4	9.5

Technical Spe				RXYQ8U	RXYQ10U	RXYQ12U	RXYQ14U	RXYQ16U
Space heating	TBivalent	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2
(Average climate)		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2
		Tbiv (bivalent temperature)	°C		1	-10		
	TOL	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2
		Tol (temperature operating limit)	°C			-10		
	A Con-	COPd (declared COP)		2.7	2.6	2.4	2	.6
	dition	Pdh (declared heating cap)	kW	12.1	14.2	16.3	18.2	20.5
	(-7°C) B Condi-	COPd (declared COP)			3.9		3	.5
	tion (2°C)	Pdh (declared heating cap)	kW	7.4	8.6	9.9	11.1	12.5
	C Condi-	COPd (declared COP)		6.3	6.4	6	5.1	6.3
	tion (7°C)	Pdh (declared heating cap)	kW	5.0	5.5	6.4	7.1	8.0
	D Con-	COPd (declared COP)		7.9	8.2	7.9	8.5	8.6
	dition (12°C)	Pdh (declared heating cap)	kW	5	5.9	6.3	4	9
pace heating	A Con-	COPd (declared COP)			2.7	2.4	2	6
Average climate)	dition	Pdh (declared heating cap)	kW	12.1	14.2	16.3	18.2	20.5
ecommended	(-7°C)		KVV					
combination 2		COPd (declared COP)	1.112	3.9	4.0	3.9	3	
		Pdh (declared heating cap)	kW	7.4	8.6	9.9	11.1	12.2
	C Condi-	COPd (declared COP)		6.3	6.5		5.1	6.3
		Pdh (declared heating cap)	kW	5.0	5.5	6.4	7.1	8.0
	D Con-	COPd (declared COP)		7.8	8.3	7.9	8.6	8.7
	dition (12°C)	Pdh (declared heating cap)	kW	5.9	6.0	6.4	4.9	5.0
		COPd (declared COP)		2	2.4	1.9	2.3	2.2
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2
		Tbiv (bivalent temperature)	°C			-10		
	TOL	COPd (declared COP)	-	ິງ	2.4	1.9	2.3	2.2
pace heating	TOL	Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2
Average climate) ecommended combination 2		Tol (temperature operating limit)	°C			-10	2010	2012
Space heating	A Con-	COPd (declared COP)		2.7	2.6	2.4	2	6
Average climate)	dition	Pdh (declared heating cap)	kW	12.1	14.2	16.3	18.2	20.5
ecommended	(-7°C)			2.0	27	20	2	<u>г</u>
ombination 5		,	1.14/	3.9	3.7	3.9	3.	
		Pdh (declared heating cap)	kW	7.4	8.6	9.9	11.1	12.5
		COPd (declared COP)		6.2	6.4	6.0	6.1	6.2
		Pdh (declared heating cap)	kW	4.9	5.5	6.4	7.1	8.0
	D Con- dition	COPd (declared COP) Pdh (declared heating cap)	kW	7.8 5.8	8.1 5.9	7.8 6.2	8.5	8.6 9
	(12°C)							
	TBivalent	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2
		Tbiv (bivalent temperature)	°C			-10		
	TOL	COPd (declared COP)		2.5	2.4	2.0	2.3	2.2
		Pdh (declared heating cap)	kW	13.7	16.0	18.4	20.6	23.2
		Tol (temperature operating limit)	°C			-10		
Capacity range			HP	8	10	12	14	16
PED	Category			<u> </u>		Category II		10
20	Most	Name				Accumulator		
	critical	Ps*V	Bar*l		325	Accumulator	4	15
	part							
Maximum number		able indoor units			1	64 (3)		
ndoor index	Min.			100.0	125.0	150.0	175.0	200.0
onnection	Max.			260.0	325.0	390.0	455.0	520.0
Dimensions	Unit	Height	mm			1,685		
		Width	mm		930		1,2	40
		Depth	mm			765		
	Packed	Height	mm			1,820		
	unit	Width	mm		995		1,3	05
		Depth	mm			860		
	Unit		kg		198		27	75
Veiaht		nit	kg					91
Weight	Packed unit			211			Ι	
Packing				Carton			22	
Veight Packing	Material		ka		1 8	Carton	 ר	2
			kg		1.8	Wood	2	2

1 - 1 RXYQ-U

Technical Spe Packing 3	Material	ons			RXYQ8U	RXYQ10U	Plastic	RXYQ14U	RXYQ16L	
racking 5	Weight			kg		0.5	TidStic	0	.6	
Casing	Colour			Ng		0.5	Daikin White		.0	
cashig	Material					Pair	nted galvanized ste	el plate		
Heat exchanger	Туре				Cross fin coil					
5	Indoor sid	de			Air					
	Outdoor	side								
	Air flow	Cooling	Rated	m³/h	9,720	10,500	11,100	13,380	15,600	
	rate	Heating	Rated	m³/h	9,720	10,500	11,100	13,380	15,600	
Fan	Quantity					1			2	
	External static	Max.		Pa			78			
Fan motor	pressure Quantity					1			2	
	Type						DC motor		2	
	Output			W		550	Demotor	7	50	
Compressor	Quantity					1			2	
compressor	Type						ically sealed scroll o		<u>_</u>	
	Crankcas	e heater		W			33			
Operation range	Cooling	Min.		°CDB			-5.0			
	5	Max.		°CDB			43.0			
	Heating	Min.		°CWB	-20.0					
		Max.		°CWB			15.5			
Sound power level	Cooling	Nom.		dBA	78.0 (4)	79.1 (4)	83.4 (4)	80.9 (4)	85.6 (4)	
	Heating	Prated,h		dBA	79.6 (4)	80.9 (4)	83.5 (4)	83.1 (4)	86.5 (4)	
Sound pressure level	Cooling	Nom.		dBA	57.	0 (5)	61.0 (5)	60.0 (5)	63.0 (5)	
Refrigerant	Туре						R-410A			
	GWP						2,087.5			
	Charge			TCO2Eq	12.3	12.5	13.2	21.5	23.6	
	Charge			kg	5.9	6.0	6.3	10.3	11.3	
Refrigerant oil	Туре					Syı	nthetic (ether) oil F\	/C68D		
Piping connections	Liquid	Туре					Braze connection	า		
G		OD		mm		10		13		
	Gas	Туре					Braze connection	n		
		OD		mm	19.1	22.2	28.6			
	Total piping length	System	Actual	m	1,000 (6)					
Capacity control	Method						Inverter controlle	d		
Indication if the hea	ater is equ	ipped with	n a supplement	tary heater			no			
Supplementary		Heating		kW			0.0			
heater	capacity	5								
Power consump-	Crank-	Cooling	PCK	kW			0.000			
tion in other than active mode	case heater mode	Heating	РСК	kW		0.052		0.	077	
Power consump-	Off mode	Cooling	POFF	kW		0.041		0.0)74	
ion in other than		Heating	POFF	kW		0.052		0.0)77	
active mode	Standby	Cooling	PSB	kW		0.041		0.0)74	
	mode	Heating	PSB	kW		0.052)77	
	Thermo-	Cooling	РТО	kW		0.005		0.	010	
	stat-off mode	Heating	РТО	kW		0.056		0.0)97	
Cooling		radation c					0.25			
leating		radation h	neating)				0.25			
Safety devices	ltem	01					High pressure swit			
		02					driver overload pro			
		03				Inv	verter overload pro	tector		
		04					PC board fuse			
		05				L	eakage current dete	ector		
Technical Spe	cificatio	ons				RXYQ18U		RXYQ20	U	
Recommended con	nbination				3 x FXFQ50	AVEB + 5 x FXFQ63AV	/EB	2 x FXFQ50AVEB + 6 x	FXFQ63AVEB	
Recommended con		2				2VEB + 5 x FXSQ63A2		2 x FXSQ50A2VEB + 6 x		
Recommended con	nbination	3				7VEB + 5 x FXMQ63P		x FXMQ50P7VEB + 6 x		
Cooling capacity	Prated,c			kW		50.4 (1)		52.0 (1)		
leating capacity	Nom.	6°CWB		kW		50.4 (2)		56.0 (2)		
,	Prated,h			kW		50.4 (2)		56.0 (2)		
	Max	6°CWB		kW/		56 5 (2)		63.0 (2)		

56.5 (2)

14.22 (2)

3.54 (2)

COP at nom.

capacity

Max.

6°CWB

Power input - 50Hz Heating Nom.

6°CWB

6°CWB

kW

kW

kW/kW

63.0 (2)

17.47 (2)

3.20 (2)

Technical Spe		ns		RXYQ18U	RXYQ20U
ESEER - Automatic				6.38	5.67
SEER - Standard				4.97	4.42
SCOP				4.2	4.0
SCOP recommend				4.2	4.0
SCOP recommend	ed combina	ition 3		4.1	3.9
SEER				6.0	5.9
SEER recommende				6.0	5.9
SEER recommende	d combinat	tion 3		6.0	5.9
ηs,c			%	238.3	233.7
ηs,c recommended				236.8	233.9
ηs,c recommended	d combinati	on 3		238.2	233.1
ηs,h			%	163.1	156.6
ηs,h recommende				164.8	158.2
ηs,h recommende				159.6	153.4
Space cooling	A Condi-				1.9
	tion (35°C	Pdc	kW	50.4	52.0
	- 27/19)	FED 4		2.0	27
	B Condi-		1.14/	3.8	3.7
	tion (30°C	ruc	kW	37.1	38.3
	- 27/19)	EEDd		75	70
	C Condi-		1.34/	7.5	7.3
	tion (25°C	Pac	kW	23.9	24.6
	- 27/19)	EEDd		A	0 2
	D Condi-		L\\/		8.3
	tion (20°C	ruc	kW	1	1.5
	- 27/19)	EED4		· · · · · · · · · · · · · · · · · · ·	10
Space cooling recommended	A Condi- tion (35°C		kW	50.4	52.0
combination 2	- 27/19)	ruc	NVV	50.4	52.0
	- 27/19) B Condi-	FERd		3.7	3.6
	tion (30°C		kW	37.1	38.3
	- 27/19)	Puc	KVV	57.1	56.5
	C Condi-	EERd		7.5	7.3
	tion (25°C			1.5	1.5
	- 27/19)				
Space cooling	C Condi-	Pdc	kW	23.9	24.6
recommended	tion (25°C		KVV	23.9	24.0
combination 2	- 27/19)				
	D Condi-	FFRd		18.1	18.9
	tion (20°C		kW	11.4	10.9
	- 27/19)	1.46		11.7	10.2
Space cooling	A Condi-	FFRd		1	1.9
recommended	tion (35°C		kW	50.4	52.0
combination 3	- 27/19)			50.7	52.0
	B Condi-	EERd		3.7	3.6
	tion (30°C		kW	37.1	38.3
	- 27/19)				50.5
	C Condi-	EERd		7.6	7.3
	tion (25°C		kW	23.9	24.6
	- 27/19)				
	D Condi-	EERd		1.	8.3
	tion (20°C		kW		1.6
	- 27/19)				
Space heating		COPd (declared COP)		1.9	1.8
(Average climate)		Pdh (declared heating cap)	kW	27.9	31.0
5		Tbiv (bivalent temperature)	°C		-10
	TOL	COPd (declared COP)		1.9	1.8
	-	Pdh (declared heating cap)	kW	27.9	31.0
		Tol (temperature operating	°C		-10
		limit)			
	A Con-	COPd (declared COP)		2.4	2.1
	dition	Pdh (declared heating cap)	kW	24.7	27.4
	(-7°C)	(
		COPd (declared COP)		3.7	3.6
		Pdh (declared heating cap)	kW	15.0	16.7
		COPd (declared COP)		6.7	6.5
		Pdh (declared heating cap)	kW	9.7	10.7
	D Con-	COPd (declared COP)		9.0	9.1
	dition	Pdh (declared heating cap)	kW		7.1
		i an (acciaica neating tap)	1. 1 1		/

Technical Spe			1	RXYQ18U	RXYQ20U
Space heating	A Con-	COPd (declared COP)	1.14/	2.4	2.2
(Average climate)	dition	Pdh (declared heating cap)	kW	24.7	27.4
recommended combination 2	(-7°C) B Condi-	COPd (declared COP)		3.8	3.7
combination 2		Pdh (declared heating cap)	kW	15.0	16.7
		COPd (declared COP)	K V V	6.8	6.5
		Pdh (declared heating cap)	kW	9.7	10.7
	D Con-	COPd (declared COP)	N V V	9.1	9.2
	dition	Pdh (declared heating cap)	kW	5.1	
	(12°C)	run (declared heating cap)	NVV		2
		COPd (declared COP)		1.9	1.8
	ibivalent	Pdh (declared heating cap)	kW	27.9	31.0
		Tbiv (bivalent temperature)		-1	
	TOL	COPd (declared COP)	-	1.9	1.8
Space heating	TOL	Pdh (declared heating cap)	kW	27.9	31.0
(Average climate)		Tol (temperature operating	°C	-1	1
ecommended		limit)			
combination 2					
Space heating	A Con-	COPd (declared COP)		2.4	2.1
Average climate)		Pdh (declared heating cap)	kW	24.7	27.4
ecommended	(-7°C)				
combination 3	B Condi-	COPd (declared COP)	i	3.7	3.6
	tion (2°C)	Pdh (declared heating cap)	kW	15.0	16.7
		COPd (declared COP)		6.5	6.3
	tion (7°C)	Pdh (declared heating cap)	kW	9.7	10.7
	D Con-	COPd (declared COP)	i	8	.7
	dition	Pdh (declared heating cap)	kW	6.	.9
	(12°C)				
	TBivalent	COPd (declared COP)		1.9	1.8
		Pdh (declared heating cap)	kW	27.9	31.0
		Tbiv (bivalent temperature)	°C	-1	0
	TOL	COPd (declared COP)		1.9	1.8
		Pdh (declared heating cap)	kW	27.9	31.0
		Tol (temperature operating	°C	-1	0
		limit)			
Capacity range			HP	18	20
PED	Category			Categ	jory II
	Most	Name		Accum	nulator
	critical	Ps*V	Bar*l	49	93
	part				
Maximum numbe	r of connect	able indoor units		64	(3)
ndoor index	Min.			225.0	250.0
connection	Max.			585.0	650.0
Dimensions	Unit	Height	mm	1,6	85
		Width	mm	1,2	40
		Depth	mm	76	55
	Packed	Height	mm	1,8	20
	unit	Width	mm	1,3	05
		Depth	mm	86	
Veight	Unit		kg	30	
	Packed u	nit	kg	32	
Packing	Material				ton
	Weight		kg		.2
Packing 2	Material			Wa	
	Weight		kg	14	
Packing 3	Material				stic
	Weight		kg	0.	
Casing	Colour				White
	Material			Painted galvan	
leat exchanger	Туре			Cross	
	Indoor sid			Α	
	Outdoor			Α	
	Air flow	Cooling Rated	m³/h	15,060	15,660
	rate	Heating Rated	m³/h	15,060	15,660
an	Quantity			2	2
	External	Max.	Pa	7	8
	static				
	pressure				
					2
an motor	Quantity				
an motor	Quantity Type Output		W		notor 50

1 - 1 RXYQ-U

Technical Spe	cificatio	ns			RXYQ18U	RXYQ20U				
Compressor	Quantity				2	2				
	Туре				Hermetically sealed	d scroll compressor				
	Crankcase	e heater		W	33					
Operation range	Cooling	Min.		°CDB	-5	5.0				
		Max.		°CDB	43.0					
	Heating	Min.		°CWB	-20.0					
		Max.		°CWB	15	5.5				
Sound power level	Cooling	Nom.		dBA	83.8 (4)	87.9 (4)				
	Heating	Prated,h		dBA	85.3 (4)	89.8 (4)				
Sound pressure	Cooling	Nom.		dBA	62.0 (5)	65.0 (5)				
level										
Refrigerant	Туре				R-4					
	GWP				2,08	1				
	Charge			TCO2Eq	24.4	24.6				
	Charge			kg	11.7	11.8				
Refrigerant oil	Туре				Synthetic (eth	er) oil FVC68D				
Piping connections	Liquid	Туре			Braze connection					
		OD		mm	16					
	Gas	Туре			Braze co	nnection				
		OD		mm	28	3.6				
	Total	System	Actual	m	1,00	0 (6)				
	piping									
	length									
Capacity control	Method				Inverter c	ontrolled				
Indication if the hea	ater is equi	pped with	a suppleme	ntary heater	n	0				
Supplementary	Back-up	Heating	elbu	kW	0.	.0				
heater	capacity									
Power consump-	Crank-	Cooling	PCK	kW	0.0	000				
tion in other than	case	Heating	PCK	kW	0.0	089				
active mode	heater									
	mode									
Power consump-	Off mode	Cooling	POFF	kW	0.0	075				
tion in other than		Heating	POFF	kW	0.0	089				
active mode		Cooling	PSB	kW	0.0	075				
	mode	Heating	PSB	kW	0.0	089				
	Thermo-	Cooling	PTO	kW	0.0	010				
	stat-off	Heating	PTO	kW	0.0	98				
	mode									
Cooling	Cdc (Degr	adation co	ooling)		0.1	25				
Heating	Cdh (Degi	radation h	eating)		0.1	25				
Safety devices	ltem	01			High press	sure switch				
		02			Fan driver over	rload protector				
		03			Inverter overl	oad protector				
		04			PC boa	rd fuse				
		05			Leakage curr					

Standard accessories: Installation manual; Quantity: 1;

Standard accessories: Operation manual; Quantity: 1;

Standard accessories: Connection pipes; Quantity: 1;

Electrical Sp	ecifications		RXYQ8U	RXYQ10U	RXYQ12U	RXYQ14U	RXYQ16U	
Power supply	Name		Y1					
	Phase				3N~			
	Frequency	Hz			50			
	Voltage	V			380-415			
Power supply int	ower supply intake			Both	indoor and outdoor	r unit		
Voltage range	Min.	%			-10			
	Max.	%			10			
Current - 50Hz	Nominal Combina- Cooling				-			
	running tion A							
	current Combina- Cooling		-					
	(RLA) tion B							
	Starting current (MSC) - remark		See note 8					
	Zmax List		No requirements					
	Minimum Ssc value	kVa	4,050 (9)	5,535 (9)	6,038 (9)	6,793 (9)	7,547 (9)	
	Minimum circuit amps (MCA)	А	16.1 (10)	22.0 (10)	24.0 (10)	27.0 (10)	31.0 (10)	
	Maximum fuse amps (MFA)	А	20 (11)	25 (11)	32 (11) 40			
	Full load Total	А	1.2 (12)	1.3 (12)	1.5 (12)	1.8 (12)	2.6 (12)	
	amps							
	(FLA)							
Power Perfor-	Power Combina- 35°C ISO - Full	load			-			
mance	factor tion B 46°C ISO - Full	load			-			

1 - 1 RXYO-U

Electrical Sp	ecificatio	ons		RXYQ8U	RXYQ10U	RXYQ12U	RXYQ14U	RXYQ16U
Wiring connec- tions - 50Hz	For power supply	Quantity				5G		
	For	Quantity				2		
	connec- tion with indoor	Remark				F1,F2		
Current	Nominal running current (RLA)	Cooling	A	7.2 (7)	10.2 (7)	12.7 (7)	15.4 (7)	18.0 (7)

Electrical Sp	ecificatio	ins		RXYQ18U	RXYQ20U			
ower supply	Name			Y1	1			
	Phase			3N	~			
	Frequence	y	Hz	50				
	Voltage		V	380-	415			
Power supply inta	Phase Frequency H Voltage N r supply intake 9 Max. 9 Max. 9 nt - 50Hz Nominal Combina- Cooling running tion A 9 current Combina- Cooling 10 (RLA) tion B 10 Starting current (MSC) - remark 2 2 Zmax List 10 Minimum Scc value M 4 Minimum circuit amps (MCA) A Full load Total A amps (FLA) 46°C ISO - Full load g connec- For Quantity - 50Hz power supply For Quantity 50Hz power supply For Quantity connec- Remark			Both indoor and	d outdoor unit			
Voltage range	Min.		%	-1(0			
	Max.		%	10)			
Current - 50Hz	Nominal	Combina- Cooling		-				
	running	tion A						
	current	Combina- Cooling		-				
	(RLA)	tion B						
	Starting	urrent (MSC) - remark		See note 8				
				No requir	rements			
	Minimum	۱ Ssc value	kVa	8,805 (9)	9,812 (9)			
	Minimum	i circuit amps (MCA)	A	35.0 (10)	39.0 (10)			
	Maximur	n fuse amps (MFA)	A	40 (11)	50 (11)			
	Full load	Total	A	2.6 ((12)			
	amps							
	(FLA)							
Power Perfor-	Power		ll load	-				
mance	factor	tion B 46°C ISO - Fu	ll load	-				
Wiring connec-	For	Quantity		50				
tions - 50Hz								
	supply							
		. ,		2				
				F1,F2				
	tion with							
	indoor							
Current	Nominal	Cooling	A	20.8 (7)	26.9 (7)			
	running							
	current							
	(RLA)							

(1)Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m |

(2)Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m | (3)Actual number of connectable indoor units depends on the indoor unit type (VRV indoor, Hydrobox, RA indoor, etc.) and the connection ratio restriction for the system (50% <= CR <= 130%) |

(4)Sound power level is an absolute value that a sound source generates. | (5)Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. |

(6)Refer to refrigerant pipe selection or installation manual |

(b)Refer to reingerant pipe selection or installation manual [(7)RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB] (8)MSC means the maximum current during start up of the compressor. This unit uses only inverter compressors. Starting current is always \leq max. running current.] (9)In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc \geq minimum Ssc value] (10)MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current.]

(11)MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). | (12)FLA means the nominal running current of the fan |

(13)Maximum allowable voltage range variation between phases is 2%. | (14)Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. |

(15)The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Pump operation, taking into account advanced energy saving operation funcitonality (variable refrigerant temperature)

(16) The STANDARD ESEER value corresponds with normal VRV4 Heat Pump operation, not taking into account advanced energy saving operation functionality | (17) Sound values are measured in a semi-anechoic room. |

(18)Sound values are integrated on the series interface to provide the series of the series of the series interface to provide the series of and \leq 75A per phase |

(20)Ssc: Short-circuit power

(21)For detailed contents of standard accessories, see installation/operation manual

(22)Multi combination (22~54HP) data is corresponding with the standard multi combination

Technical	specifications System	RXYQ22U	RXYQ24U	RXYQ26U	RXYQ28U	RXYQ30U
System	Outdoor unit module 1	RXYQ10U	RXYQ8U		RXYQ12U	
	Outdoor unit module 2	RXYQ12U	RXYQ16U	RXYQ14U	RXYQ16U	RXYQ18U
Recommended combination		6 x FXFQ50AVEB + 4	4 x FXFQ50AVEB + 4	7 x FXFQ50AVEB + 5	6 x FXFQ50AVEB + 4	9 x FXFQ50AVEB + 5
		x FXFQ63AVEB	x FXFQ63AVEB + 2 x	x FXFQ63AVEB	x FXFQ63AVEB + 2 x	x FXFQ63AVEB
			FXFQ80AVEB		FXFQ80AVEB	
Recommended combination 2		6 x FXSQ50A2VEB +	4 x FXSQ50A2VEB +	7 x FXSQ50A2VEB +	6 x FXSQ50A2VEB +	9 x FXSQ50A2VEB +
		4 x FXSQ63A2VEB	4 x FXSQ63A2VEB +	5 x FXSQ63A2VEB	4 x FXSQ63A2VEB +	5 x FXSQ63A2VEB
			2 x FXSQ80A2VEB		2 x FXSQ80A2VEB	

11

2 Specifications

	ecifications System		RXYQ22U	RXYQ24U	RXYQ26U	RXYQ28U	RXYQ30U
Recommended co	ombination 3			4 x FXMQ50P7VEB +			-
			4 x FXMQ63P7VEB	4 x FXMQ63P7VEB +	5 x FXMQ63P7VEB		5 x FXMQ63P7VEE
	Drate d a	1.147	(1 5 (1)	2 x FXMQ80P7VEB	72 5 (1)	2 x FXMQ80P7VEB	02.0 (1)
Cooling capacity	Prated,c	kW	61.5 (1)	67.4 (1)	73.5 (1)	78.5 (1)	83.9 (1)
Heating capacity	Nom. 6°CWB	kW	61.5 (2)	67.4 (2)	73.5 (2)	78.5 (2)	83.9 (2)
	Prated,h	kW	61.5 (2)	67.4 (2)	73.5 (2)	78.5 (2)	83.9 (2)
D	Max. 6°CWB	kW	69.0 (2)	75.0 (2)	82.5 (2)	87.5 (2)	94.0 (2)
Power input - 50H		kW	17.23 (2)	17.94 (2)	20.33 (2)	22.19 (2)	23.87 (2)
COP at nom.	6°CWB	kW/kW	3.57 (2)	3.76 (2)	3.61 (2)	3.54 (2)	3.51 (2)
capacity ESEER - Automatic			7.07	6.81	6.89	6.69	6.60
ESEER - Standard			5.58	5.42	5.39	5.23	5.17
SCOP			4.4	4.3		.2	4.3
	led combination 2		4.4	4.3		.2	4.3
	led combination 3		4.4	4.5	4.2	.2	4.3
SEER			6.9	6.8	6.7	6	.5
	ed combination 2		6.7	6.6	6.5	1	.3
SEER recommend			6.9	6.7	6.6	6.4	6.5
ηs,c		%	274.5	269.9	264.2	257.8	256.8
ηs,c recommende	d combination 2	70	266.5	262.6	256.1	249.3	249.8
ns,c recommende			273.3	265.3	250.1	253.1	256.1
ηs,h		%	171.2	167.0	164.6	166.0	169.8
ηs,h recommende	ed combination 2	70	171.2	167.1	165.4	166.8	170.6
ns,h recommende			170.2	165.5	164.5	165.0	167.0
Space cooling	A Condi- EERd		2.6	2.5	2.6	2.3	2.1
opuce cooling	tion (35°C Pdc	kW	61.5	67.4	73.5	78.5	83.9
	- 27/19)		01.5	0,	75.5	70.5	05.7
	B Condi- EERd		4.8	4	.6	4.4	4.3
	tion (30°C Pdc	kW	45.3	49.7	54.2	57.8	61.8
	- 27/19)						
	C Condi- EERd		8.5	8.6	8.2	8.1	8.2
	tion (25°C Pdc	kW	29.1	31.9	34.8	37.2	39.7
	- 27/19)						
	D Condi- EERd		16.0	15.2	14.2	14.3	16.8
	tion (20°C Pdc	kW	18.8	15.8	16.2	16.5	21.0
	- 27/19)						
Space cooling	A Condi- EERd		2.6	2.4	2.6	2.3	2.1
recommended	tion (35°C Pdc	kW	61.5	67.4	73.5	78.5	83.9
combination 2	- 27/19)						
	B Condi- EERd		4.6	4.5	4.4	4.3	4.2
	tion (30°C						
	- 27/19)						
Space cooling	B Condi- Pdc	kW	45.3	49.7	54.1	57.8	61.8
recommended	tion (30°C						
combination 2	- 27/19)						
	C Condi- EERd		8.2	8.4	7.9	7.8	7.9
	tion (25°C Pdc	kW	29.1	31.9	34.8	37.2	39.7
	- 27/19)		15.4	147	12.5	12.0	1
	D Condi- tion (20°C Dd-	1.147	15.6	14.7	13.6	13.8	16.1
	tion (20°C Pdc	kW	18.4	15.4	15.7	16.5	20.5
	- 27/19)		l	25		2.2	21
Space cooling recommended	A Condi- EERd tion (35°C Pdc	1.1.1./	£1 E	2.5	73 5	2.3	2.1
combination 3		kW	61.5	67.4	73.5	78.5	83.9
complination 3	- 27/19) B Condi- EERd		4.8	A	.5	A	.3
	B Condi- EERd tion (30°C Pdc kW		4.8	49.7	.5	57.8	61.8
	- 27/19)	kW	43.3	47./	54.2	57.0	01.0
	C Condi- EERd		8.5	8.4	8.1	8.0	8.2
	tion (25°C Pdc	kW	29.1	31.9	34.8	37.2	39.7
	- 27/19)	KVV	29.1	51.9	54.0	51.2	37./
	D Condi- EERd		15.8	15.2	14.0	14.1	16.6
	tion (20°C Pdc	kW	18.8	15.7	16.0	16.6	21.0
	- 27/19)	17.4.4		1.5.7	10.0	10.0	21.0

Technical spec				RXYQ22U	RXYQ24U	RXYQ26U	RXYQ28U	RXYQ30
	TBivalent	COPd (declared COP)		2.3	2.5	2.3	2.2	2.1
Average climate)		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3
		Tbiv (bivalent temperature)	°C			-10		
	TOL	COPd (declared COP)		2.3	2.5	2.3	2.2	2.1
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3
		Tol (temperature operating	°C			-10		
	A C	limit)		26	2.0		27	
	A Con-	COPd (declared COP)	1.14/	2.6	2.8	24.5	2.6	41.0
	dition	Pdh (declared heating cap)	kW	30.4	32.6	34.5	36.8	41.0
	(-7°C) B Condi-	COPd (declared COP)		4.0	3.7	2	.8	3.9
		Pdh (declared heating cap)	1-14/		19.9		.0	24.9
			kW	18.5		21.0		
		COPd (declared COP) Pdh (declared heating cap)	1.14/		.3	6.1	6.2	6.5
	D Con-	COPd (declared COP)	kW	11.9 8.2	13.0 8.9	13.5 8.8	14.4	.0
	dition	Pdh (declared heating cap)	kW		5.7	6.0		.0 7.1
	(12°C)	Pull (declared heating cap)	KVV	6.0	5.7	0.0	6.4	7.1
pace heating	A Con-	COPd (declared COP)		2.6	2.7		2.6	
-	dition	Pdh (declared heating cap)	kW	30.4	32.6	34.5	36.8	41.0
commended	(-7°C)	run (declared heating cap)	KW	50.4	52.0	54.5	50.0	41.0
ombination 2	B Condi-	COPd (declared COP)		4.1	3.7	2	.8	3.9
		Pdh (declared heating cap)	kW	18.5	19.9	21.0	22.4	24.9
		COPd (declared COP)			.3	6.1	6.3	6.6
		Pdh (declared heating cap)	kW	11.9	1	3.1	14.4	16.0
	D Con-	COPd (declared COP)		8.4	9.0	8.9		0.1
	dition	Pdh (declared heating cap)	kW	6.0	5.7	6.0	6.4	7.2
	(12°C)	(0.0				
	<u> </u>	COPd (declared COP)		2.2	2.4	2	.2	2.1
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3
pace heating	TBivalent	Tbiv (bivalent temperature)				-10		
	TOL	COPd (declared COP)	-	2.2	2.4	1	.2	2.1
commended		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3
ombination 2		Tol (temperature operating	°C			-10		
		limit)	-					
bace heating	A Con-	COPd (declared COP)		2.6	2.7	2	.6	2.5
	dition	Pdh (declared heating cap)	kW	30.4	32.6	34.5	36.8	41.0
commended	(-7°C)							
ombination 3	B Condi-	COPd (declared COP)		4.0	3.7	3	.8	3.9
	tion (2°C)	Pdh (declared heating cap)	kW	18.5	19.9	21.0	22.4	24.9
	C Condi-	COPd (declared COP)		6.2	6.3	6.1	6.2	6.3
	tion (7°C)	Pdh (declared heating cap)	kW	11.9	12.9	13.5	14.4	16.0
	D Con-	COPd (declared COP)		8.2	8.9	8.8	9.0	8.6
	dition	Pdh (declared heating cap)	kW	6.0	5.7	6.0	6.4	7.1
	(12°C)							
	TBivalent	COPd (declared COP)		2.3	2.4	2	.2	2.1
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3
		Tbiv (bivalent temperature)				-10		
	TOL	COPd (declared COP)		2.3	2.4	2	.2	2.1
		Pdh (declared heating cap)	kW	34.4	36.9	39.0	41.6	46.3
		Tol (temperature operating	°C			-10		
		limit)						
apacity range			HP	22	24	26	28	30
ED E	Category					Category II		
aximum number o	of connect	able indoor units				64 (3)		
idoor index	Min.			275.0	300.0	325.0	350.0	375.0
onnection	Max.			715.0	780.0	845.0	910.0	975.0
eat exchanger	Indoor sid	le				Air		
	Outdoor s	ide				Air		
	Air flow	Cooling Rated	m³/h	21,600	25,320	24,480	26,700	26,160
	rate	Heating Rated	m³/h	21,600	25,320	24,480	26,700	26,160
ound power level	Cooling	Nom.	dBA	84.8 (4)	86.3 (4)	85.3 (4)	87.6 (4)	86.6 (4)
	Heating	Prated,h	dBA	85.4 (4)	87.3 (4)	86.3 (4)	88.3 (4)	87.5 (4)
ound pressure	Cooling	Nom.	dBA	62.5 (5)	64.0 (5)	63.5 (5)	65.1 (5)	64.5 (5)
vel	2							
efrigerant	Туре				,	R-410A		,
-	GWP					2,087.5		
efrigerant oil	Туре				Syn	thetic (ether) oil FVC	68D	
ping connections		Туре				Braze connection		
		OD	mm					
_	C	Туре		Braze connection				
	Gas	iype						

1-1 RXYQ-U

Technical spe	cificatio	ns Syste	em		RXYQ22U	RXYQ24U	RXYQ26U	RXYQ28U	RXYQ30U	
Piping connections	Total piping length	System	Actual	m		^	1,000 (6)	·	^	
Indication if the hea	ater is equi	pped with	n a suppleme	ntary heater			no			
Supplementary heater	Back-up capacity	Heating	elbu	kW			0.0			
Power consump-	Crank- Cooling PCK kW				0.000					
ion in other than octive mode	case heater mode	Heating	РСК	kW	0.103		0.129		0.141	
	Off mode	Cooling	POFF	kW	0.081		0.115		0.116	
		Heating	POFF	kW	0.103		0.129		0.141	
	Standby	Cooling	PSB	kW	0.081		0.115		0.116	
	mode	Heating	PSB	kW	0.103		0.129		0.141	
	Thermo-	Cooling	PTO	kW	0.009		0.	014		
	stat-off mode	Heating	PTO	kW	0.113		0.154		0.155	
Cooling	Cdc (Degi	adation c	ooling)				0.25		~	
Heating	Cdh (Deg	radation h	eating)				0.25			

Technical spe	ecificatio	ns Syst	tem		RXYQ32U	RXYQ34U	RXYQ36U	RXYQ38U	RXYQ40U
System -	Outdoor					RXYQ16U		RXYQ8U	RXYQ10U
	Outdoor	unit mod	ule 2		RXYQ16U	RXYQ18U	RXYQ20U	RXYQ10U	RXYQ12U
	Outdoor	unit mod	ule 3			-		RXYQ20U	RXYQ18U
Recommended co	mbination				8 x FXFQ63AVEB + 4	3 x FXFQ50AVEB + 9	2 x FXFQ50AVEB +	6 x FXFQ50AVEB +	9 x FXFQ50AVEB +
					x FXFQ80AVEB	x FXFQ63AVEB + 2 x	10 x FXFQ63AVEB +	10 x FXFQ63AVEB	x FXFQ63AVEB
						FXFQ80AVEB	2 x FXFQ80AVEB		
Recommended co	mbination	2			8 x FXSQ63A2VEB +	3 x FXSQ50A2VEB +	2 x FXSQ50A2VEB +	6 x FXSQ50A2VEB +	9 x FXSQ50A2VEB +
					4 x FXSQ80A2VEB	9 x FXSQ63A2VEB +	10 x FXSQ63A2VEB	10 x FXSQ63A2VEB	9 x FXSQ63A2VEB
						2 x FXSQ80A2VEB	+ 2 x FXSQ80A2VEB		
Recommended co	mbination	3			8 x FXMQ63P7VEB +	- 3 x FXMQ50P7VEB +	2 x FXMQ50P7VEB +	6 x FXMQ50P7VEB +	9 x FXMQ50P7VEB
					4 x FXMQ80P7VEB	9 x FXMQ63P7VEB +	10 x FXMQ63P7VEB	10 x FXMQ63P7VEB	+ 9 x FXMQ63P7VE
						2 x FXMQ80P7VEB	+ 2 x FXMQ80P7VEB		
Cooling capacity	Prated,c			kW	90.0 (1)	95.4 (1)	97.0 (1)	102.4 (1)	111.9 (1)
Heating capacity	Nom.	6°CWB		kW	90.0 (2)	95.4 (2)	101.0 (2)	106.4 (2)	111.9 (2)
	Prated,h			kW	90.0 (2)	95.4 (2)	101.0 (2)	106.4 (2)	111.9 (2)
	Max.	6°CWB		kW	100.0 (2)	106.5 (2)	113.0 (2)	119.5 (2)	125.5 (2)
Power input - 50H		Nom.	6°CWB	kW	25.08 (2)	26.76 (2)	30.02 (2)	30.45 (2)	31.45 (2)
COP at nom. capacity	6°CWB			kW/kW	3.59 (2)	3.56 (2)	3.36 (2)	3.49 (2)	3.56 (2)
ESEER - Automatic					6.50	6.44	6.02	6.36	6.74
ESEER - Standard					5.05	5.01	4.68	5.03	5.29
SCOP						1.2	4.1		.3
SCOP recommend	led combin	ation 2			4.2	4.3	4.2	4.3	4.4
SCOP recommend					4.1	4.2	4.1	4.2	4.3
SEER						5.4	6.3	6.9	6.7
SEER recommende	ed combina	ition 2				6.3		6.8	6.6
SEER recommende	ed combina	ition 3			6.2	6	i.3	6.9	6.7
ηs,c				%	251.7	253.3	250.8	272.4	263.5
ns,c recommende	d combinat	ion 2			248.3	250.9	248.7	269.2	259.2
ns,c recommende					244.2	249.8	247.2	272.2	263.2
ηs,h				%	163.1	166.2	162.4	167.5	170.0
ns,h recommende	d combinat	tion 2			164.6	167.7	164.1	168.4	171.3
ns,h recommende					161.9	164.2	159.9	164.8	167.8
Space cooling	A Condi-				2.3	2	2.1	2.4	2.2
1 5	tion (35°C - 27/19)	Pdc		kW	90.0	95.4	97.0	102.4	111.9
	- 27/19) B Condi-	FERd			4.3	4.2	4.1	1	.5
	tion (30°C			kW	66.3	70.3	71.5	75.5	82.5
	- 27/19)	- ruc		KVV	00.5	70.5	71.5	75.5	02.5
	C Condi-	FFRd			5	8.1	7.9	8.5	8.3
	tion (25°C			kW	42.6	45.2	45.9	48.5	53.0
	- 27/19)				12.0	13.2		10.0	55.0
	D Condi-	EERd			14.3	16.8	16.7	17.9	16.0
	tion (20°C			kW	19.0	20.1	20.4	21.6	23.6
	- 27/19)								
Space cooling	A Condi-				2.2		2.1	2.3	2.2
recommended	tion (35°C	Pdc		kW	90.0	95.4	97.0	102.4	111.9
combination 2	- 27/19)								

Technical spe				RXYQ32U	RXYQ34U	RXYQ36U	RXYQ38U	RXYQ40U
pace cooling	B Condi-				.2	4.1	4.5	4.4
ecommended	tion (30°C	. Pdc	kW	66.3	70.3	71.5	75.4	82.4
ombination 2	- 27/19)	FED 4			01	70	0.4	0.1
	C Condi- tion (25°C		kW	8.0 42.6	8.1 45.2	7.9 45.9	8.4 48.5	8.1 53.0
	- 27/19)	. Put	KVV	42.0	45.2	45.9	40.5	55.0
	D Condi-	FERd		14.0	16	5.5	17.8	15.9
	tion (20°C		kW	18.9	20.1	20.4	21.6	23.6
	- 27/19)			10.5	20.1	20.1	21.0	23.0
pace cooling	A Condi-	EERd		2.2	2	.1	2.4	2.2
ecommended	tion (35°C	Pdc	kW	90.0	95.4	97.0	102.4	111.9
ombination 3	- 27/19)							
	B Condi-	EERd		4	1.1	4.0	4.5	4.4
	tion (30°C	Pdc	kW	66.3	70.3	71.5	75.5	82.5
	- 27/19)							
	C Condi-			7.8	8.0	7.8	8.5	8.4
	tion (25°C	. Pdc	kW	42.6	45.2	45.9	48.5	53.0
	- 27/19)	FED 4		12.0	16.6	16.5	17.0	161
	D Condi- tion (20°C		kW	13.8 19.0	16.6 20.1	16.5 20.4	17.9 21.6	16.1 23.6
	- 27/19)	. Put	KVV	19.0	20.1	20.4	21.0	25.0
pace heating		COPd (declared COP)		2.4	2.2	2.1	2	.2
Average climate)	ibivaiciit	Pdh (declared heating cap)	kW	46.4	51.1	54.2	60.7	62.3
		Tbiv (bivalent temperature)			51.1	-10		02.5
	TOL	COPd (declared COP)		2.4	2.2	2.1	2	.2
	- 1	Pdh (declared heating cap)	kW	46.4	51.1	54.2	60.7	62.3
		Tol (temperature operating	°C			-10		
		limit)						
	A Con-	COPd (declared COP)		2.7	2.6	2	5	2.6
	dition	Pdh (declared heating cap)	kW	41.0	45.2	47.9	53.7	55.1
	(-7°C)							
		COPd (declared COP)		3.6	1	.7	3.9	4.0
		Pdh (declared heating cap)	kW	25.0	27.5	29.2	32.7	33.5
		COPd (declared COP)		6.3	6.5	6.4		.5
		Pdh (declared heating cap)	kW	16.1	17.7	18.8	21.3	21.6
	D Con-	COPd (declared COP)		9.0	8.8	8.6		.7
	dition	Pdh (declared heating cap)	kW	7.1	7.9	8.3	13	3.1
	(12°C)			2.7	27	2		26
pace heating Average climate)	A Con- dition	COPd (declared COP) Pdh (declared heating cap)	kW	2.7 41.0	2.6 45.2	47.9	53.7	2.6 55.1
ecommended	(-7°C)	Full (declared heating cap)	KVV	41.0	43.2	47.9	55.7	55.1
ombination 2		COPd (declared COP)		3.6	3.8	3.7	3.9	4.0
		Pdh (declared heating cap)	kW	25.0	27.5	29.2	32.7	33.5
		COPd (declared COP)		6.3	6.6		6.5	
		Pdh (declared heating cap)	kW	16.1	17.7	18.8	21.3	21.6
	D Con-	COPd (declared COP)		9.1	8.9		8.8	
	dition	Pdh (declared heating cap)	kW	7.1	7.9	8.3	13	3.2
	(12°C)							
		COPd (declared COP)		2.4	2	.2	2.3	2.2
pace heating	TBivalent	Pdh (declared heating cap)	kW	46.4	51.1	54.2	60.7	62.3
Average climate)		Tbiv (bivalent temperature)	°C			-10		
ecommended	TOL	COPd (declared COP)		2.4	1	.2	2.3	2.2
ombination 2		Pdh (declared heating cap)	kW	46.4	51.1	54.2	60.7	62.3
		Tol (temperature operating	°C			-10		
		limit)						-
pace heating	A Con-	COPd (declared COP)	1.1.1.1	2.7	2.6	2.4	2.5	2.6
Average climate)	dition	Pdh (declared heating cap)	kW	41.0	45.2	47.9	53.7	55.1
ecommended	(-7°C)	CODd (daglared COD)		27		24	2.0	20
ombination 3		COPd (declared COP) Pdh (declared heating cap)	k\M	3.6	3.7 27.5	3.6	3.8	3.9
		COPd (declared COP)	kW	25.0	1	29.2	32.7	33.5 6.4
		Pdh (declared heating cap)	k\M	6.3	6.4		.3	
	D Con-	COPd (declared COP)	kW	16.1 9.0	17.7 8.9	18.8 8.3	21.2 8.5	21.6 8.4
	dition	Pdh (declared heating cap)	kW	7.1	7.9	8.3	12.9	12.8
	(12°C)	i un (ueciareu neating cap)	r v V	7.1	1.7	0.3	12.7	12.0
		COPd (declared COP)		2.4	2.2	2.1	2	.2
	ibivalent	Pdh (declared heating cap)	kW	46.4	51.1	54.2	60.7	62.3
		Tbiv (bivalent temperature)		TT	5	-10	00.7	02.5
	TOL	COPd (declared COP)	~	2.4	2.2	2.1	2	.2
		Pdh (declared heating cap)	kW	46.4	51.1	54.2	60.7	62.3
		Tol (temperature operating	°C			-10		52.5
		limit)	-					
apacity range			HP	32	34	36	38	40
. ,								

Technical spe	cificatio	ns Syste	em		RXYQ32U	RXYQ34U	RXYQ36U	RXYQ38U	RXYQ40L	
PED	Category						Category II			
Maximum number	of connect	able indo	or units				64 (3)			
Indoor index	Min.				400.0	425.0	450.0	475.0	500.0	
connection	Max.				1,040.0	1,105.0	1,170.0	1,235.0	1,300.0	
Heat exchanger	Indoor sic	le					Air			
-	Outdoor s	side			Air					
	Air flow	Cooling	Rated	m³/h	31,200	30,660	31,260	35,880	36,660	
	rate	Heating	Rated	m³/h	31,200	30,660	31,260	35,880	36,660	
Sound power level	Cooling	Nom.		dBA	88.6 (4)	87.8 (4)	89.9 (4)	88.8 (4)	87.3 (4)	
	Heating	Prated,h		dBA	89.5 (4)	88.9 (4)	91.5 (4)	90.7 (4)	88.4 (4)	
Sound pressure level	Cooling	Nom.		dBA	66.0 (5)	65.5 (5)	67.1 (5)	66.2 (5)	65.2 (5)	
Refrigerant	Туре						R-410A			
5	GWP				2,087.5					
Refrigerant oil	Туре				Synthetic (ether) oil FVC68D					
	ping connections Liquid Type				Braze connection					
1 5		OD		mm			19			
(Gas	Туре					Braze connection			
Piping connections	Gas	OD		mm	34	1.9		41.3		
	Total piping length	System	Actual	m	1,000 (6)					
Indication if the hea	ater is equi	pped with	n a supplemen	tary heater	no					
Supplementary heater	Back-up capacity			kW			0.0			
Power consump-	Crank-	Cooling	PCK	kW			0.000			
tion in other than active mode	case heater mode	Heating	РСК	kW	0.154	0.1	66	0.1	92	
	Off mode	Cooling	POFF	kW	0.149	0.1	50	0.1	57	
		Heating	POFF	kW	0.154	0.1	66	0.1	92	
	Standby	Cooling	PSB	kW	0.149	0.1	50	0.1	57	
	mode	Heating	PSB	kW	0.154	0.1	66	0.1	92	
	Thermo-	Cooling	РТО	kW			0.019			
	stat-off mode	Heating	ΡΤΟ	kW	0.195	0.1	96	0.	211	
Cooling	Cdc (Degi	adation c	ooling)				0.25			
Heating	Cdh (Deg									

Technical spe	cifications Sys	tem	RXYQ42U	RXYQ44U	RXYQ46U	RXYQ48U	RXYQ50U
System	Outdoor unit mod	dule 1	RXYQ10U	RXYQ12U	RXYQ14U	RXY	Q16U
	Outdoor unit mod	dule 2			RXYQ16U		
	Outdoor unit mod	dule 3		RXY	Q16U		RXYQ18U
Recommended co	mbination		12 x FXFQ63AVEB +	6 x FXFQ50AVEB + 8	1 x FXFQ50AVEB +	12 x FXFQ63AVEB +	3 x FXFQ50AVEB +
			4 x FXFQ80AVEB	x FXFQ63AVEB + 4 x	13 x FXFQ63AVEB +	6 x FXFQ80AVEB	13 x FXFQ63AVEB +
				FXFQ80AVEB	4 x FXFQ80AVEB		4 x FXFQ80AVEB
Recommended co	mbination 2		12 x FXSQ63A2VEB	6 x FXSQ50A2VEB +	1 x FXSQ50A2VEB +	12 x FXSQ63A2VEB	3 x FXSQ50A2VEB +
			+ 4 x FXSQ80A2VEB	8 x FXSQ63A2VEB +	13 x FXSQ63A2VEB	+ 6 x FXSQ80A2VEB	13 x FXSQ63A2VEB
				4 x FXSQ80A2VEB	+ 4 x FXSQ80A2VEB		+ 4 x FXSQ80A2VEB
Recommended co	mbination 3		12 x FXMQ63P7VEB	6 x FXMQ50P7VEB +	1 x FXMQ50P7VEB +	12 x FXMQ63P7VEB	3 x FXMQ50P7VEB +
			+ 4 x FXMQ80P7VEE	8 x FXMQ63P7VEB +	13 x FXMQ63P7VEB	+ 6 x FXMQ80P7VEB	13 x FXMQ63P7VEB
				4 x FXMQ80P7VEB	+ 4 x FXMQ80P7VEB		+ 4 x FXMQ80P7VEB
Cooling capacity	Prated,c	kW	118.0 (1)	123.5 (1)	130.0 (1)	135.0 (1)	140.4 (1)
Heating capacity	Nom. 6°CWB	kW	118.0 (2)	123.5 (2)	130.0 (2)	135.0 (2)	140.4 (2)
	Prated,h	kW	118.0 (2)	123.5 (2)	130.0 (2)	135.0 (2)	140.4 (2)
	Max. 6°CWB	kW	131.5 (2)	137.5 (2)	145.0 (2)	150.0 (2)	156.5 (2)
Power input - 50Hz	z Heating Nom.	6°CWB kW	32.66 (2)	34.73 (2)	35.77 (2)	37.62 (2)	39.30 (2)
COP at nom.	6°CWB	kW/k	W 3.61 (2)	3.56 (2)	3.63 (2)	3.59 (2)	3.57 (2)
capacity							
ESEER - Automatic			6.65	6.62	6.60	6.50	6.46
ESEER - Standard			5.19	5.17	5.13	5.05	5.02
SCOP			4	1.2	4	.1	4.2
SCOP recommend	ed combination 2		4.3		4	.2	
SCOP recommend	ed combination 3		4	1.2	4	l.1	4.2
SEER			6.6	6.5		6.4	
SEER recommende	ed combination 2		6.6	6.3	6.4	6	.3
SEER recommende	ed combination 3		6.5	6	.3	6.2	6.3
ηs,c		%	261.2	255.9	254.9	251.7	252.8
ηs,c recommende	d combination 2		259.3	249.2	252.2	248.3	250.0
ηs,c recommende	d combination 3		255.4	250.1	248.3	244.2	248.0
ηs,h		%	165.5	164.5	162.0	162.8	165.2
ηs,h recommende	d combination 2		167.3	165.6	163.5	164.3	166.7
ns,h recommende	d combination 3		164.4	163.5	161.3	161.7	163.2

Technical spe				RXYQ42U	RXYQ44U	RXYQ46U	RXYQ48U	RXYQ50U
Space cooling	A Condi-				.3	2.4	2.3	2.1
	tion (35°C	Pdc	kW	118.0	123.5	130.0	135.0	140.4
	- 27/19)	550 /						
	B Condi-		1.147	06.0	4.4	05.0	4.3	4.2
	tion (30°C - 27/19)	Pac	kW	86.9	91.0	95.8	99.5	103.4
	C Condi-	FERd		8.2			8.1	
	tion (25°C		kW	55.9	58.5	61.6	64.0	66.5
	- 27/19)	Tuc .	N V V	55.9	50.5	01.0	04.0	00.5
	D Condi-	EERd		15.4	14.4	1	4.3	15.9
	tion (20°C		kW	24.8	26.0	27.4	28.4	29.6
	- 27/19)							
Space cooling	A Condi-	EERd			2.3		2.2	2.1
recommended	tion (35°C	Pdc	kW	118.0	123.5	130.0	135.0	140.4
combination 2	- 27/19)							
Space cooling	B Condi-			4.4		4.3		.2
recommended	tion (30°C	Pdc	kW	86.9	91.0	95.8	99.5	103.5
combination 2	- 27/19)							
	C Condi-			8.2	7.9	8.1		.0
	tion (25°C	Pdc	kW	55.9	58.5	61.6	63.9	66.5
	- 27/19)	EEDd		15.2		14.0		15.0
	D Condi- tion (20°C		kW	15.3	26.0	14.0	20.4	15.6
	- 27/19)	ruc	KVV	24.8	26.0	27.4	28.4	29.6
Space cooling	A Condi-	FERd			2.3		2.2	2.1
recommended	tion (35°C		kW	118.0	123.5	130.0	135.0	140.4
combination 3	- 27/19)			10.0	123.5	150.0	155.0	F. 0FI
	B Condi-	EERd		4	.3	4.2	4	ł.1
	tion (30°C		kW	87.0	91.0	95.8	99.5	103.5
	- 27/19)							
	C Condi-	EERd		8.0		7.9	7.8	7.9
	tion (25°C	Pdc	kW	55.9	58.5	61.6	63.9	66.5
	- 27/19)							
	D Condi-	EERd		15.2	14.2	13.9	13.8	15.6
	tion (20°C	Pdc	kW	24.8	26.0	27.4	28.4	29.6
	- 27/19)							
Space heating	TBivalent	COPd (declared COP)		2.4	2.3		2.4	2.3
Average climate)		Pdh (declared heating cap)	kW	62.4	64.8	67.0	69.6	74.3
		Tbiv (bivalent temperature)	°C			-10		
	TOL	COPd (declared COP)		2.4	2.3		2.4	2.3
		Pdh (declared heating cap)	kW	62.4	64.8	67.0	69.6	74.3
		Tol (temperature operating	°C			-10		
		limit)						
	A Con-	COPd (declared COP)				2.7		
	dition	Pdh (declared heating cap)	kW	55.2	57.3	59.3	61.6	65.7
	(-7°C)							
		COPd (declared COP)	1.1.1		.7		3.6	3.7
		Pdh (declared heating cap)	kW	33.6	34.9	36.1	37.5	40.0
		COPd (declared COP)			.3	6.2	6.3	6.5
		Pdh (declared heating cap)	kW	21.6	22.4	23.2	24.1	25.7
	D Con-	COPd (declared COP)	1.1.1		.6	8.7	8.8	8.9
	dition	Pdh (declared heating cap)	kW	9.9	10.0	10.3	10.7	12.0
inaco hoatin -	(12°C)	CORd (declared COR)				7 7		<u> </u>
Space heating	A Con-	COPd (declared COP)	L///	FE 3	E70	2.7	616	657
(Average climate) recommended	dition (-7°C)	Pdh (declared heating cap)	kW	55.2	57.3	59.3	61.6	65.7
combination 2		COPd (declared COP)		2	.7		3.6	3.7
		Pdh (declared heating cap)	kW	33.6	34.9	36.1	37.5	40.0
		COPd (declared COP)	1.1.1	6.4	JT.2	6.3	57.5	6.5
		Pdh (declared heating cap)	kW	21.6	22.4	22.8	24.1	25.7
	D Con-	COPd (declared COP)	1.1.1.1		8.7 22.4	8.8	8.9	9.0
	dition	Pdh (declared heating cap)	kW).0	10.3	10.7	12.2
	(12°C)	i an (declared fleating cdp)	IX V V			0.5	10.7	12.2
		COPd (declared COP)		2.4	2.3	-	2.4	2.3
Space heating		Pdh (declared heating cap)	kW	62.4	64.8	67.0	69.6	74.3
Average climate)	ibivalefit	Tbiv (bivalent temperature)	°C	02.7	0.70	-10	09.0	75
ecommended	TOL	COPd (declared COP)	C	2.4	2.3		2.4	2.3
	IUL	Pdh (declared heating cap)	kW	62.4	64.8	67.0	69.6	74.3
combination 2		i an (acciared nedulity cap)	17.11.1	02.4	0.10	07.0	09.0	/+.3
combination 2		Tol (temperature operating	°C		,	-10		

1-1 RXYQ-U

Technical spec					RXYQ42U	RXYQ44U	RXYQ46U	RXYQ48U	RXYQ50
1 5	A Con-		clared COP)		2.7	2.6		2.7	2.6
	dition (-7°C)	Ydh (decl	ared heating cap) kW	55.2	57.3	59.3	61.6	65.7
	<u> </u>	COPd (de	clared COP)		3	.7		3.6	
			ared heating cap) kW	33.6	34.9	36.1	37.5	40.0
			clared COP)		6.3		.2	6.3	6.4
			ared heating cap) kW	21.6	22.4	23.2	24.1	25.7
	D Con-		clared COP)	,•	8		8.7	8.8	8.7
	dition (12°C)		ared heating cap) kW	9.9	10.0	10.3	10.7	11.8
	<u> </u>	COPd (de	clared COP)		2.4	2.3		2.4	2.2
	IDivalent		ared heating cap) kW	62.4	64.8	67.0	69.6	74.3
			llent temperature	,		01.0	-10	07.0	,
	TOL		clared COP)	., -	2.4	2.3		2.4	2.2
			ared heating cap) kW	62.4	64.8	67.0	69.6	74.3
			erature operating	-			-10		
Capacity range		innit)		HP	42	44	46	48	50
PED	Category						Category II		
Maximum number of		able indo	or units				64 (3)		
ndoor index	Min.				525.0	550.0	575.0	600.0	625.0
connection	Max.				1,365.0	1,430.0	1,495.0	1,560.0	1,625.0
	Indoor sic	le					Air		,
	Outdoor	-					Air		
	Air flow	Cooling	Rated	m³/h	41,700	42,300	44,580	46,800	46,260
	rate	Heating	Rated	m³/h	41,700	42,300	44,580	46,800	46,260
Sound power level		Nom.		dBA	89.1 (4)	89.8 (4)	89.3 (4)	90.4 (4)	89.8 (4)
	Heating	Prated,h		dBA	90.1 (4)	90.5 (4)	90.4 (4)	91.3 (4)	90.9 (4)
ound pressure evel	Cooling	Nom.		dBA	66.5 (5)	67.2 (5)	67.0 (5)	67.8 (5)	67.5 (5)
	Туре						R-410A	<u> </u>	l
) - fui	GWP					-	2,087.5	- (AD	
	Type					Syr	thetic (ether) oil FVC	U80.	
Piping connections	LIQUID	Type OD					Braze connection		
	Gar			mm			19 Prozo connection		
Dining connections	Gas	Type OD		m			Braze connection 41.3		
Piping connections	Total	System	Actual	mm			1,000 (6)		
	piping	Jystem	Actual	m			1,000 (0)		
	length	nnodtr	a cupplant	(hostor					
ndication if the hea							no		
	Back-up capacity	Heating		kW			0.0		
	Crank-	Cooling	PCK	kW			0.000		
ion in other than active mode	case heater	Heating	РСК	kW	0.2	06	0.	.231	0.243
	mode								
	Off mode		POFF	kW	0.1			223	0.224
		Heating	POFF	kW	0.2		-	.231	0.243
	Standby		PSB	kW		90		223	0.224
	mode	Heating	PSB	kW	0.2		0.	.231	0.243
	Thermo-		PTO	kW	0.0			0.029	
	stat-off	Heating	PTO	kW	0.2	251	0.	292	0.293
	mode								
Cooling		adation co					0.25		
Heating	Can (Deg	radation h	eating)				0.25		
Technical spec	ificatio	ns Svste	em		R	XYQ52U		RXYQ54	J
System		unit modu				RXYQ16U		RXYQ18U	-
		unit modu					RXYQ18U	100100	
							RXYQ18U		
Outdoor unit module 3 ecommended combination					6 x FXFQ50AVEB + 14 x FXFQ63AVEB + 2 x 9 x FXFQ50AVEB + 15 x FXFQ63AVEB			FXFQ63AVEB	
	commended combination 2					FXFQ80AVEB 6 x FXSQ50A2VEB + 14 x FXSQ63A2VEB + 2 x 9 x FXSQ50A2VEB + 15 x FXSQ63			
Recommended com	hbination 2	2			6 x FXSQ50A2VE	B + 14 x FXSQ63A2VE (SQ80A2VEB	B + 2 x 9 x	FXSQ50A2VEB + 15 x	FXSQ63A2VEB

1 - 1 RXYQ-U

Technical spe		ns System		RXYQ52U	RXYQ54U
OP at nom.	6°CWB		kW/kW	3.56 (2)	3.54 (2)
apacity				6.42	
SEER - Automatic SEER - Standard				<u>6.42</u> 4.99	6.38
SEER - Standard				4.77	4.97
COP COP recommend	ed combins	ation 2			4.3
COP recommend					4.3
EER					6.4
EER recommende	ed combina	tion 2			6.4
EER recommende					6.4
js,c			%	253.7	254.1
s,c recommende	d combinat	ion 2		251.6	252.5
s,c recommende	d combinat	ion 3		251.5	253.9
ıs,h			%	167.2	169.4
s,h recommende				168.7	170.8
s,h recommende				164.4	166.0
pace cooling	A Condi-			2.0	1.9
	tion (35°C	Pdc	kW	145.8	151.2
	- 27/19)				
	B Condi-		1.14/	4.2	4.1
	tion (30°C	Pac	kW	107.4	111.4
	- 27/19) C Condi-	EEDA			8.1
	tion (25°C		kW	69.1	71.6
	- 27/19)	rut	NVV	ו.לס	/1.0
	D Condi-	EERd		17.6	19.1
	tion (20°C		kW	30.7	34.4
	- 27/19)				
pace cooling	A Condi-	EERd		2.0	1.9
ecommended	tion (35°C		kW	145.8	151.2
ombination 2	- 27/19)				
pace cooling	B Condi-				4.1
ecommended	tion (30°C	Pdc	kW	107.4	111.4
ombination 2	- 27/19)				
	C Condi-				8.1
	tion (25°C	Pdc	kW	69.0	71.6
	- 27/19)			17.4	10.0
	D Condi- tion (20°C		1/1/	17.4	18.9
	- 27/19)	ruc	kW	30.7	34.1
pace cooling	A Condi-	FFRd		2.0	1.9
ecommended	tion (35°C		kW	145.8	1.5
ombination 3	- 27/19)				101.2
	B Condi-	EERd			4.1
	tion (30°C		kW	107.4	111.4
	- 27/19)				
	C Condi-			8.0	8.2
	tion (25°C	Pdc	kW	69.1	71.6
	- 27/19)				
	D Condi-			17.5	19.1
	tion (20°C	Pdc	kW	30.7	34.7
	- 27/19)	COD (()		22	
pace heating	IBIValent	COPd (declared COP)	1.34/	2.2	2.1
Average climate)		Pdh (declared heating cap)	kW	79.0	83.7
	TOL	Tbiv (bivalent temperature) COPd (declared COP)	°C	2.2	-10 2.1
	IUL	Pdh (declared heating cap)	kW	79.0	83.7
		Tol (temperature operating	°C	/9.0	-10
		limit)			IV.
	A Con-	COPd (declared COP)			2.6
	dition	Pdh (declared heating cap)	kW	69.9	74.0
	(-7°C)	(accured heating cdp)		00.0	,
		COPd (declared COP)		3.8	3.9
		Pdh (declared heating cap)	kW	42.5	45.1
		COPd (declared COP)		6.6	6.8
		Pdh (declared heating cap)	kW	27.4	29.0
	D Con-	COPd (declared COP)			9.0
	dition	Pdh (declared heating cap)	kW		14.2
	(12°C)	5 1,			

1 - 1 RXYQ-U

		ns Syste			RXYQ52U	RXYQ54U
Space heating	A Con-		clared COP)			2.6
Average climate)	dition	Pdh (decla	ared heating cap)	kW	69.9	74.0
recommended	(-7°C)		clared COP)		2.0	20
combination 2			ared heating cap)	kW	3.8 42.6	3.9 45.1
			clared COP)	KVV	6.7	6.8
			ared heating cap)	kW	27.4	29.0
	D Con-		clared COP)			9.1
	dition		ared heating cap)	kW		4.4
	(12°C)	i un (accio	fice ficeting cup)			
		COPd (dec	clared COP)		2.2	2.1
Space heating	TBivalent	Pdh (decla	ared heating cap)	kW	79.0	83.7
Average climate)		Tbiv (biva	lent temperature)	°C		10
ecommended	TOL	COPd (dec	clared COP)		2.2	2.1
combination 2		Pdh (decla	ared heating cap)	kW	79.0	83.7
		Tol (tempe	erature operating	°C	-	10
		limit)				
Space heating	A Con-		clared COP)		2.6	2.5
Average climate)	dition	Pdh (decla	ared heating cap)	kW	69.9	74.0
ecommended	(-7°C)					
combination 3			clared COP)		3.7	3.8
			ared heating cap)	kW	42.5	45.1
			clared COP)	1.14/	6.4	6.5
			ared heating cap)	kW	27.3	29.0
	D Con-		clared COP)	kW		3.7
	dition	Pan (decia	ared heating cap)	KVV	1.	3./
	(12°C)	COPd (doc	clared COP)		2.2	2.1
	i Divalent		ared heating cap)	kW	79.0	83.7
			alent temperature)	°C		10
	TOL		clared COP)		2.2	2.1
			ared heating cap)	kW	79.0	83.7
			erature operating	°C		10
		limit)	- atom operating	~		
Capacity range				HP	52	54
PED	Category					gory ll
Maximum number			or units			4 (3)
ndoor index	Min.				650.0	675.0
connection	Max.				1,690.0	1,755.0
leat exchanger	Indoor sid	le				Air
5	Outdoor s				A	Air
	Air flow	Cooling	Rated	m³/h	45,720	45,180
	rate	Heating	Rated	m³/h	45,720	45,180
Sound power level	Cooling	Nom.		dBA	89.3 (4)	88.6 (4)
	Heating	Prated,h		dBA	90.5 (4)	90.1 (4)
				dBA	67.1 (5)	
Sound pressure	Cooling	Nom.				66.8 (5)
-	Cooling	Nom.				66.8 (5)
evel	Туре	Nom.				110A
evel Refrigerant	Type GWP	Nom.			2,0	410A 87.5
evel Refrigerant Refrigerant oil	Type GWP Type				2,0 Synthetic (eth	410A 187.5 ner) oil FVC68D
evel Refrigerant Refrigerant oil	Type GWP Type	Туре			2,0 Synthetic (eth Braze co	410A 187.5 her) oil FVC68D Innection
evel Refrigerant Refrigerant oil	Type GWP Type S Liquid	Type OD		[2,0 Synthetic (eth Braze co	410A 187.5 ner) oil FVC68D Innection 19
evel Refrigerant Refrigerant oil Piping connections	Type GWP Type Liquid Gas	Type OD Type			2,0 Synthetic (eth Braze co 1 Braze co	410A 187.5 ner) oil FVC68D Innection 19 Innection
evel Refrigerant Refrigerant oil Piping connections	Type GWP Type s Liquid Gas s Gas	Type OD Type OD		mm	2,0 Synthetic (eth Braze co 1 Braze co 4	410A 187.5 Dennection 19 Dennection 1.3
evel Refrigerant Refrigerant oil Piping connections	Type GWP Type s Liquid Gas s Gas Total	Type OD Type OD	Actual		2,0 Synthetic (eth Braze co 1 Braze co 4	410A 187.5 ner) oil FVC68D Innection 19 Innection
evel Refrigerant Refrigerant oil Piping connections	Type GWP Type s Liquid Gas s Gas Total piping	Type OD Type OD	Actual	mm	2,0 Synthetic (eth Braze co 1 Braze co 4	410A 187.5 Dennection 19 Dennection 1.3
evel Refrigerant Piping connections Piping connections	Type GWP Type s Liquid Gas Gas Total piping length	Type OD Type OD System		mm m	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00	410A 187.5 her) oil FVC68D ponnection 19 ponnection 1.3 10 (6)
evel Refrigerant Piping connections Piping connections ndication if the heat	Type GWP Type s Liquid Gas s Gas Total piping length ater is equi	Type OD Type OD System	a supplementary h	mm m	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00	410A 187.5 her) oil FVC68D nunection 19 ponnection 1.3 100 (6)
evel Refrigerant Piping connections Piping connections ndication if the hea	Type GWP Type s Liquid Gas s Gas Total piping length ater is equi Back-up	Type OD Type OD System	a supplementary h	mm m	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00	410A 187.5 her) oil FVC68D ponnection 19 ponnection 1.3 10 (6)
evel Refrigerant Piping connections Piping connections ndication if the here Supplementary neater	Type GWP Type 5 Liquid Gas 5 Gas Total piping length ater is equi Back-up capacity	Type OD Type OD System ipped with Heating	a supplementary h elbu	mm m neater kW	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 r 0	410A 187.5 her) oil FVC68D Innection 19 Innection 1.3 100 (6) 10 0.0
evel Refrigerant Piping connections Piping connections ndication if the here supplementary heater Power consump-	Type GWP Type 5 Liquid Gas 5 Gas Total piping length ater is equi Back-up capacity Crank-	Type OD Type OD System Heating Cooling	a supplementary h elbu PCK	mm m m heater kW kW	2,0 Synthetic (eth Braze co Braze co 4 1,00 r 0	410A 187.5 her) oil FVC68D nnnection 19 nnnection 1.3 10 (6) 10 0.0
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary neater Power consump- cion in other than	Type GWP Type s Liquid Gas s Gas Total piping length ater is equil Back-up capacity Crank- case	Type OD Type OD System Heating Cooling	a supplementary h elbu	mm m neater kW	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 r 0	410A 187.5 her) oil FVC68D Innection 19 Innection 1.3 100 (6) 10 0.0
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary neater Power consump- cion in other than	Type GWP Type s Liquid Gas Gas Total piping length ater is equi Back-up capacity Crank- case heater	Type OD Type OD System Heating Cooling	a supplementary h elbu PCK	mm m m heater kW kW	2,0 Synthetic (eth Braze co Braze co 4 1,00 r 0	410A 187.5 her) oil FVC68D nnnection 19 nnnection 1.3 10 (6) 10 0.0
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary neater Power consump- cion in other than	Type GWP Type s Liquid Gas Gas Total piping length ater is equi Back-up capacity Crank- case heater mode	Type OD Type OD System Heating Cooling Heating	a supplementary h elbu PCK PCK	mm m m heater kW kW kW	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0.00 0.255	410A 87.5 her) oil FVC68D Innection 13 10 (6) 10 10 10 10 10 10 10 10 10 10
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary neater Power consump- cion in other than	Type GWP Type s Liquid Gas Gas Total piping length ater is equi Back-up capacity Crank- case heater	Type OD Type OD System Heating Cooling Heating	a supplementary H elbu PCK PCK POFF	mm in minimum in the ater in t	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 	410A 187.5 her) oil FVC68D 19 19 10 10 10 10 10 10 10 10 10 10
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary neater Power consump- cion in other than	Type GWP Type s Liquid Gas s Gas Total piping length ater is equi Back-up capacity Crank- case heater mode Off mode	Type OD Type OD System Pped with Heating Cooling Heating Cooling Heating	a supplementary f elbu PCK PCK POFF POFF	mm in meater in the second sec	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0.0 0.255 0.225 0.255	410A 187.5 her) oil FVC68D nnection 19 ponnection 1.3 100 (6) 000 0.267 0.226 0.267
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary heater Power consump- tion in other than	Type GWP Type s Liquid Gas s Gas Total piping length ater is equi Back-up capacity Crank- case heater mode Off mode Standby	Type OD Type OD System ipped with Heating Cooling Heating Cooling Heating Cooling	a supplementary F elbu PCK PCK POFF POFF PSB	mm interation interation interation interation interaction interac	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0 0.255 0.225 0.225 0.225	410A 187.5 her) oil FVC68D nnection 19 ponnection 1.3 100 (6) 000 0.267 0.226 0.267 0.226
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary neater Power consump- cion in other than	Type GWP Type s Liquid Gas s Gas Total piping length ater is equi Back-up capacity Crank- case heater mode Off mode Standby mode	Type OD Type OD System Pped with Heating Cooling Heating Cooling Heating Cooling Heating	a supplementary F elbu PCK PCK POFF POFF PSB PSB	mm imm m imm m imm heater imm kW imm	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0 0.0 0.255 0.225 0.225 0.255 0.255	410A 187.5 her) oil FVC68D nnnection 19 ponnection 1.3 00 (6) 000 0.267 0.226 0.267 0.226 0.267
Sound pressure level Refrigerant Piping connections Piping connections Supplementary heater Power consump- tion in other than active mode	Type GWP Type s Liquid Gas s Gas Total piping length ater is equi Back-up capacity Crank- case heater mode Off mode Standby mode Thermo-	Type OD Type OD System Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling	a supplementary F elbu PCK PCK PCK POFF POFF PSB PSB PTO	mm imm m imm m imm heater imm kW imm	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0 0 0.255 0.225 0.255 0.255 0.255 0.255 0.255 0.255	410A 187.5 her) oil FVC68D nnnection 19 onnection 1.3 00 (6) 000 0.267 0.226 0.267 0.226 0.267 0.226
evel Refrigerant Piping connections Piping connections ndication if the her Supplementary heater Power consump- tion in other than	Type GWP Type 5 Liquid Gas 5 Gas Total piping length ater is equi Back-up capacity Crank- case heater mode Off mode Standby mode Thermo- stat-off	Type OD Type OD System Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling	a supplementary F elbu PCK PCK POFF POFF PSB PSB	mm imm m imm m imm heater imm kW imm	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0 0 0.255 0.225 0.255 0.255 0.255 0.255 0.255 0.255	410A 187.5 her) oil FVC68D nnnection 19 ponnection 1.3 00 (6) 000 0.267 0.226 0.267 0.226 0.267
level Refrigerant Piping connections Piping connections Indication if the her Supplementary heater Power consump- tion in other than	Type GWP Type s Liquid Gas Gas Total piping length ater is equi Back-up capacity Crank- case heater mode Off mode Standby mode Thermo- stat-off mode	Type OD Type OD System Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling	a supplementary F elbu PCK PCK POFF POFF PSB PSB PTO PTO	mm imm m imm m imm heater imm kW imm	2,0 Synthetic (eth Braze co 1 Braze co 4 1,00 0 0 0 0.255 0.2	410A 187.5 her) oil FVC68D nnnection 19 onnection 1.3 00 (6) 000 0.267 0.226 0.267 0.226 0.267 0.226

Electrical sp		ns System		RXYQ22U	RXYQ24U	RXYQ26U	RXYQ28U	RXYQ30U			
ower supply	Name					Y1					
	Phase -					3N~					
	Frequence	.y	Hz V			50					
ower supply inta	Voltage		V		Dath	380-415 n indoor and outdoor	unit				
ower supply inta oltage range	Min.		%		BOU	-10	unit				
onage range	Max.		%			10					
Current - 50Hz	Nominal	Combina- Cooling	70			-					
Junene Sonz	running	tion A									
	current	Combina- Cooling									
	(RLA)	tion B									
	Starting	current (MSC) - remark									
	Zmax	List		No requirements							
	Minimum	n Ssc value	kVa	11,573 (8)	11,597 (8)	12,831 (8)	13,585 (8)	14,843 (8)			
		n circuit amps (MCA)	Α	46.	0 (9)	51.0 (9)	55.0 (9)	59.0 (9)			
		n fuse amps (MFA)	Α	63 (10) 80 (10)							
Power Perfor-	Power	Combina- 35°C ISO - Full				-					
nance	factor	tion B 46°C ISO - Full	load			-					
Wiring connec-	For	Quantity				5G					
ions - 50Hz	power										
	supply	Quantity									
	For connec-	Quantity Remark				2 F1,F2					
	tion with	NEIIIdIN				F1,F2					
	indoor										
Current	Nominal	Cooling	A	22.9 (7)	25.2 (7)	28.1 (7)	30.7 (7)	33.5 (7)			
	running				(/)		(* /				
	current										
	(RLA)										
Electrical sp		ns System		RXYQ32U	RXYQ34U	RXYQ36U	RXYQ38U	RXYQ40U			
	Name					Y1					
	Phase Frequency					3N~					
	Frequence	.y	Hz			50					
	Voltage		V		D. II	380-415					
ower supply inta			%	Both indoor and outdoor unit -10							
/oltage range	Min. Max.		%			10					
Current - 50Hz	Nominal	Combina- Cooling	70			10					
unent - Jonz	running	tion A		-							
	current	Combina- Cooling									
	(RLA)	tion B									
		current (MSC) - remark		See note 8							
	Zmax	List				No requirements					
	Minimum	n Ssc value	kVa	15,094 (9)	16,352 (9)	17,359 (9)	19,397 (9)	20,378 (9)			
		n circuit amps (MCA)	А	62.0 (10)	66.0 (10)	70.0 (10)	76.0 (10)	81.0 (10)			
	Maximur	n fuse amps (MFA)	А		80 (11)		100	(11)			
ower Perfor-	Power	Combina- 35°C ISO - Full				-					
nance	factor	tion B 46°C ISO - Full	load			-					
Viring connec-	For	Quantity				5G					
ions - 50Hz	power										
	supply										
	For	Quantity				2					
	connec-	Remark				F1,F2					
	tion with										
	indoor			1	1	1	1	1			
Current	Nominal	Cooling	A	36.0 (7)	38.8 (7)	44.9 (7)	44.3 (7)	43.7 (7)			
	running										
	current										
	(RLA)										
Electrical spo	ecificatio	ns System	RXYQ42U	RXYQ44U	RXYQ46U	RXYQ48U	RXYQ50U				
ower supply	Name	ecifications System Name				Y1					
	Phase					3N~					
	Frequenc	.y	Hz	50							
			V	380-415							
	Voltage			i	D (1						
ower supply inta					Both	n indoor and outdoor	unit				
Power supply inta /oltage range			%		Both	-10	unit				

1 - 1 RXYQ-U

Electrical sp	ecificatio	ns System		RXYQ42U	RXYQ44U	RXYQ46U	RXYQ48U	RXYQ50U		
Current - 50Hz		Combina- Cooling				-				
	running	tion A								
	current	Combina- Cooling		-						
	(RLA)	tion B								
	Starting o	urrent (MSC) - remark		See note 8						
	Zmax	List				No requirements				
	Minimum	Ssc value	kVa	20,629 (9)	21,132 (9)	21,887 (9)	22,641 (9)	23,899 (9)		
	Minimum	circuit amps (MCA)	А	84.0 (10)	86.0 (10)	89.0 (10)	93.0 (10)	97.0 (10)		
	Maximum	n fuse amps (MFA)	A		100 (11)		125	(11)		
Power Perfor-	Power	Combina- 35°C ISO - Ful	lload	-						
mance	factor	tion B 46°C ISO - Ful	lload			-				
Viring connec-	For	Quantity		5G						
tions - 50Hz	power									
	supply									
	For	Quantity		2						
	connec-	Remark				F1,F2				
	tion with									
	indoor									
Current	Nominal	Cooling	A	46.2 (7)	48.7 (7)	51.4 (7)	54.0 (7)	56.8 (7)		
	running									
	current									
	(RLA)									

Electrical sp	ecificatio	ns System		RXYQ52U RXYQ54U				
Power supply	Name	· · · · · · · · · · · · · · · · · · ·		Y1				
	Phase			3N	~			
	Frequency	/	Hz	50	0			
	Voltage		V	380-	-415			
Power supply inta	ake			Both indoor and	d outdoor unit			
Voltage range	Min.		%	-10	0			
	Max.		%	10	0			
Current - 50Hz		Combina- Cooling tion A		-				
		Combina- Cooling tion B		-				
	Starting c	urrent (MSC) - remark		See n	ote 8			
	Zmax	List		No requi	rements			
	Minimum	Ssc value	kVa	25,157 (9)	26,415 (9)			
	Minimum	circuit amps (MCA)	A	101.0 (10)	105.0 (10)			
	Maximum	fuse amps (MFA)	A	125 ((11)			
Power Perfor-	Power	Power Combina- 35°C ISO - Full load		-				
mance	factor tion B 46°C ISO - Full load		Ill load	-				
Wiring connec- tions - 50Hz	For power supply	Quantity		50	G			
	For	Quantity		2	2			
	connec-	Remark		F1,1	F2			
	tion with indoor							
Current	Nominal running current (RLA)	Cooling	A	59.6 (7)	62.4 (7)			

3 3 - 1 Options

Options

No	Item		RY	(Q8U (Q8U QQ8U	RXYQ10-12U RYYQ10-12U RXYQQ10-12U	RYYQ	14-18U 14-18U Q14-18U	RXYQ20U RYYQ20U RXYQQ20U	RYYQ22~54U RXYQ22~54U RXYQQ22~42U
١.	Refnet header					KHF	Q22M29	1	
						KHF	Q22M64		
									Q22M75H
П.	Refnet joint						RQ22M20		
							Q22M29T RQ22M64		
									Q22M75T
111.	Outdoor multi-connection kit	See note ·2·.							BHFQ22P1007
IV.	Outdoor multi-connection kit	See note ·2·.							BHFQ22P1517
No	Item		8HP	10HP	12HP	14HP	16HP	18HP 20HP	
1a	Cool/heat selector (switch)	See note ·3·.			KRC	19-26A			
1b	Cool/heat selector (PCB)				BRF	P2A81			
1c	Cool/heat selector (fixing box)		KJB111A						
2	VRV configurator	EKPCCAB*							
3	Heater tape kit PCB	EKBPH012T7A EKBPH020T7A							
4	Demand PCB		DTA104A61/62*						
5	Demand PCB mounting plate	See note ·4·.					KKSB26	5B1*	

1 All options are kits

- 2 Only for multi units
- 3 To mount option $\cdot 1a$, option $\cdot 1c$ is required.
- 4 To install the demand PCB on the large casing type, the demand PCB mounting plate is required.

Medium casing type ·VRV4· heat pump: modules ·8~12·HP Large casing type ·VRV4· heat pump: modules ·14~20·HP

3D120006B

4 Combination table

4 - 1 Combination Table

REMQ5U REYQ8-20 RXYQQ8- RXYTQ8- RYYQ8-20 RYMQ8-20	0U 20U 16UYF 0U
Units in scor 1. In case	bination restrictions: VRV4 outdoor units (all models) + 15-class indoor units be: FXZQ15A and FXAQ15A. The system contains these indoor units and the total connection ratio (CR) ≤ 100%: no special restrictions.
2. In case A. Wr	the restrictions that apply to regular VRV DX indoor units. The the system contains these indoor units and the total connection ratio (CR) > 100%: special restrictions apply. Then the connection ratio (CR1) of the sum of all FXZQ15A and/or FXAQ15A units in the system \leq 70%, and ALL other VRV DX
B. Wł	loor units have an individual capacity class > 50: no special restrictions. Then the connection ratio (CR1) of the sum of all FXZQ15A and/or FXAQ15A units in the system ≤ 70%, and NOT ALL other W DX indoor units have an individual capacity class > 50: the restrictions below apply.
	100% < CR ≤ 105% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 70%. 105% < CR ≤ 110% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 60%. 110% < CR ≤ 115% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 40%. 115% < CR ≤ 120% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 25%. 120% < CR ≤ 125% → CR1 of the sum of all FXZQ15A and/or FXAQ15A indoor units in the system must be ≤ 10%. 125% < CR ≤ 130% → FXZQ15A andFXAQ15A cannot be used
	RK 15-class indoor units explicitly mentioned on this page are in scope. Other indoor units follow the rules that apply to regular indoor units. 3D104665
RXYQQ-U RXYQ-U RYYQ-U RYMQ-U	Heat pump VRV4 Multi-unit standard combinations table

CQB=20 = Single continuous heating QQB=25 = Multi continuous heating QQB=24 Multi con-continuous heating QQB=20 = Single non-continuous heating QQB=20 = Single non-continuous heating replacement (VRV4-Q) QQB=20 single non-continuous heating replacement (VRV4-Q) QQB=20 single non-continuous heating replacement (VRV4-Q) single unit installation RVP(Q* units (continuous heating) on-continuous heating "multi-outdoor-unit combinations consist of RVXQB=20 units (e.g. RVYQ36*=RXYQ16*+RXYQ20*). on-continuous heating "multi-outdoor-unit combinations consist of RVXQB=20 units (e.g. RXYQ36*=RXYQ16*+RXYQ20*). → RYMQ ² units can only be used in multi-outdoor-unit combinations. QB=20 * continuous heating multi-outdoor-unit combinations. QB=20 * units can only be used in multi-outdoor-unit combinations. QB=20 * units uniti-outdoor-unit combinations. QB=20 * units can only be used in multi-outdoor-unit combinations. QB=20 * units uniti-outdoor-unit combinations. QB=20 * units uniti-outdoor-unit combinations. QB=20 * Continuous heating "multi-outdoor-unit combinations. QB=20 * Continuous heating "multi-outdoor-unit combinations.			~	-	-	-	1	1	2
<pre> www.wi.wi.wi.wi.wi.wi.wi.wi.wi.wi.wi.wi.</pre>		RXYQ8* / RYYQ8* / RXYQQ8*	1		1	1		1	
ungage ungage ungage ungage ungage ungage ungage ungage ungag		8XYQ10* / 8YYQ10* / 8XYQQ10*		1					
Bugger Imager / recoger / reco	٩				1				
9 wrqst / wrqst / wrqst / wrqst 1 1 1 9 wrqst / wrqst / wrqst / wrqst 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'n		1			1			
<pre> wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww</pre>	feat		-		-	-		-	
<pre> mugue / mugu</pre>	-	RXYQ16* / RYYQ16* / RXYQQ16*	_	-			1		
ungget / wroget		RXYQ18* / RYYQ18* / RXYQQ18*						1	
mmggur mmggur<		RXYQ20* / RYYQ20* / RXYQQ20*							1
mggg/mggg mggg/mggg/mgg/mgg/mgg/mggg/mggg/mggg/m	2	RXYQ22* / RYYQ22* / RXYQQ22*		1	1				
wrgst / krogst / krogst i i i wrgst / krogst / krogst / krogst i i i wrgst / krogst / krogst / krogst i i i wrgst / krogst / krogst / krogst i i i wrgst / krogst / krogst i i i i wrgst / krogst / krogst i i i i wrgst / krogst / krogst i i i i wrgst / krogst / krogst i i i i wrgst / krogst i i i i i wrgst / krogst i i i i i i wrgst / krogst i i i i i i i wrgst / krogst i i i i i i	Ű.	RXY024* / RYY024* / RXY0024*	1				1		
<pre>www.up.r./w</pre>	ntdo								
<pre>wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww</pre>	h 20			1	1	1			
wwg2*/kmg2*	liw u		1		1		1		
wrgsr /	inatio	RXYQ30* / RYYQ30* / RXYQQ30*	-	-	1			1	
2 wrozw / krvogsk / krvogs	ę	RXYQ32* / RYYQ32* / RXYQQ32*	1	-	-	-	2	-	
wrods*/ kroads* 1 1 1 1 wrods*/ kroads*/ kroads* 1 1 1 1 wrods*/ kroads*/ kroads* 1 1 1 1 wrods*/ kroads*/ kroads* 1 1 2 1 wrods*/ kroads*/ kroads* 1 1 2 1 wrods*/ kroads*/ kroads* 1 1 2 1 wrods*/ kroads* wrods* 1 2	Aufti-	RXYQ34* / RYYQ34* / RXYQQ34*					1	1	
wroge*/stronge* i i i i i wroge*/stronge* i i i i i </td <td>2</td> <td>RXYQ36* / RYYQ36* / RXYQQ36*</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td>	2	RXYQ36* / RYYQ36* / RXYQQ36*					1		1
wroge*/stronge* i i i i i wroge*/stronge* i i i i i </td <td></td> <td>RXYQ38* / RYYQ38* / RXYQQ38*</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>		RXYQ38* / RYYQ38* / RXYQQ38*	1	1					1
wrost*/ kross*/ 1 2 1 wrost*/ kross*/ 1 1 2 wrost*/ kross*/ 1 1	aits								
wrozet / wrozet i i i i i wrozet / wrozet i i i i i i wrozet / wrozet i i i i i i i wrozet / wrozet i i i i i i i wrozet / wrozet </td <td>oor n</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	oor n								
wrode* / nrodes* i i i i wrode* / nrode* in i i i wrode* / nrode* in i i i wrode* / nrode* in i i i i (22*54 Multi continuous heating (22*54 Multi continuous heating (22*54 Multi continuous heating replacement (VRV4-Q) i i (202*4 Multi continuous heating replacement (VRV4-Q) i i i (202*4 Multi continuous heating multi-cottoor-unit combinations consist of RVRQ*2 ounits (e.e. RVQ36*eRVQ10*f*RVQ20*). initiation initiation on initiations consist of RVRQ*2 ounits (e.e. RVQ36*eRVQ10*f*RVQ20*).	outd		1	1			2		
wroger / krroget i i (227-25 Single continuous heating (262-26 Aulti cont-continuous heating (262-26 Aulti con-continuous heating (262-26 Aulti con-continuous heating wroget writistalistion RVP(4) writis (con-continuous heating (262-26 V duiti con-continuous heating replacement (VRV4-Q) (262-26 Aulti con-continuous heating replacement (VRV4-Q) issue and to wroget wroge	/ith 3	RXYQ44* / RYYQ44*	-	-	1		2		
wroser / wroses i i i (287-20 Single continuous heating (287-20 Single non-continuous heating (287-20 wints continuous heating replacement (VRV-0) i (2022-4 Multi non-continuous heating replacement (VRV-0) i i (2023-4 Multi non-continuous heating replacement (VRV-0) i i (2022-4 Multi non-continuous heating replacement (VRV-0) i i (2022-6 Wulti scinal on ob weat in multi-outdoor-unit combinations consist of RYQB* 20 units (e.g. RYQ36* RYQ16* RXYQ20*). i - RYQ* Wulti sci an on by weat in multi-outdoor-unit combinatio	tion w	RXYQ46* / RYYQ46*	-			1	2		
Image: / errose: i i i mode: On Single continuous heating (Mode: On Single contoninuous heating (Mode: On Single contoninuous heating Q22: 54 Multi continuous heating (Qd2: 4 Single contoninuous heating (Qd2: 4 Single contoninuous heating QQ2: 54 Multi contoninuous heating (Qd2: 4 Multi contoninuous heating (Qd2: 4 Multi contoninuous heating GQ2: 54 Multi contoninuous heating (Qd2: 4 Multi contoninuous heating (Qd2: 4 Multi contoninuous heating GQ2: 54 Multi contoninuous heating (Pd2: 4 Multi contoninuous heating (Pd2: 4 Multi contoninuous heating - rontinuous heating "multi-outdoor-unit combinations consist of RXNG2": 20 units (e.g. RXNQ36"=RXNQ16"+RXNQ20"). (Pd2: 4 RXNQ20"). - RXNQ2" fulli sci and hybe used in multi-outdoor-unit combinations and cannot be used as standalone units. (Pd2: 20 'continuous heating "ulti-outdoor-unit combinations. VB2: 0 'continuous heating 'multi-outdoor-unit combinations. (Pd2: 20 'continuous heating 'multi-outdoor-unit combinations. VB2: 0 'contous heating eurode in multi-outdoor-unit co	bina	RXYQ48* / RYYQ48*					3		
axcs+/ xvrqs+/ a mark (QB*20 = Single continuous heating (Q2>54 Multi controusus heating (QB*20 = Single non-continuous heating (QB*20 = Single non-continuous heating (QB*20 = Single non-continuous heating replacement (VRV4-Q) (DB*20 = Single non-continuous heating replacement (VRV4-Q) (DB*20 = Single non-continuous heating replacement (VRV4-Q) (DB*20 = Continuous heating "multi-outdoor-unit combinations consist of RVXQB*20 units (e.g. RVYQ36*RVXQ16*4RVXQ2*). → RVMQ ² units can only be used in multi-outdoor-unit combinations and cannot be used as tandalone units. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations.	-01	RXYQ50* / RYYQ50*					2	1	
axcs+/ xvrqs+/ a mark (QB*20 = Single continuous heating (Q2>54 Multi controusus heating (QB*20 = Single non-continuous heating (QB*20 = Single non-continuous heating (QB*20 = Single non-continuous heating replacement (VRV4-Q) (DB*20 = Single non-continuous heating replacement (VRV4-Q) (DB*20 = Single non-continuous heating replacement (VRV4-Q) (DB*20 = Continuous heating "multi-outdoor-unit combinations consist of RVXQB*20 units (e.g. RVYQ36*RVXQ16*4RVXQ2*). → RVMQ ² units can only be used in multi-outdoor-unit combinations and cannot be used as tandalone units. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations. (QB*20 ' units cannot be used in multi-outdoor-unit combinations.	huh	RXYQ52* / RYYQ52*					1	2	
mark CQ2=20 = Single continuous heating CQ2=2-5 Multi continuous heating CQ2=20 = Single non-continuous heating replacement (VRV4-Q) CQ2=20 = Single non-continuous heating replacement (VRV4-Q) single unit installation RVPQ0 ⁺ units (continuous heating ⁺ RVPQ0 ⁺) netting ⁺ multi-outdoor-unit combinations consist of RVNQ ⁺ units (non-continuous heating ⁺ multi-outdoor-unit combinations consist of RVNQB ⁺ 20 units (e.g. RVPQ36 ⁺ RVPQ16 ⁺ - RVPQ20 ⁺). → RVMQ ⁺ units can only be used in multi-outdoor-unit combinations. CQB=20 ⁺ onlinuous heating in multi-outdoor-unit combinations.								2	
YQ8~20 "Non-continuous heating" multi-outdoor-unit combinations cannot contain RYMQ* units.	RYYQ22~5 RXYQ8~20 RXYQ22~5	4 Multi continuous heating = Single non-continuous heati 4 Multi non-continuous heati 10 Single non-continuous heati 4 Multi non-continuous heati	ng ing re ng re Q* ur	placen nits (co comb	nent (' ontinu inatio	/RV4-0 ous he ns cor onsist	Q) eating nsist o of RY	of RXY MQ8 ⁻	Q8~2 20 un
	RXYQQ22 For single "Non-cont "Continuo - RYYQ8~20 RYYQ8~20 RXYQ8~20	inuous heating" multi-outdoor us heating" multi-outdoor-uni > RYMQ* units can only be us * units cannot be used in multi > "Continuous heating" multi- > "Non-continuous heating" m	t com ed in ti-out outd nulti-	multi- door-u oor-ur outdoo	unit co nit cor or-uni	mbina nbinat t coml	ations ions binat	s. cannc ions c	t conf annot
placement units cannot be combined with other units.	RXYQQ22 For single "Non-cont "Continuo - RYYQ8~20 RYYQ8~20 RXYQ8~20 MUlti "non	inuous heating" multi-outdooi us heating" multi-outdoor-uni > RYMQ* units can only be us * units cannot be used in multi 0 "Continuous heating" multi- 1 "Non-continuous heating" replacer	t com ed in ti-out outd nulti- ment	multi- door-u oor-ur outdoo model	unit co nit cor or-uni ls only	mbina nbinat t coml	ations ions binat	s. cannc ions c	t conf annot
	RXYQQ22 For single "Non-cont "Continuo - RYYQ8~20 RYYQ8~20 RXYQ8~20 MUlti "non Replaceme	inuous heating" multi-outdoo us heating" multi-outdoor-uni PRYMQ* units can only be us * units cannot be used in multi O "Continuous heating" multi- O "Non-continuous heating" replacen ent units cannot be combined	t com ed in ti-out outd nulti- ment with	multi- door-u oor-ur outdoo model other u	unit co nit cor or-uni ls only units.	mbinat nbinat t coml consi	ations ions binati st of	s. canno ions c RXYQ	t coni annot 28-20

4 Combination table

4 - 1 Combination Table

.U Į-U	VRV4					
l-0	Heat pump					
	Indoor unit combi	nation restricti	ons			
	(1/2)	nation restrict	0115			
		·VRV* DX∙ indoor unit	·RA DX· indoor unit	Under her weit	(3) Air handling unit (AHU)	
	Indoor unit combination pattern ·VRV* DX· indoor unit	0	0	Hydrobox unit O	Air nandling unit (AHO)	
	·RA DX· indoor unit Hydrobox unit	0	o x	x 0,	x	
	Air handling unit (3)	0	x	X	0 ₂	
O: Allo	wed					
X: Not	allowed					
Notes	indoor unit					
	combining ·VRV DX- indoor units with other types of indoor Example	or units, respect the following comb	bination patterns:			
	Allowed : (·VRV DX· indoor unit + ·Hydrobox· unit) o Not allowed : [·VRV DX· indoor unit + (·RA DX· indoor uni				u-))]	
0,					- //	
- Only co	nnect ·Hydrobox· units to a ·VRV IV· Heat Pump in combi er to the connection ratio restrictions (·3D079540 & 3D11					
\rightarrow Con	nection with only Hydrobox units: refer to the Daikin Alth nnect ·Hydrobox· units of the ·HXY*· series.					
	HD*· series ·Hydrobox· units are not allowed.					
- Combir	nation of •AHU• only + control box •EKEQFA• (the combine control is possible (up to •3x• [•EKEXV+EKEQFA*• boxes] ca					
$\rightarrow \cdot Y \cdot - c$	control is possible (up to ·3x· [·EKEXV+EKEQFA*· boxes] control is possible (up to ·3x· [·EKEXV+EK	an be connected to one outdoor un	it (system)). No Variable Refrigeran	t Temperature control possible.		
- Combir	nation of ·AHU· only + control box ·EKEQMA· (not combin	ed with ∙VRV DX∙ indoor units)				
	ontrol is possible (the allowed number of [·EKEXV + EKEQI	MA· boxes] is determined by the co	nnection ratio (·90-110%·) and the	capacity of the outdoor unit.		
	on of ·AHU· and ·VRV DX· indoor units ontrol is possible (·EKEQMA*· boxes are allowed, but with	a limited connection ratio).				
The combi	nation of $\cdot AHU \cdot$ with $\cdot Hydrobox \cdot$ units or $\cdot RA DX \cdot$ indoor u	nits is not allowed.				
	owing units are considered AHUs:					
\rightarrow ·Bid	EXV + EKEQ(MA/FA) + AHU· coil dle· air curtain					
ormation	VQ_MF· units s are considered to be regular ·VRV DX· indoor units.					3D079543F
VICIVI UNIC						500755451
						500755451
-U						300733431
-U -U						
-U -U						
-U -U						
-U -U Q-U						
-U -U (-U	VRV4					
-U -U (-U	VRV4 Heat pump					
-U -U 2-U		restrictions				
•U •U •U	Heat pump	restrictions				
•U •U •U	Heat pump Indoor unit combination	restrictions	RYYQ*	RXYQ* RXMLQ*	RXYQ* RXMLQ*]
•U •U •U	Heat pump Indoor unit combination	RYYQ*		RXMLQ* RXYLQ*	RXMLQ* RXYLQ*]
•U •U •U	Heat pump Indoor unit combination (2/2) Combination table	RYYQ* Single continuous heating	Multi continuous heating	RXMLQ* RXYLQ* Single non-continuous heating	RXMLQ* RXYLQ* Multi non-continuous heating]
•U •U •U	Heat pump Indoor unit combination (2/2) Combination table	RYYQ* Single continuous heating O	Multi continuous heating O X	RXMLQ* RXYLQ* Single non-continuous heating 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X	
-U -U }-U	Heat pump Indoor unit combination (2/2) Combination table	RYYQ* Single continuous heating 0 0 0	Multi continuous heating O	RXMLQ* RXYLQ* Single non-continuous heating O	RXMLQ* RXYLQ* Multi non-continuous heating O	
-U -U I-U	Heat pump Indoor unit combination (2/2) Combination table 	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U	Heat pump Indoor unit combination (2/2) Combination table -VRV* DX- indoor unit -RA DX- indoor unit -RA DX- indoor unit -Hydrobox unit	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U	Heat pump Indoor unit combination (2/2) Combination table ·VRV* DX- indoor unit ·RA DX- indoor unit	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U -U	Heat pump Indoor unit combination (2/2) Combination table -VRV* DX- indoor unit -RA DX	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U - U - U - U - (1) - (1) - (1) - (2) - (2) - (2)	Heat pump Indoor unit combination (2/2) Combination table -VRV* DX- indoor unit -RA DX- indoor unit -RA DX- indoor unit Hydrobox unit Hydrobox unit Alr handling unit (AHU) (2) Allowed Not allowed	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U -V -V - - - - - - - - - - -	Heat pump Indoor unit combination (2/2) Combination table 	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U -V -V - - - - - - - - - - -	Heat pump Indoor unit combination (2/2) Combination table -VRV* DX- indoor unit -VRV* DX	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U -U -U -U - - - - - - - - -	Heat pump Indoor unit combination (2/2) Combination table 	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U -U -U - - - - - - - - - - -	Heat pump Indoor unit combination (2/2) Combination table 	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	
-U -U -U -U -U -U - - - - - - - - - - -	Heat pump Indoor unit combination (2/2) Combination table 	RYYQ* Single continuous heating 0 0	Multi continuous heating O X O ₁	RXMLQ* RXYLQ* Single non-continuous heating 0 0 0	RXMLQ* RXYLQ* Multi non-continuous heating O X O	

4 Combination table

4 - 1 Combination Table

RXYQ-U RYMQ-U

RYYQ-U

Compatibility list: ·VRV4· heat pump - ·RA DX· indoor unit

	Emura	FTXJ20M FTXJ25M FTXJ35M FTXJ50M
Wall mounted type	Stylish	FTXA20 FTXA25 FTXA35 FTXA42 FTXA50
	FTXM	FTXM20R FTXM25R FTXM35R FTXM42R FTXM50R FTXM60R FTXM71R
Ceiling/wall mounted	Flex	FLXS25B FLXS35B FLXS50B FLXS60B
	FVXM	FVXM25F FVXM35F FVXM50F FVXM25A
Floor standing type		FVXM35A FVXM50A CVXM20A
	Nexura	FVXG25K FVXG35K FVXG50K

Remark

The limitations on the use of -RA DX- indoor units with the -VRV4- Heat Pump are subject to the rules set out in drawings -3D079543- and -3D079540-.

If you want to connect ·RA·/·SA· ·DX· cassette, ceiling-mounted, or duct indoor units, use their ·VRV DX· indoor unit equivalents instead.

3D082373G

4

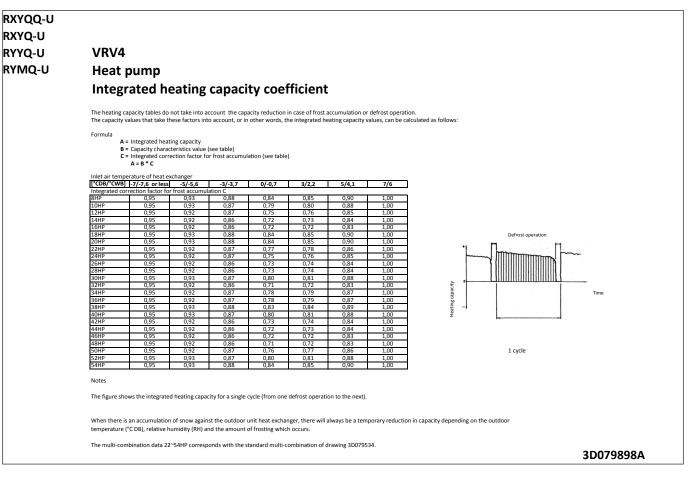
5 - 1 Capacity Table Legend

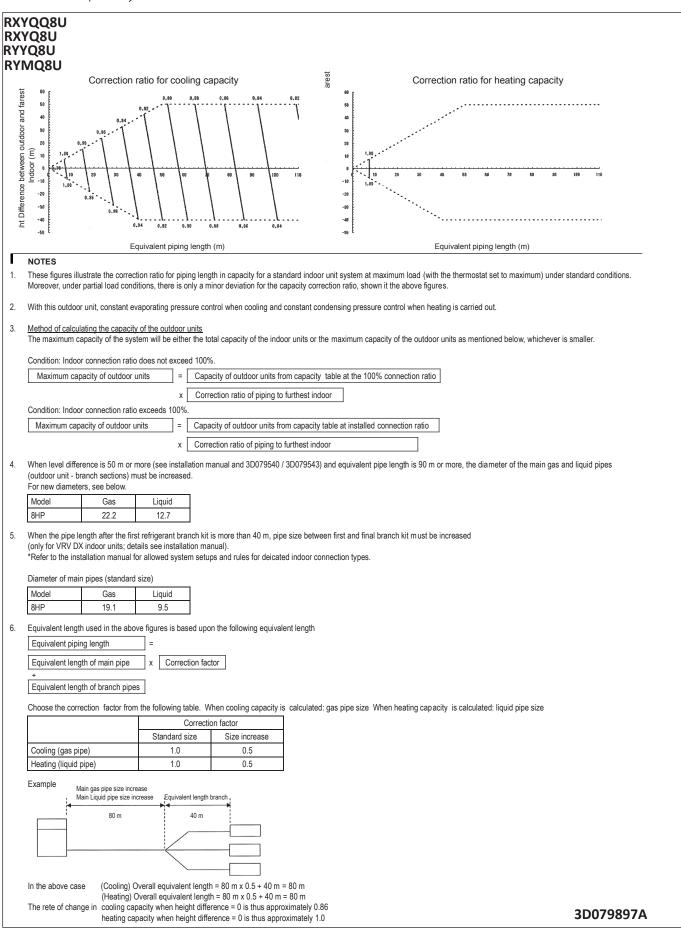
In order to fulfill more your requirements on quick access of data in the format you require, we have developed a tool to consult capacity tables.

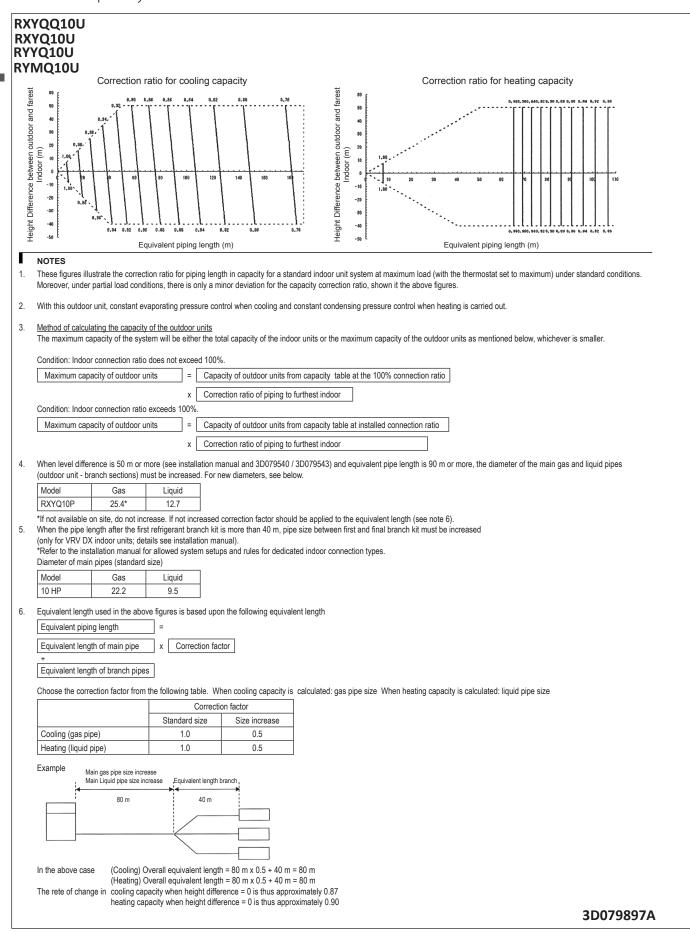
Below you can find the link to the capacity table database and an overview of all the tools we have to help you select the correct product:

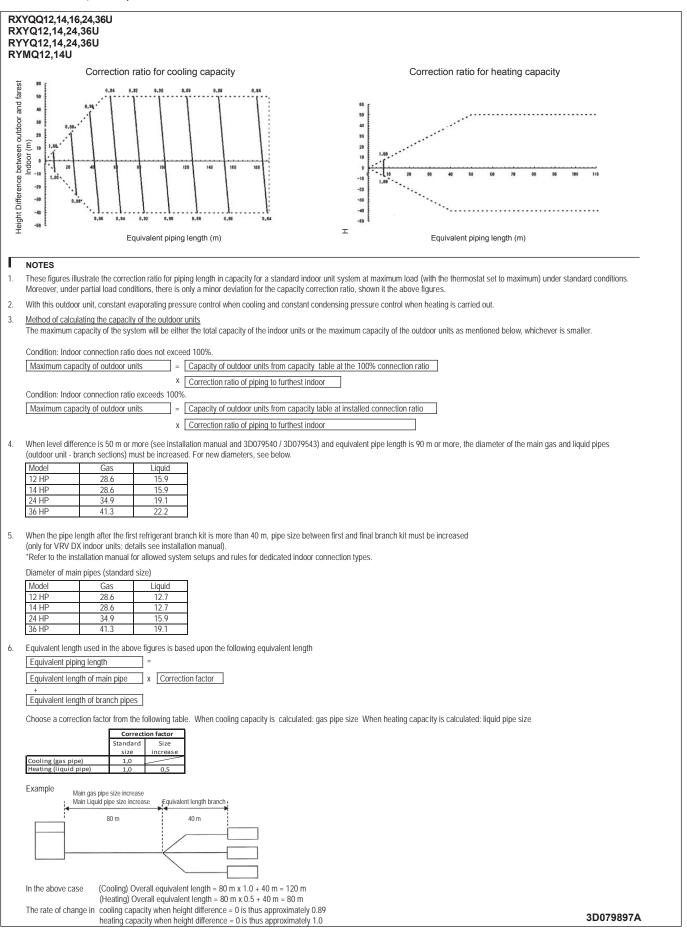
<u>Capacity table database</u>: lets you find back and export quickly the capacity information you are looking for based upon unit model, refrigerant temperature and connection ratio.
 You can access the capacity table viewer here:

https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

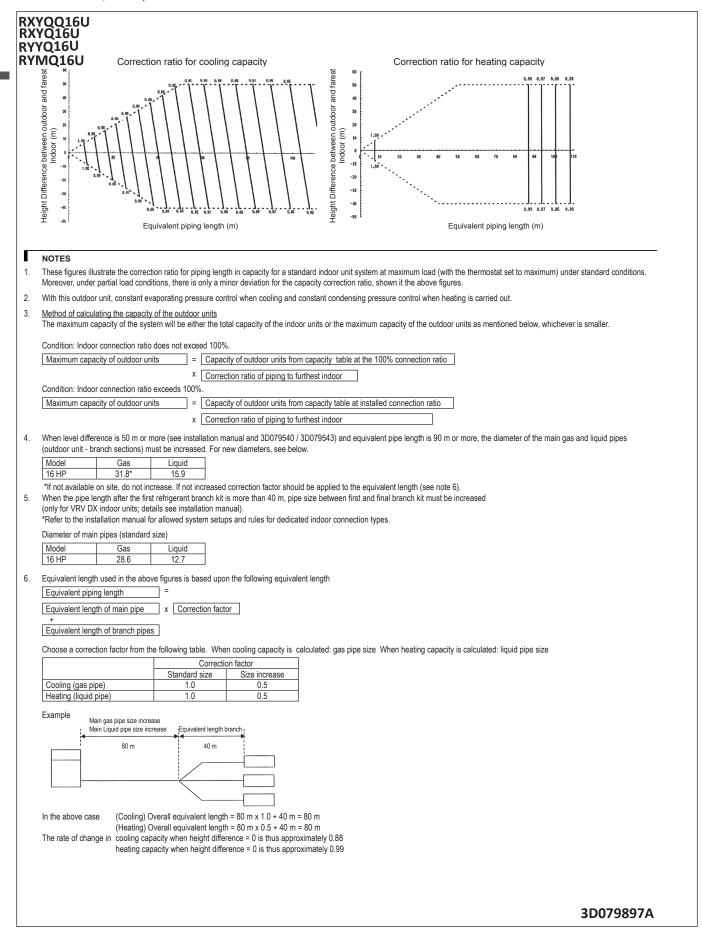


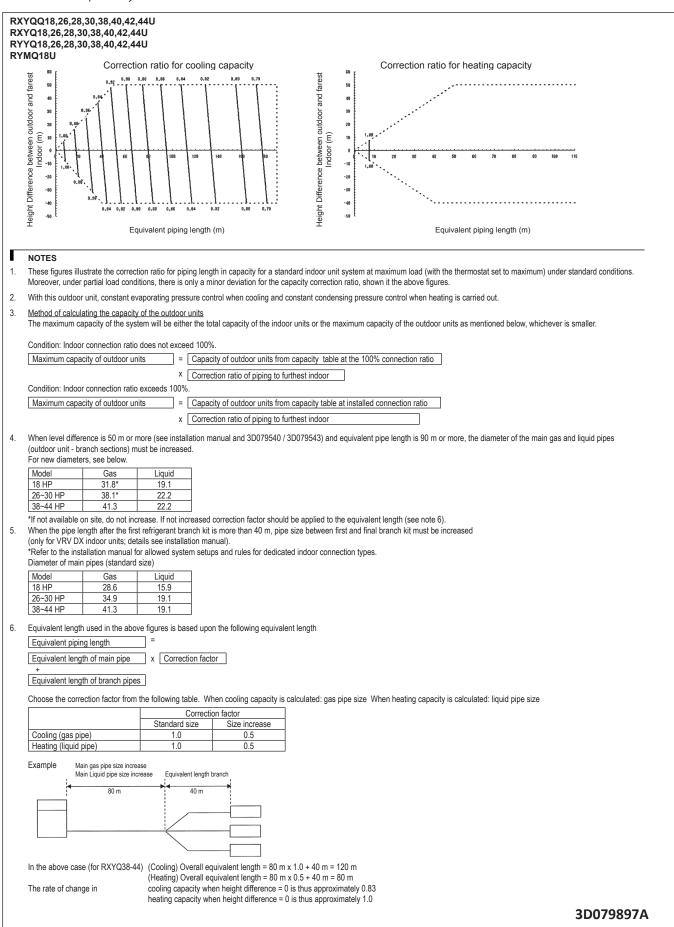

 An overview of <u>all software tools</u> that we offer can be found here: <u>https://my.daikin.eu/denv/en_US/home/applications/software-finder.html</u>


5 - 2 Capacity Correction Factor

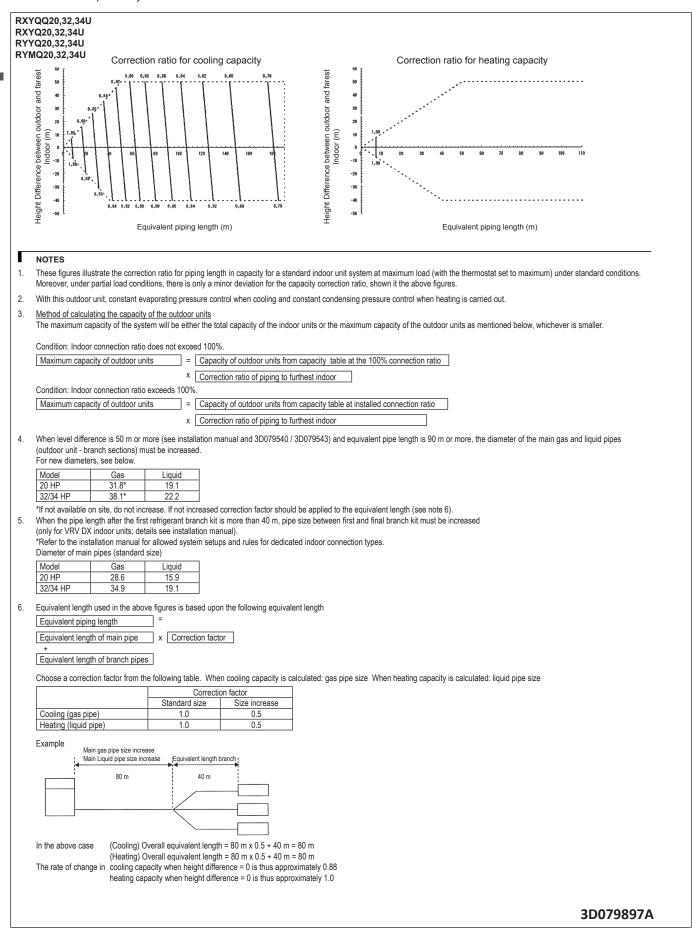


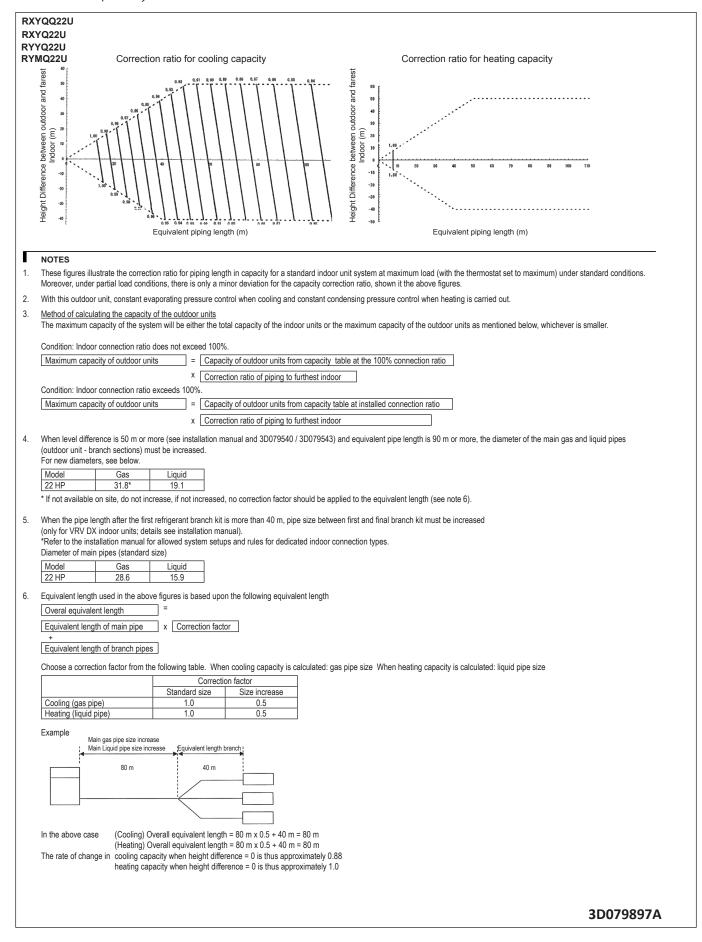
5 Capacity tables



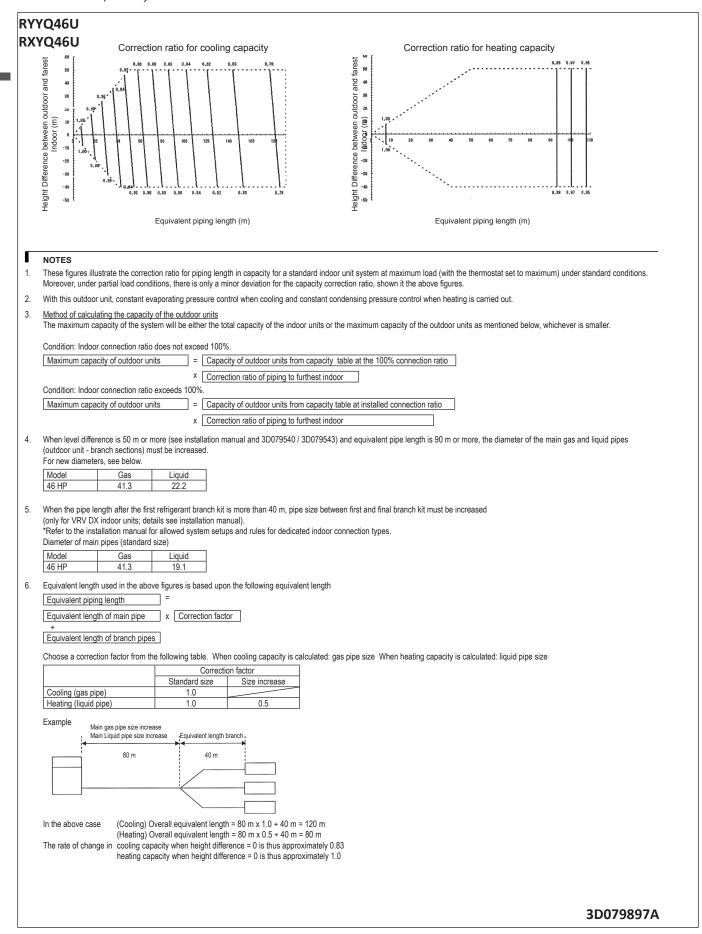


5 Capacity tables

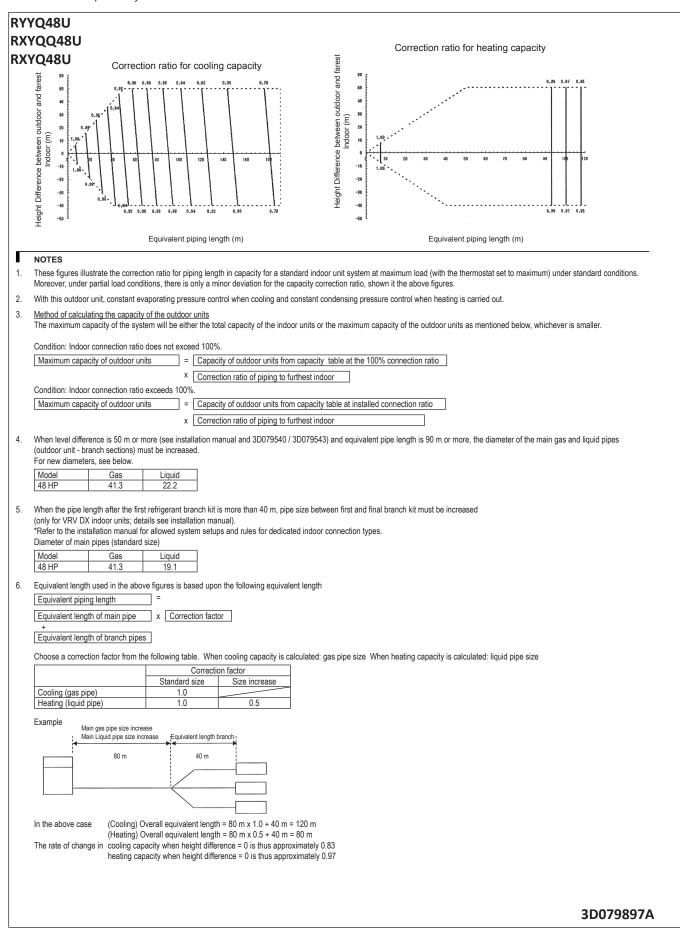

5 - 2 Capacity Correction Factor



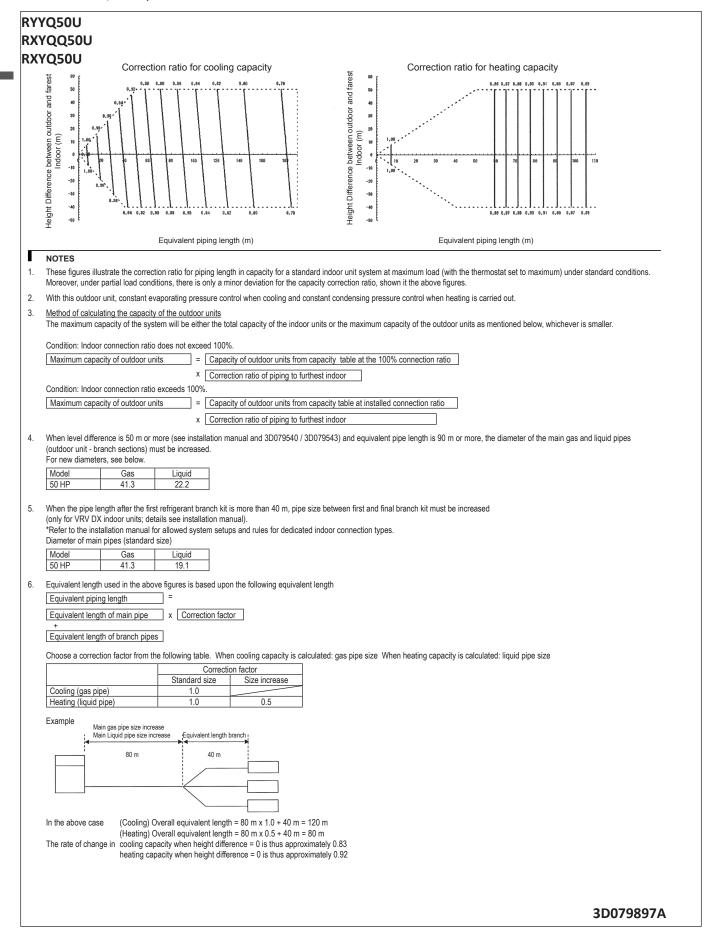
5 - 2 Capacity Correction Factor


34

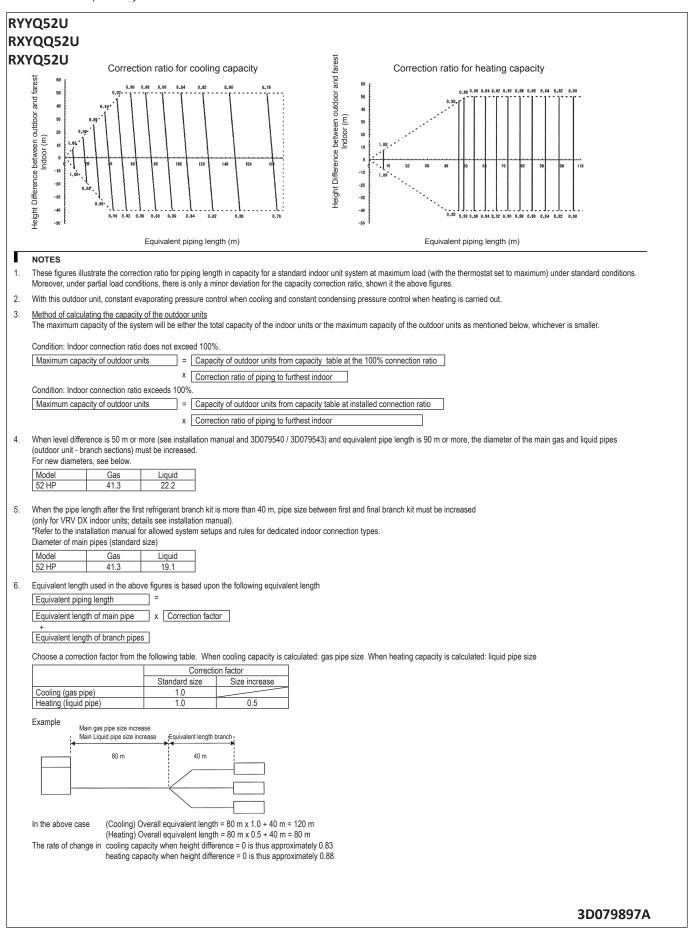
5 Capacity tables


5 Capacity tables

5 - 2 Capacity Correction Factor

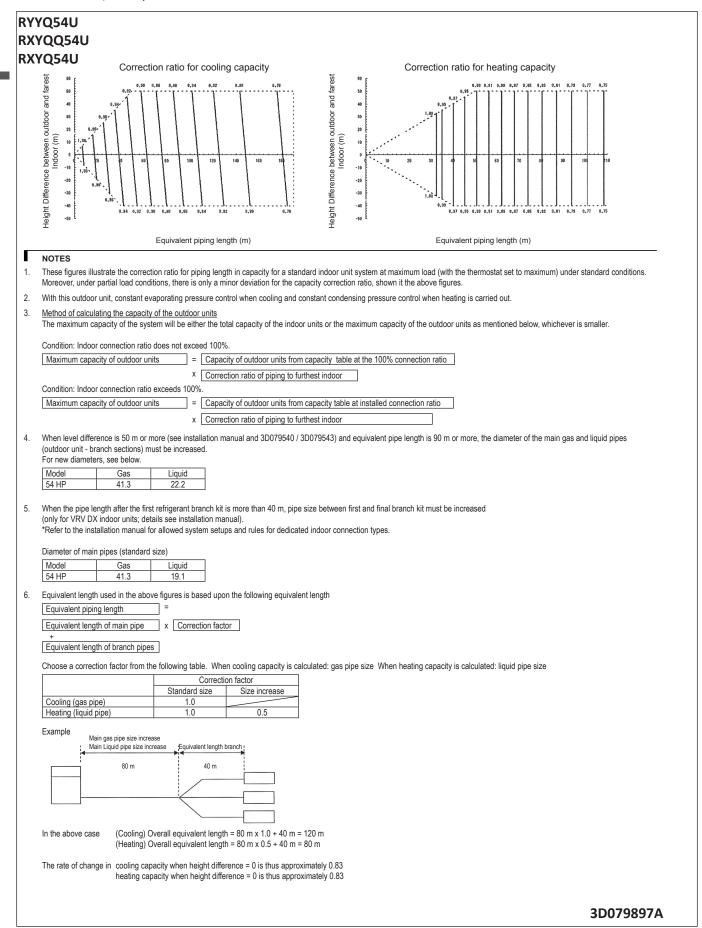

5 Capacity tables

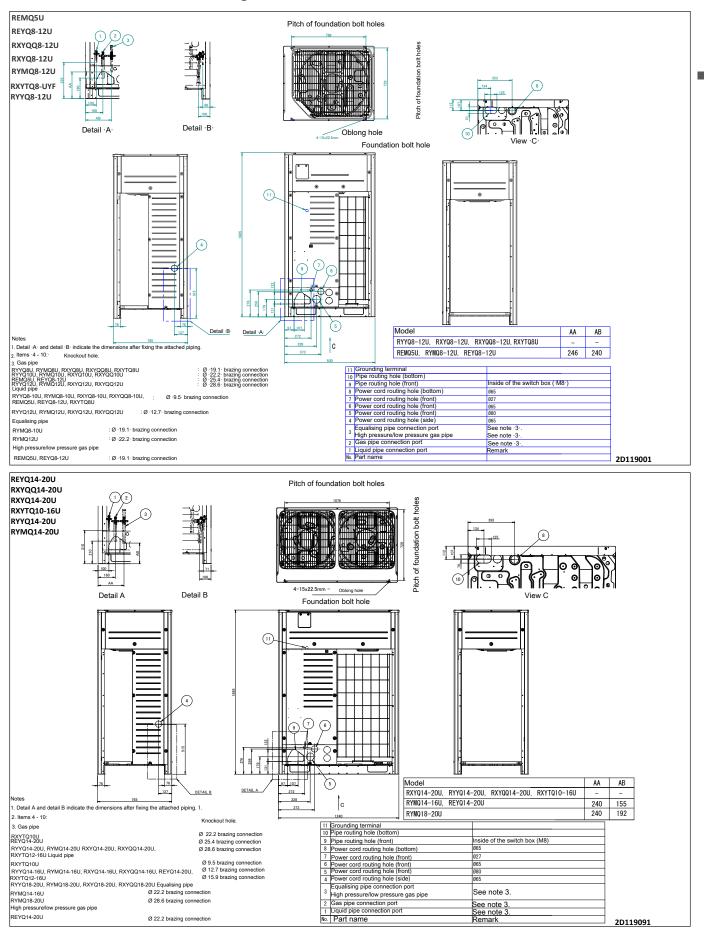
5 - 2 Capacity Correction Factor


5 Capacity tables

5 - 2 Capacity Correction Factor

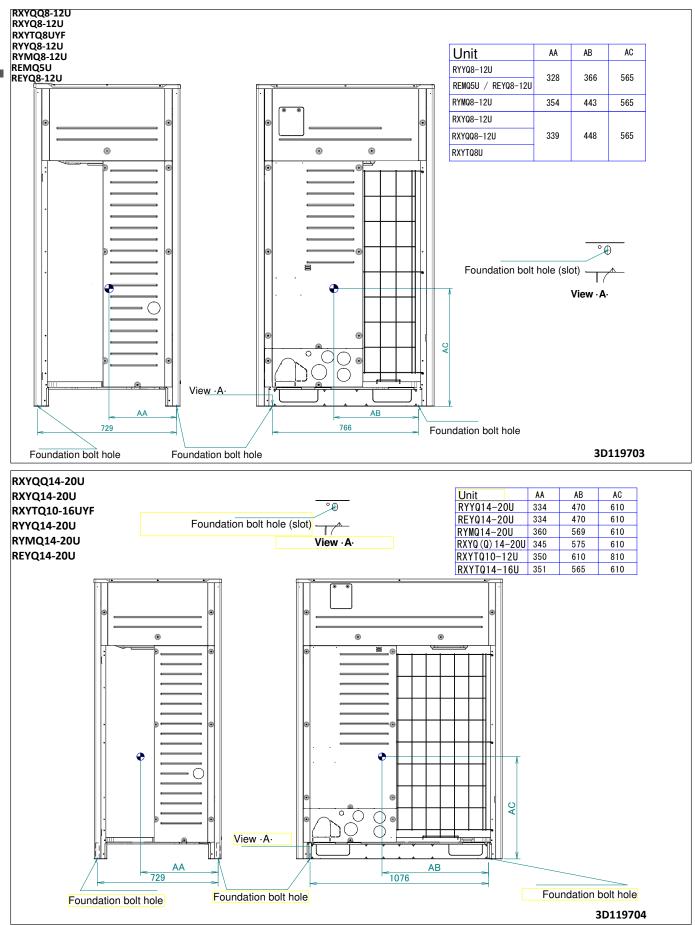
5 Capacity tables


5 - 2 Capacity Correction Factor


5 Capacity tables

5 - 2 Capacity Correction Factor

6 Dimensional drawings

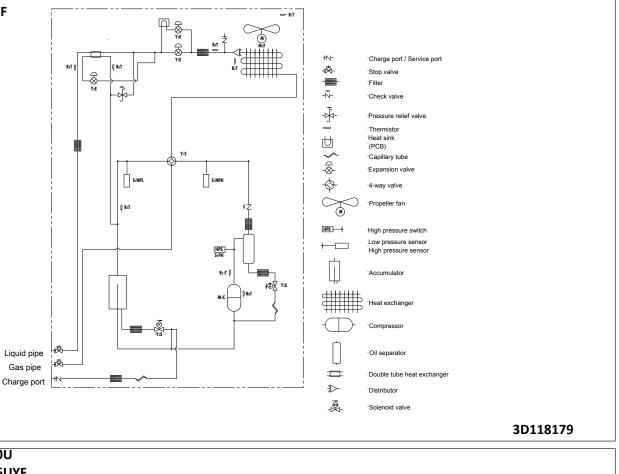

6 - 1 Dimensional Drawings

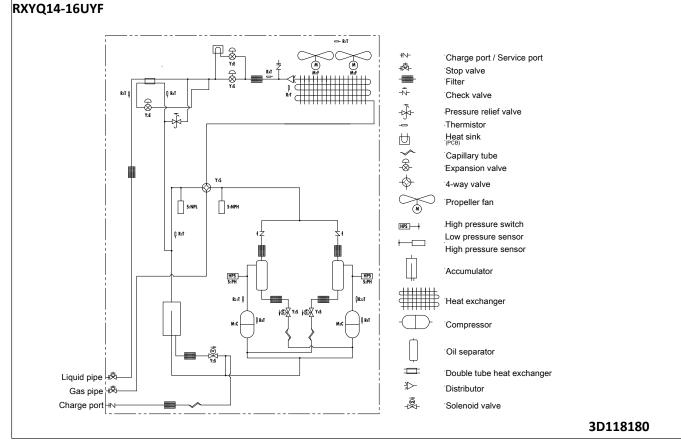
7 Centre of gravity

7 - 1 Centre of Gravity

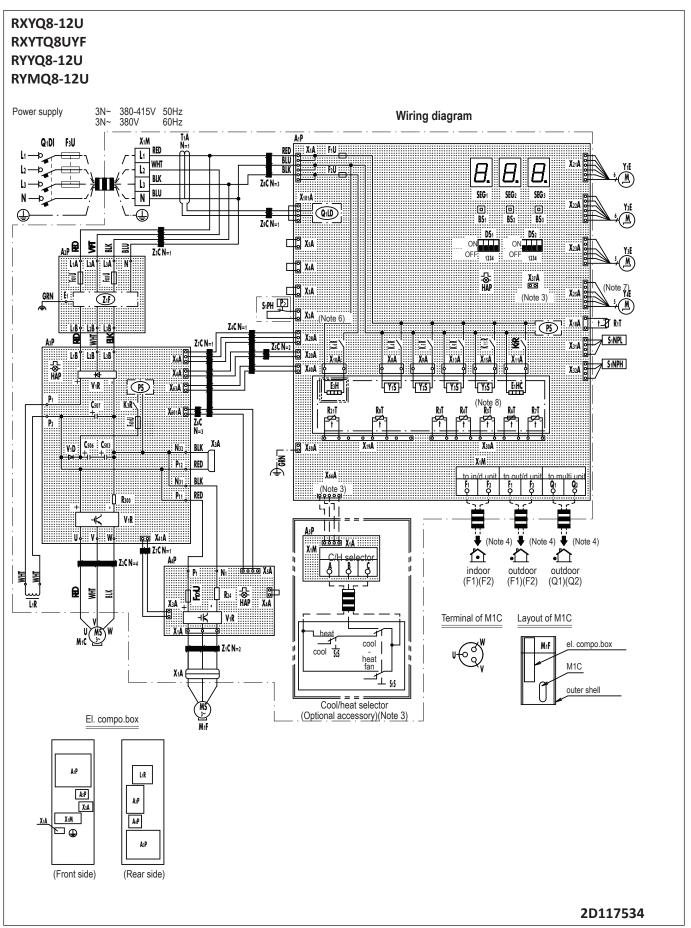
Piping diagrams 8

Piping Diagrams 8 - 1





RXYQ14-20U



9 Wiring diagrams

9 - 1 Wiring Diagrams - Three Phase

9 Wiring diagrams

9 - 1 Wiring Diagrams - Three Phase

RXYQ8-12U RXYTQ8UYF RYYQ8-12U

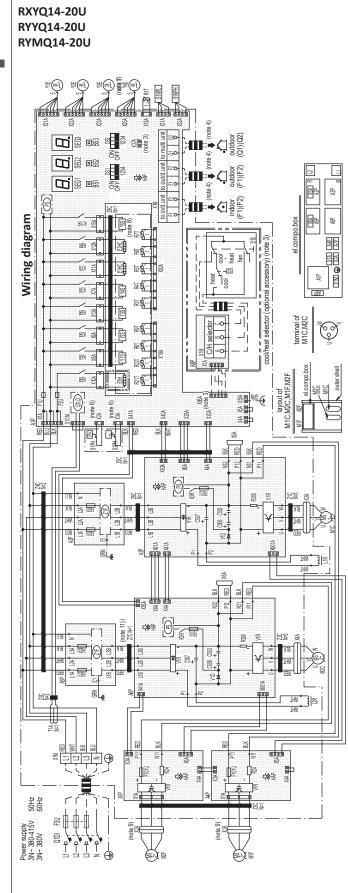
RYMQ8-12U

A1P	Printed Circuit Board (Main)	R3T	Thermistor (Accumulator)		
A2P	Printed Circuit Board (Noise Filter)	R4T	Thermistor (Heat Exc,Liq,Pipe)		
A3P	Printed Circuit Board (Inv)	R5T	Thermistor (Subcool,Liq,Pipe)		
A4P	Printed Circuit Board (Fan)	R6T	Thermistor (Heat Exc,Gas Pipe)		
A5P	Printed Circuit Board (ABC I/P)(Option)	R7T	Thermistor (Heat Exc,Deicer)		
BS1~3 (A1P)	Push Button Switch (Mode,Set,Return)	R8T	Thermistor (M1C body)		
C503,C506,C507 (A3P)	Capacitor	R21T	Thermistor (M1C discharge)		
DS1,DS2 (A1P)	DIP Switch	S1NPH	Pressure Sensor (High)		
E1HC	Crankcase Heater	S1NPL	Pressure Sensor (Low)		
E3H	Drainpan Heater (Option)	S1PH	Pressure Switch (Disch)		
F1U,F2U (A1P)	Fuse (T,3,15A,250V)	SEG1~SEG3 (A1P)	7-Segment Display		
F3U	Field Fuse	T1A	Current Sensor		
F101U (A4P)	Fuse	V1D (A3P)	Diode		
F401U,F403U (A2P)	Fuse	V1R (A3P,A4P)	Power Module		
F601U (A3P)	Fuse	X*A	Connector		
HAP (A1P,A3P, A4P)	Pilotlamp (Service Monitor-Green)	X1M (A1P)	Terminal Block (Control)		
K3R (A3P)	Magnetic Relay	X1M (A5P)	Terminal Block (Power Supply)(Option)		
K4R (A1P)	Magnetic Relay (Y1S)	Y1E	Electronic Expansion Valve(Main)		
K5R (A1P)	Magnetic Relay (Y2S)	Y2E	Electronic Expansion Valve (Injection)		
K6R (A1P)	Magnetic Relay (E3H)	Y3E	Electronic Expansion Valve (Refrigerant Jacket)		
K7R (A1P)	Magnetic Relay (E1HC)	Y4E	Electronic Expansion Valve (Storage Vessel)		
K9R (A1P)	Magnetic Relay (Y3S)	Y1S	Solenoid Valve (Main)		
K11R (A1P)	Magnetic Relay (Y5S)	Y2S	Solenoid Valve (Accumulator Oil Return)		
L1R	Reactor	Y3S	Solenoid Valve (Oil1)		
M1C	Motor (Compressor)	Y5S	Solenoid Valve (Sub)		
M1F	Motor (Fan)	Z*C	Noise Filter (Ferrite Core)		
PS (A1P,A3P)	Switching Power Supply	Z*F (A2P)	Noise Filter (With Surge Absorber)		
Q1DI	Field Earth Leakage Breaker	Co	nnector For Optional Accessories		
Q1LD (A1P)	Field Earth Current Detector	X10A	Connector (Drainpan Heater)		
R24 (A4P)	Resistor (Current Sensor)	X37A	Connector (Power Adapter)		
R300 (A3P)	Resistor (Current Sensor)	X66A	Connector (Remote Switching Cool/Heat Selector)		
R1T	Thermistor (Air)	AUOA			

NOTES

1. This wiring diagram applies only to the outdoor unit.

2. □== :field wiring, ____: terminal block, ©⊡: connector, -_-: terminal, ⊕: protective earth (screw), ♠: functional earth, ____: earth wiring, ____: field supply, ____: PCB, ___: switch box, I == : option


- 3. When using the optional adapter, refer to the installation manual of the optional adapter.
- 4. For connection wiring to indoor-outdoor transmission F1-F2, outdoor-outdoor transmission F1-F2, outdoor-multi transmission Q1-Q2, refer to the installation manual.
- 5. How to use BS1~3 switch. Refer to "service precaution" label on el. compo. box cover.
- 6. When operating, don't shortcircuit the protection devices (S1PH).
- 7. Only for RYYQ model.
- 8. Only for RYYQ/RYMQ model.
- 9. Colors: BLK: Black, RED: Red, BLU: Blue, WHT: White, GRN: Green.

2D117534

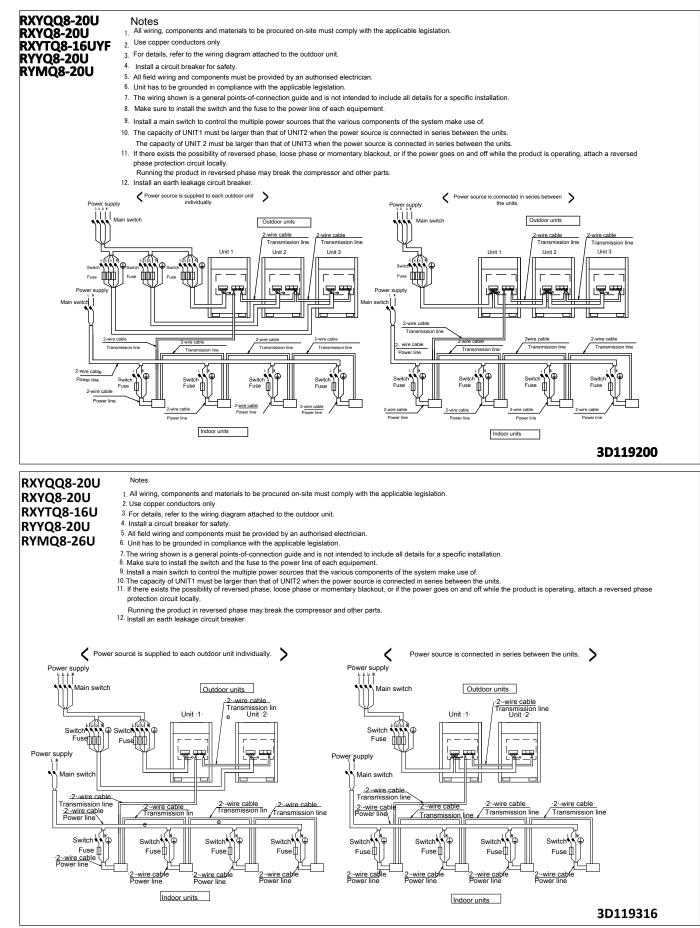
DAIKIN

Wiring diagrams 9

9 - 1 Wiring Diagrams - Three Phase

A1P	Printed circuit board (main)
A2P, A5P	Printed circuit board (noise filter)
A3P, A6P	Printed circuit board (inv)
A4P, A7P	Printed circuit board (fan)
A8P	Printed circuit board (ABC I/P)
BS1~3 (A1P)	Push button switch (mode, set, return)
C503, C506, C507 (A3P, A6P)	Capacitor
DS1, DS2 (A1P)	Dip switch S1PH,
E1HC, E2HC	Crankcase heater
E3H	Drainpan heater (option)
F1U, F2U (A1P)	Fuse (T, 3, 15A, 250V)
F3U	Field fuse
F101U (A4P, A7P)	Fuse
F401U, F403U (A2P, A5P)	Fuse
F601U (A3P, A6P)	Fuse
HAP (A1P, A3P, A4P, A6P, A7P)	Pilotlamp (service monitor-green)
K3R (A3P, A6P)	Magnetic relay
K3R (A1P)	Magnetic relay (Y4S)
K4R (A1P)	Magnetic relay (Y1S)
K5R (A1P)	Magnetic relay (Y2S)
K6R (A1P)	Magnetic relay (E3H)
K7R (A1P)	Magnetic relay (E1HC)
K8R (A1P)	Magnetic relay (E2HC)
K9R (A1P)	Magnetic relay (Y3S)
K11R (A1P) L1R, L2R	Magnetic relay (Y5S)
M1C, M2C	Reactor Motor (compressor)
M1F, M2F	Motor (compressor)
PS (A1P, A3P, A6P)	Switching power supply
Q1DI	Field earth leakage breaker
Q1LD (A1P)	Field earth current detector
R24 (A4P, A7P)	Resistor (current sensor)
R300 (A3P, A6P)	Resistor (current sensor)
R1T	Thermistor (air)
R3T	Thermistor (accumulator)
R4T	Thermistor (heat exc, liq, pipe)
R5T	Thermistor (subcool, liq, pipe)
R6T	Thermistor (heat exc, gas pipe)
R7T	Thermistor (heat exc, deicer)
R8T, R9T	Thermistor (M1C, M2C body)
R21T, R22T	Thermistor (M1C, M2C discharge)
S1NPH	Pressure sensor (high)
S1NPL	Pressure sensor (low)
S1PH, S2PH	Pressure switch (disch)
SEG1~SEG3 (A1P)	7-segment display
T1A	Current sensor
V1D (A3P, A6P)	Diode
V1R (A3P, A4P, A6P, A7P)	Power module
X*A	Connector
X1M (A1P)	Terminal block (control)
X1M (A8P)	Terminal block (power supply)
Y1E	Electronic expansion valve (main)
Y2E	Electronic expansion valve (injection)
Y3E	Electronic expansion valve (refrigerant jacket)
Y4E	Electronic expansion valve (storage vessel (note 7)
Y1S	Solenoid valve (main)
Y2S	Solenoid valve (accumulator oil return)
Y3S	Solenoid valve (oil1) Solenoid valve (oil2)
Y4S	Solenoid valve (oil2) Solenoid valve (sub) (note 8)
Y5S Z*C	
Z*C Z*F (A2P, A5P)	Noise filter (ferrite core)
L F (AZP, ADP)	Noise filter (with surge absorber)
0-	negator for optional according
X10A	nnector for optional accessories Connector (drainpan heater)
X37A	Connector (power adapter)
X66A	Connector (remote switching
	Cool/heat selector)

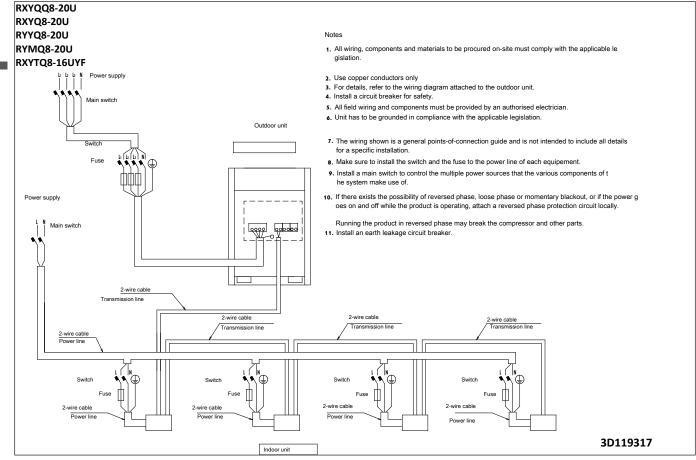
1. This wiring diagram applies only to the outdoor unit.

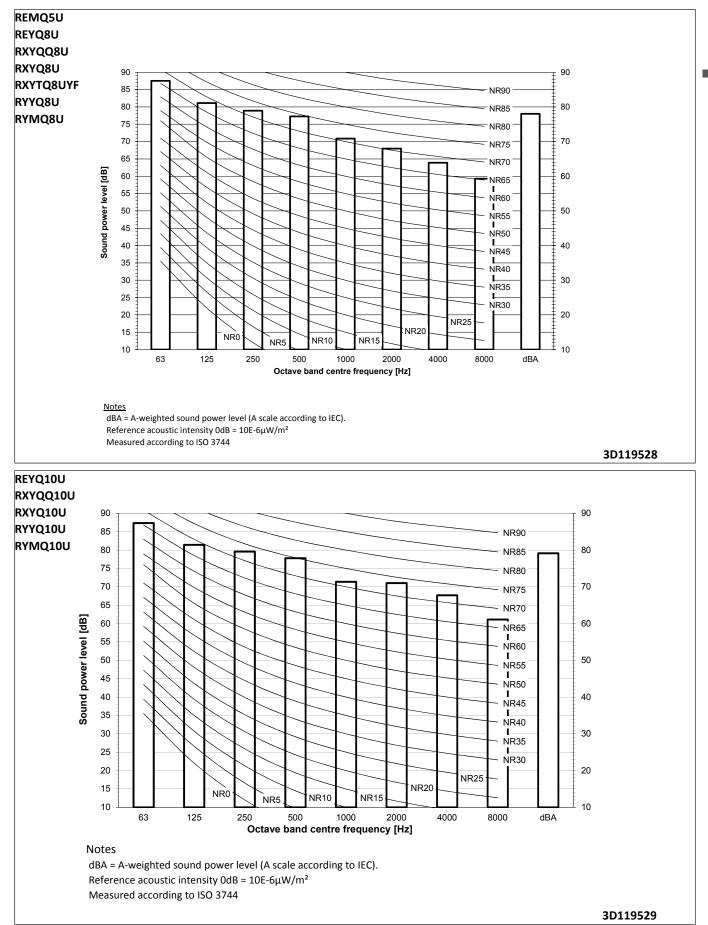

- 2. :: Field wiring, : terminal block, : connector, -- : terminal,
- 3. 4.
- transmission F1-F2, outdoor-multi transmission Q1-Q2, refer to the installation manual. How to use BS1-3 switch. Refer to "service precaution" label on el. Compo. Box cover. When operating, don't shortcircuit the protection devices (S1PH,S2PH)
- 5.
- 6.
- Only for RYYQ model. Only for RYYQ/RYMQ model. 7. 8.
- Connector X1A (M1F) is red, connector X2A (M2F) is white.
 Colors: BLK:black, RED:red, BLU:blue, WHT:white, GRN:green.
- 11. Only for 14,16 class

2D117536C

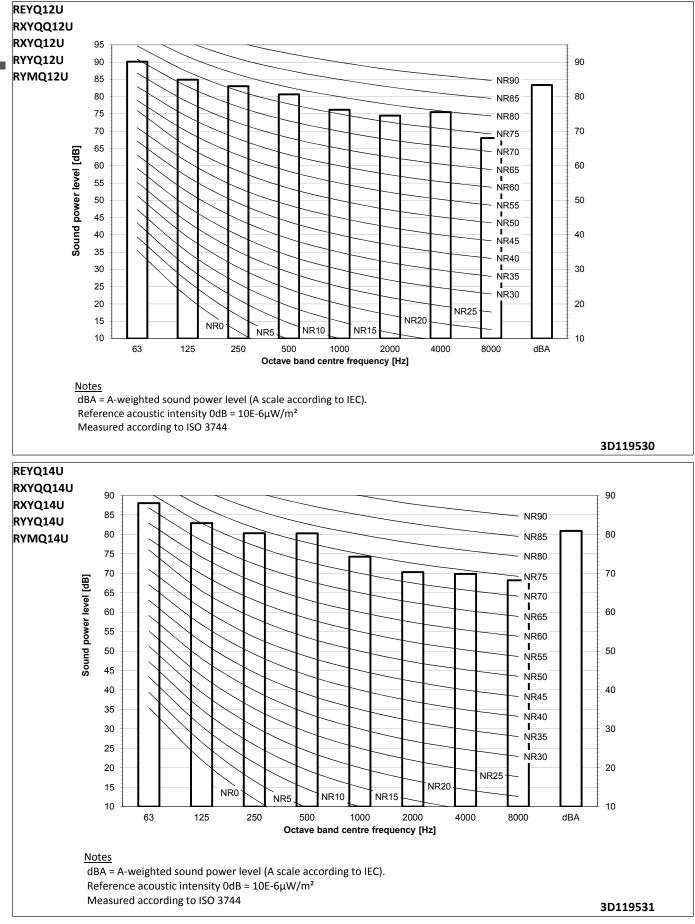
9

10 External connection diagrams


10 - 1 External Connection Diagrams

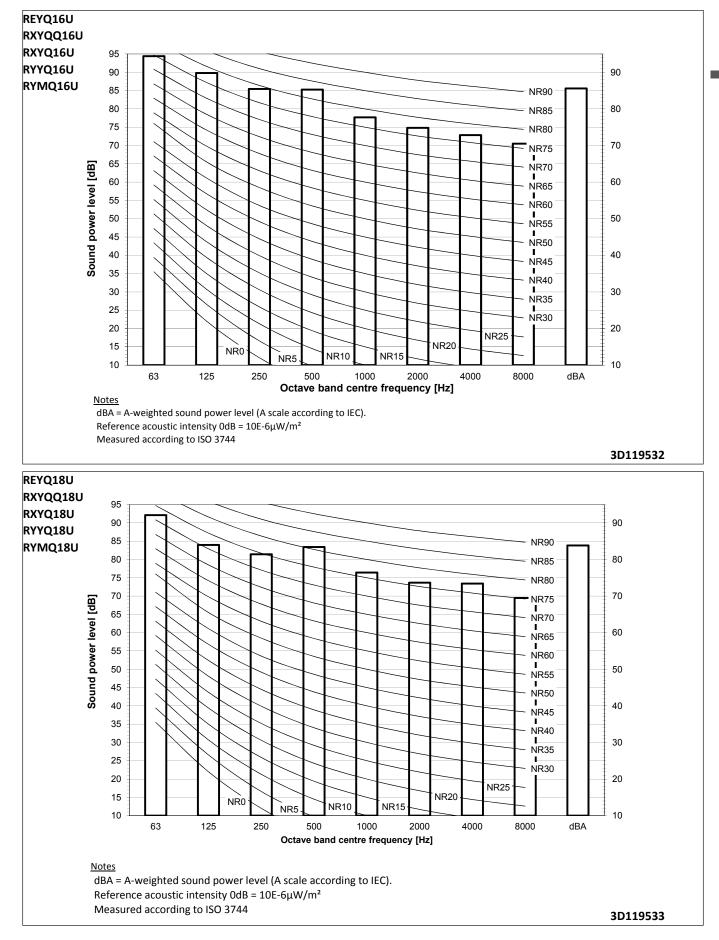

10 External connection diagrams

10 - 1 External Connection Diagrams

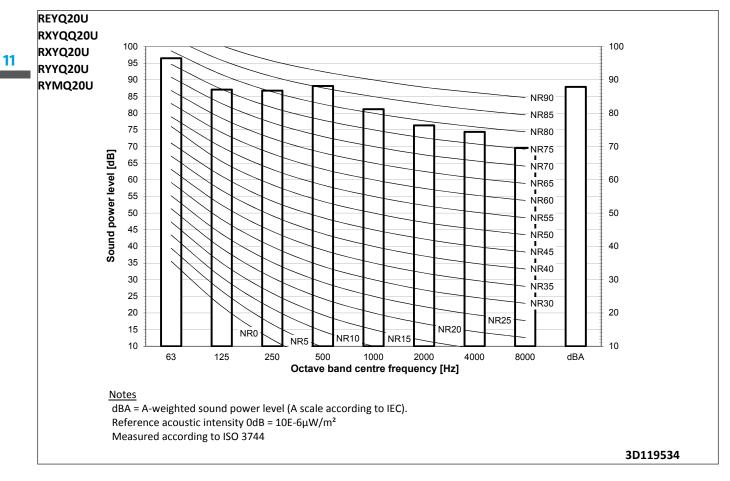


11 Sound data

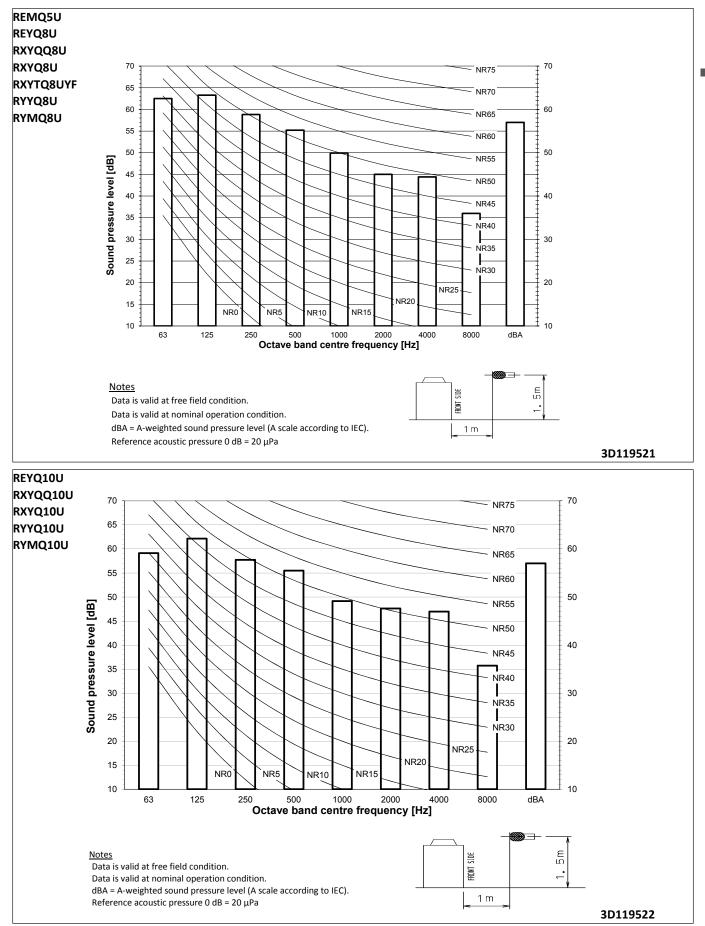
11 - 1 Sound Power Spectrum



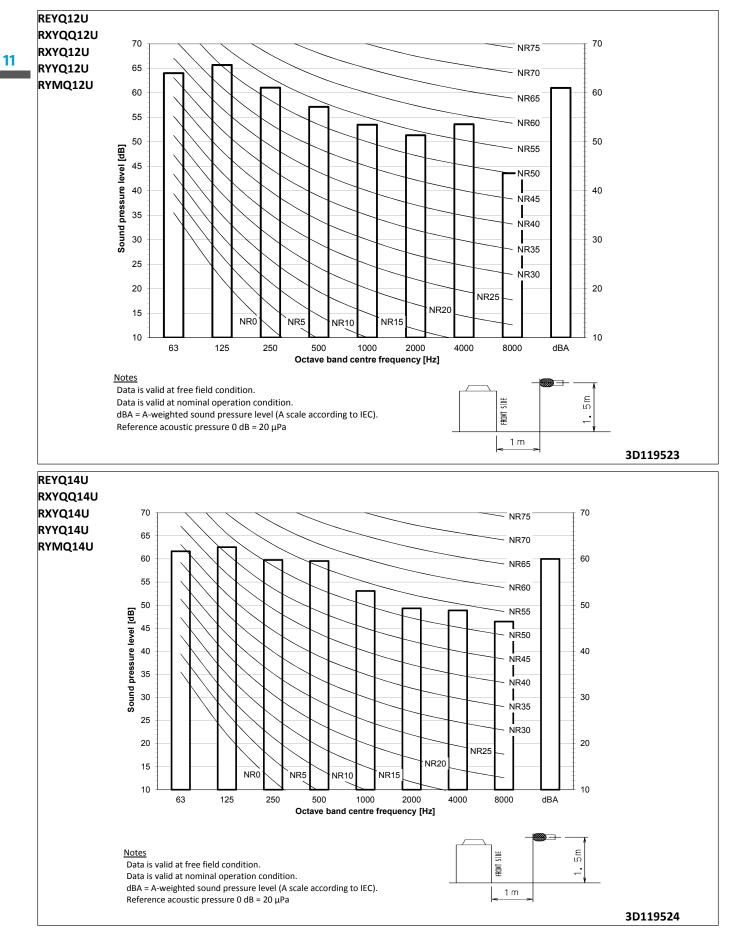
11 - 1 Sound Power Spectrum


11

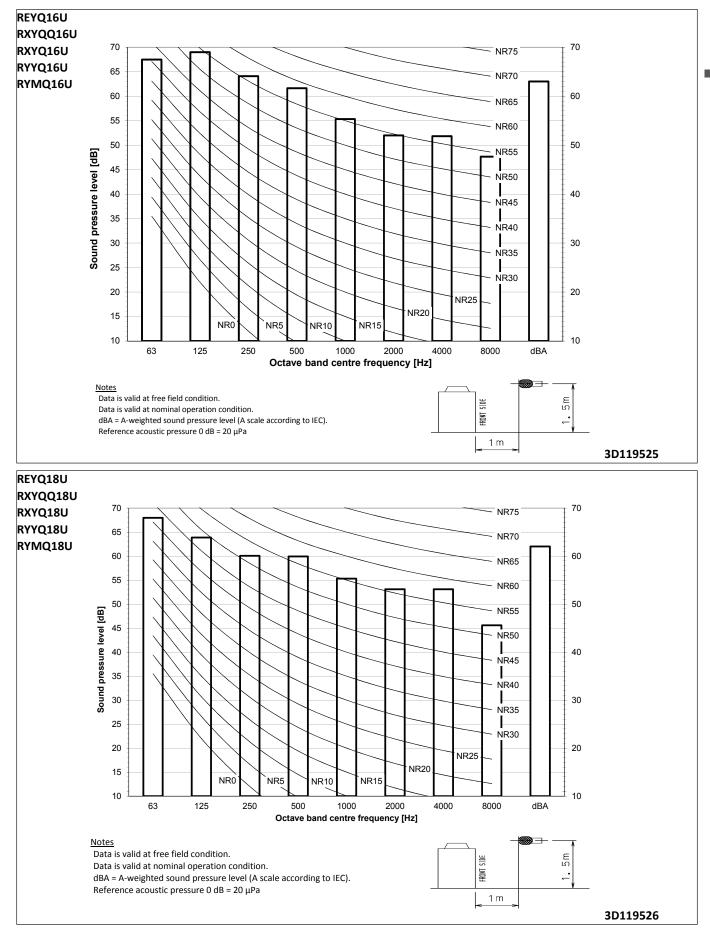
11 - 1 Sound Power Spectrum



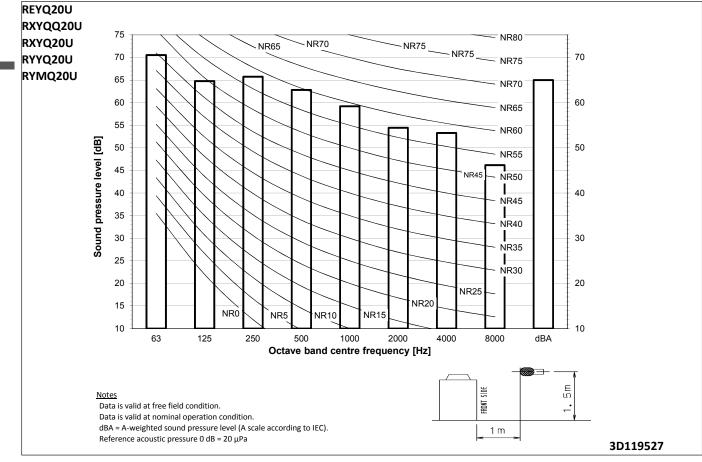
11 - 1 Sound Power Spectrum



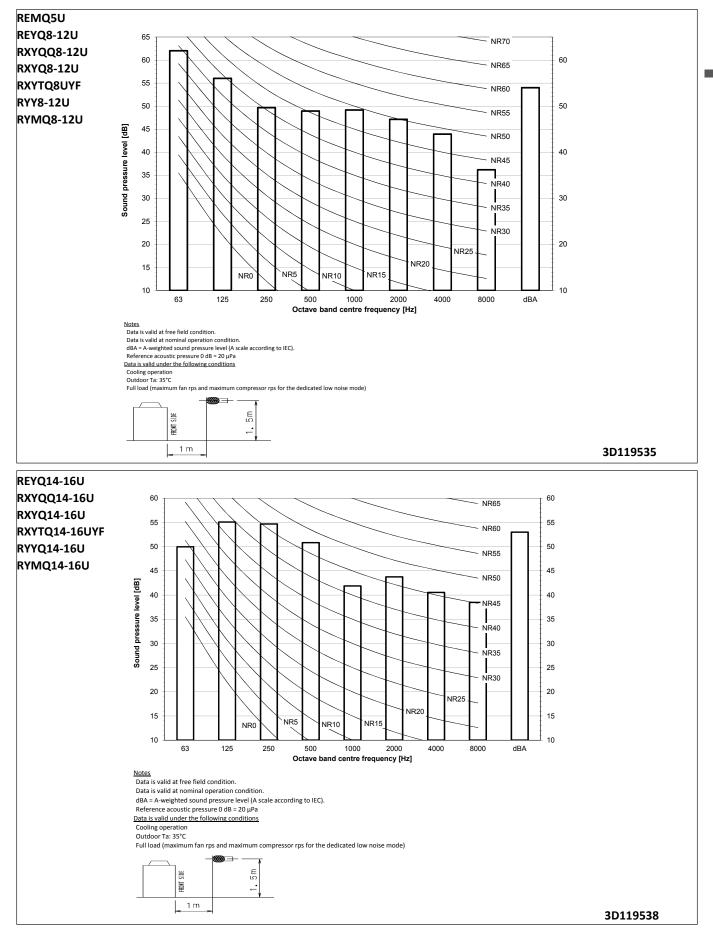
11 Sound data


11 - 2 Sound Pressure Spectrum

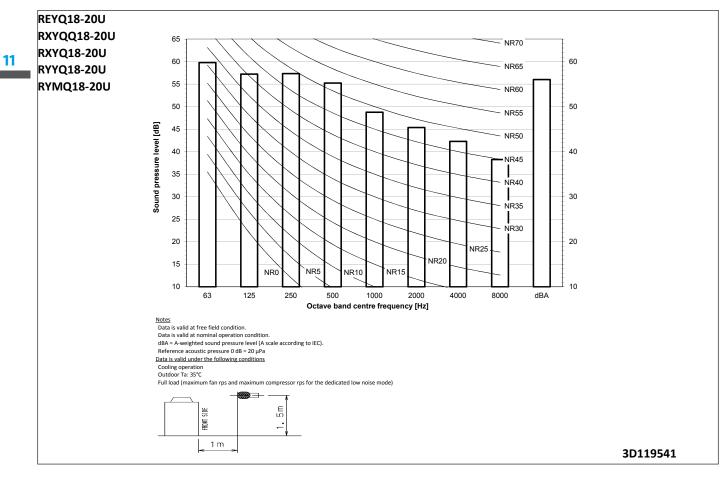
11 - 2 Sound Pressure Spectrum



11 - 2 Sound Pressure Spectrum

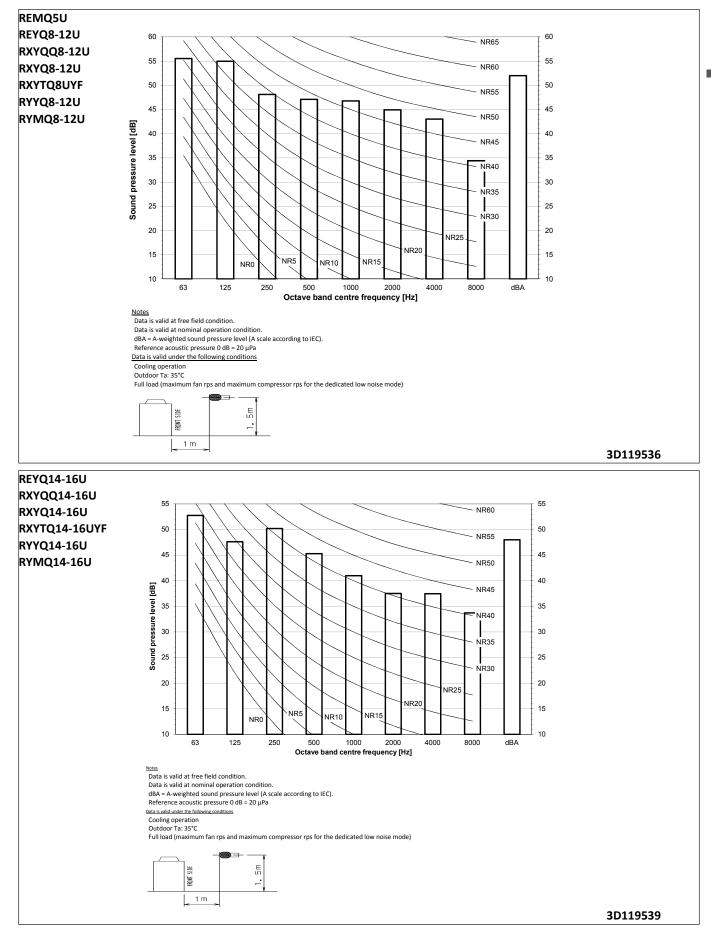

DAIKIN

11 - 2 Sound Pressure Spectrum

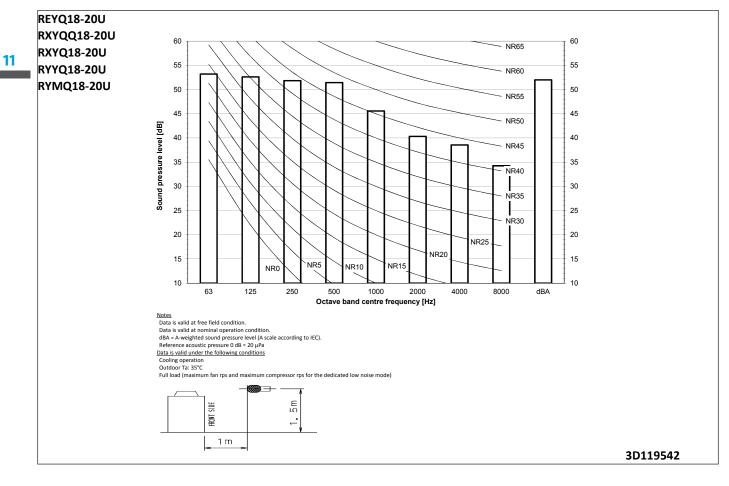


11 Sound data

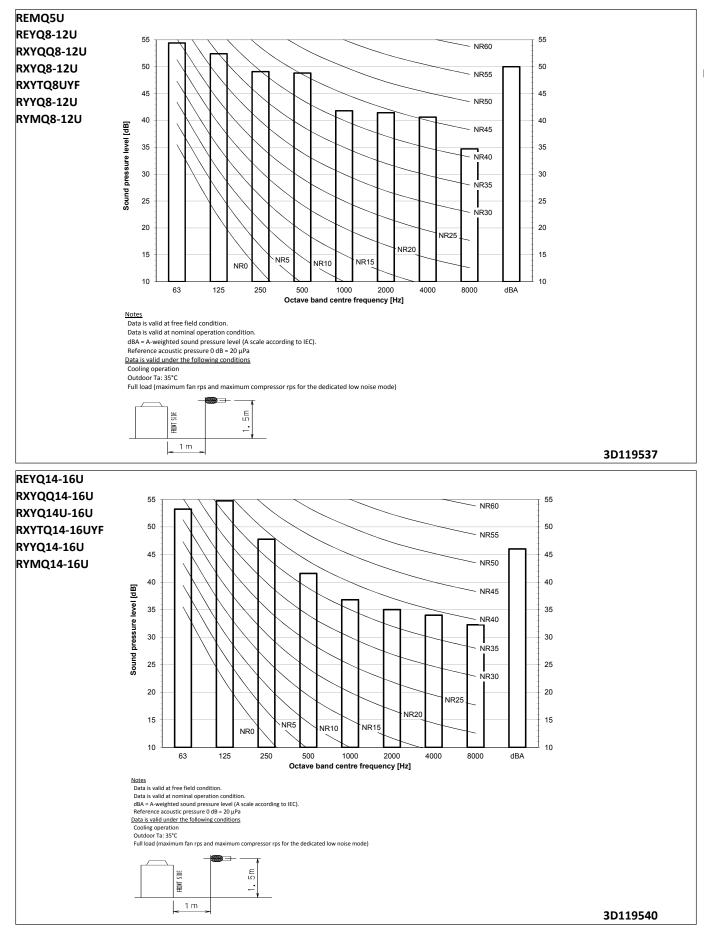
11 - 3 Sound Pressure Spectrum Quiet Mode Level 1



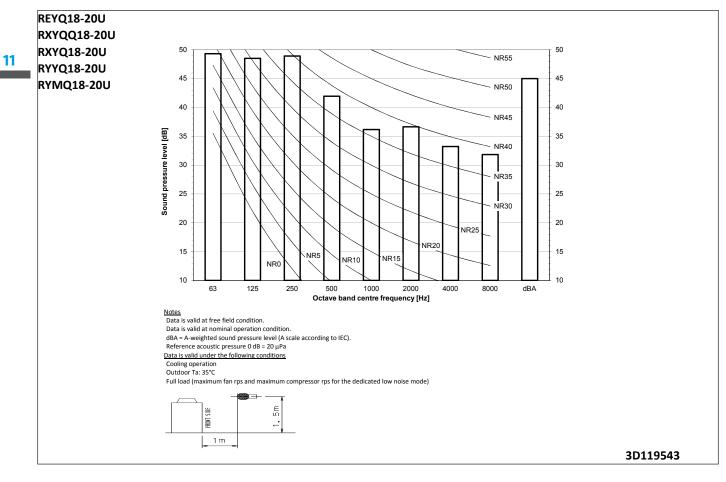
11 - 3 Sound Pressure Spectrum Quiet Mode Level 1


11 Sound data

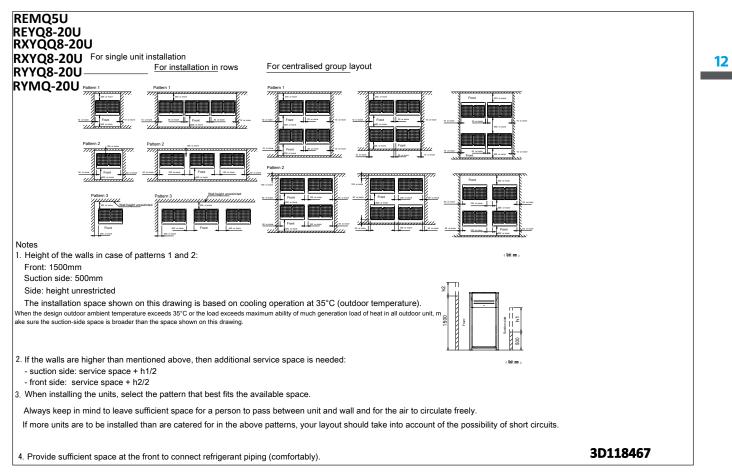
11 - 4 Sound Pressure Spectrum Quiet Mode Level 2

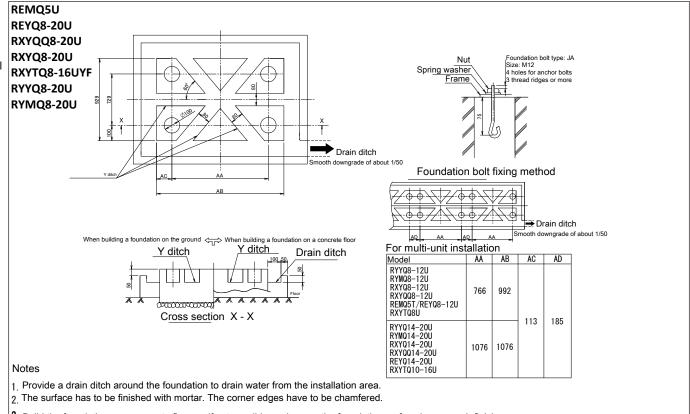


11 - 4 Sound Pressure Spectrum Quiet Mode Level 2



11 Sound data


11 - 5 Sound Pressure Spectrum Quiet Mode Level 3


11 - 5 Sound Pressure Spectrum Quiet Mode Level 3

12 - 1 Installation Method

12 - 2 Fixation and Foundation of Units

3. Build the foundation on a concrete floor or, if not possible, make sure the foundation surface has a rough finish.

4. Use a cement/sand/gravel ratio of 1/2/4 for the concrete, and a diameter of 10 mm for the reinforcement bars (approximately, 300mm intervals).

5. When installing the equipment on a roof, make sure to check the strength of the floor and take adequate water proofing measures. **3D118459**

12 - 3 Refrigerant Pipe Selection

RXYQ-U
RYYO-Y
RYMQ-U

VRV4	
Heat pump	
Piping restrictions	1/3

For the reference drawing, see		м	aximum piping leng	th	Мах	Total piping length		
		Longest pipe	After first branch	After first branch (for multi-outdoor)	Indoor-to-outdoor ⁽³⁾	Indoor-to-indoor	Outdoor-to-outdoor	rotal piping length
page 2/3.		(A+[B,G,E,J])	(B,G,E,J)	(D)	(H1)	(H2)	(H3)	
		Actual / (Equivalent)	Actual	Actual / (Equivalent)	Outdoor above indoor / (indoor above outdoor)			
Standard								
VRV DX indoor units only		165/(190)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	1000m
Standard multi-combination								
All multi-outdoor-unit combinations except standard multi-outdoor-unit combinations		135/(160)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	500m
Hydrobox connection		135/(160)m	40m	10/(13)m	50/(40)m	15m	5m	300-500m ⁽⁵⁾
RA connection		100/(120)m	50m ⁽²⁾	-	50/(40)m	15m	-	250m
	Pair	50/(55)m ⁽⁴⁾	-	-	40/(40)m	-	-	-
AHU connection	Multi (6)	165/(190)m	40m	10/13m	40/(40)m	15m	5m	1000m
	Mix (7)	165/(190)m	40m	10/13m	40/(40)m	15m	5m	1000m

Remark

For standard multi-outdoor-unit combinations, see 3D079534.

(1) If all conditions below are met, the limitation can be extended up to 90 m $\,$

- a. The piping length between all indoor units and the nearest branch kit is $\leq 40m.$
- b. It is necessary to increase the size of the gas and liquid piping if the pipe length between the first and the farthest indoor unit is >40m.

If the increased pipe size is larger than the pipe size of the main pipe, also increase the size of the main pipe.

c. When the piping size is increased, the piping length has to be counted as double.

The total piping length has to be within limitations.

d. The piping length difference between the nearest indoor unit from the first branch to the outdoor unit and the farthest indoor unit to the outdoor unit is < 40m.

If the piping length between the first branch and the BP box or VRV indoor unit is more than 20m, increase the length of the gas and liquid piping between the first branch and the BP box or VRV (2) indoor unit.

(3) An extension to up to 90 m is possible without an additional option kit. Respect the following conditions:

-> If the outdoor units are positioned higher than the indoor units:

- a. Size up the liquid piping
- b. A dedicated setting on the outdoor unit is required.
- -> If the outdoor units are positioned lower than the indoor units:
- a. 40~60m Minimum connection ratio: 80%
 - 60~65m Minimum connection ratio: 90%
 - 65~80m Minimum connection ratio: 100%
 - 80~90m Minimum connection ratio: 110%
- b. Size up the liquid piping

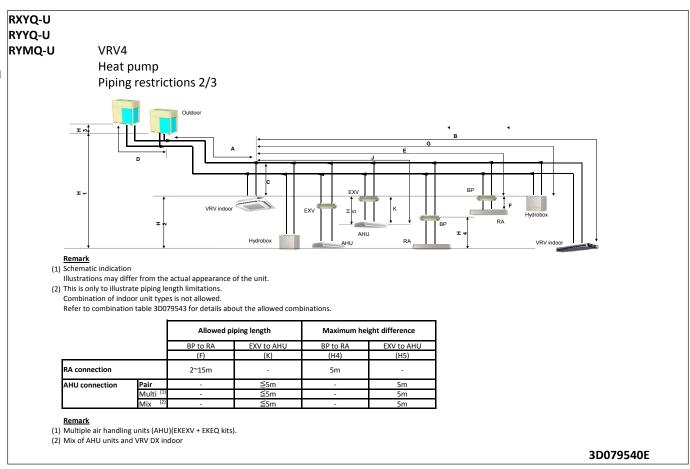
A dedicated setting on the outdoor unit is required.

(4) The allowable minimum length is 5 m.

(5) In case of multi-outdoor-unit combinations.

(6) Multiple air handling units (AHU)(EKEXV + EKEQ kits).

(7) Mix of AHU units and VRV DX indoor


(8) If the equivalent piping length between is > 90m, size up the main liquid and gas piping.

3D079540E

12 Installation

12 - 3 Refrigerant Pipe Selection

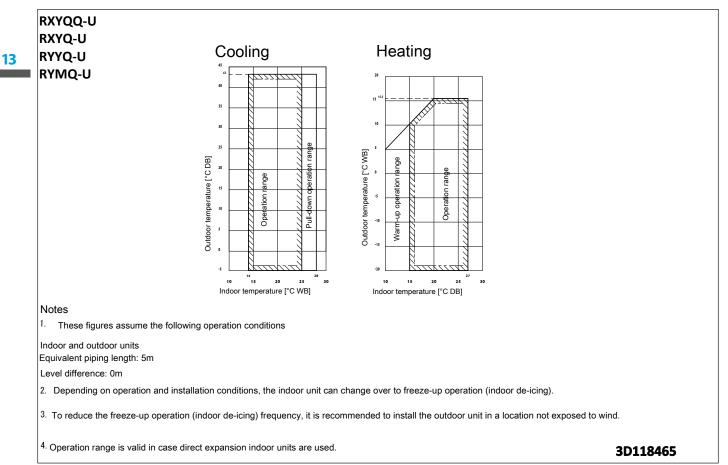
12 - 3 Refrigerant Pipe Selection

RXYQ-U RYYQ-U RYMQ-U

VRV4 Heat pump Piping restrictions 3/3

System pattern Allowed connection ratio (CR)	Τα	otal	Allowed capacity				
Other combinations are not allowed.	Capacity	Indoor unit quantity (VRV, RA, AHU, Hydrobox)	VRV DX indoor unit	RA DX indoor unit	Hydrobox unit	Air handling unit (AHU)	
VRV DX indoor units only	50~130%	Max.64	50~130%	-	-	-	
VRV DX indoor unit + RA DX	80~130%	Max.32 ⁽¹⁾	0~130%	0~130%	-	-	
RA DX indoor unit	80~130%	Max.32 ⁽¹⁾	-	80~130%	-	-	
VRV DX indoor unit + LT hydrobox	50~130%	Max.32	50~130%	-	0~80%	-	
VRV DX indoor unit + AHU	50~110% ⁽³⁾	Max.64 ⁽²⁾	50~110%	-	-	0~110%	
AHU only Pair + multi (4)	90~110% ⁽³⁾	Max.64 ⁽²⁾	-	-	-	90~110%	

Remark


- (1) There is no restriction on the number of connectable BP boxes.
- (2) For connection with AHU
- EKEXV kits are also considered indoor units.
- (3) Restrictions regarding the air handling unit capacity
- (4) Pair AHU = system with 1 air handling unit connected to one outdoor unit Multi AHU = system with multiple air handling units connected to one outdoor unit

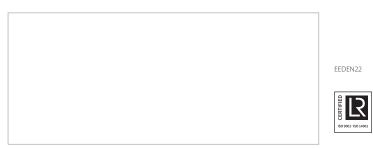
About ventilation applications

- FXMQ_MF units are considered air handling units, following air handling unit limitations. Maximum connection ratio when combined with VRV DX indoor units: <30%. Maximum connection ratio when only air handling units are connected: <100%. For information on the operation range, refer to the documentation of the FXMQ_MF unit.
- II. Biddle air curtains are considered air handling units, following air handling unit limitations: For information on the operation range, refer to the documentation of the Biddle unit.
- III. [EKEXV + EKEQ] units combined with an air handling unit are considered air handling units, following air handling unit limitations. For information on the operation range, refer to the documentation of the EKEXV-EKEQ unit.
- IV. VKM units are considered to be regular VRV DX indoor units.
 For information on the operation range, refer to the documentation of the VKM unit.
- V. Because there is no refrigerant connection with the outdoor unit (only communication F1/F2), VAM units do not have connection limitations. However, since there is communication via F1/F2, count them as regular indoor unit when calculating the maximum allowed number of connectable indoor units.

Operation range 13

13 - 1 **Operation Range**

14 Appropriate Indoors


14 - 1 Appropriate Indoors

RXYQ-U	Reco	innended indo	or units for ·RX			outdoor units					
YYQ-U YMQ-U	 HP	8	10	12	14	16	18	20			
KTWQ-0		4xFXMQ50	4xFXMQ63	6xFXMQ50	1xFXMQ50 5XFXMQ63	4XFXMQ63 2xFXMQ80	3xFXMQ50 5XFXMQ63	2xFXMQ50 6xFXMQ63			
	unit. For de	tails about the all	owed combination	s, see the enginee	ring databook.		por units defined fo	or a single outdoor			
		•	units for ·RXYQ	*U* / RYYQ*U*	/ RYMQ*U*∙ ou	tdoor units					
		red by ·ENER LC)T21· 50-63-80-100-125								
		-XFQ20-23-32-40- -XZQ15-20-25-32-									
		XCQ20-25-32-40-									
	F	FXKQ25-32-40-63									
		FXDQ15-20-25-32-40-50-63									
	FXSQ15-20-25-32-40-50-63-80-100-125-140										
		FXMQ50-63-80-100-125-200-250									
	FXAQ15-20-25-32-40-50-63 FXHQ32-63-100										
	FXHQ32-63-100 FXUQ71-100										
	FX0Q/1-100 FXNQ20-25-32-40-50-63										
	FXLQ20-25-32-40-50-63										
	Covered by •ENER LOT10•										
	FTXJ25-35-50										
	FTXA20-25-35-42-50										
	FLXS25-35-50-60 FVXM25F-35F-50F										
	FVXM25F-35F-50F FVXG25-35-50										
	FVXd22-35-30 FTXM20F-35R-35R-42R-50R-60R-71R										
	CVXM20A										
	Outsi	Outside the scope of ·ENER LOT21·									
	EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF										
	HXY080-125										
	VKM50-80-100										
	CYV5100-150-200-250										
	(CYVM100-150-200	J-250						3D11846		

Daikin Europe N.V. Naamloze Vennootschap - Zandvoordestraat 300 - 8400 Oostende - Belgium - www.daikin.eu - BE 0412 120 336 - RPR Oostende (Responsible Editor)

02/2022

CE

The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V. / Daikin Central Europe HandelsGmbH. Daikin Europe N.V. / Daikin Central Europe HandelsGmbH have compiled the content of this publication to the best of their knowledge. No express or implied warranty is given for the completeness, accuracy, reliability of fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. / Daikin Central Europe HandelsGmbH explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Daikin Europe N.V.