

Серия VRV IV с водяным охлаждением Кондиционирование воздуха Технические данные RWEYQ-T9

DAIKIN DA

RWEYQ8T9Y1B RWEYQ10T9Y1B RWEYQ12T9Y1B RWEYQ14T9Y1B RWEYQ16T9Y1B RWEYQ18T9Y1B RWEYQ20T9Y1B RWEYQ22T9Y1B RWEYQ24T9Y1B RWEYQ26T9Y1B RWEYQ28T9Y1B RWEYQ30T9Y1B RWEYQ32T9Y1B RWEYQ34T9Y1B RWEYQ36T9Y1B RWEYQ38T9Y1B RWEYQ40T9Y1B RWEYQ42T9Y1B

содержание RVVEYQ-T9

1	Характеристики RWEYQ-T9	4
2	Specifications	6
3	Опции Опции	17
4	Таблица сочетания Таблица сочетания	18
5	Таблицы производительности Условные обозначения таблицы производительностей Поправочный коэффициент для производительности	21 21 22
6	Размерные чертежи Размерные чертежи	32
7	Центр тяжести Центр тяжести	33
8	Схемы трубопроводов Схемы трубопроводов	34
9	Монтажные схемы Монтажные схемы - Три фазы Примечания и условные обозначения	35 35 36
10	Схемы внешних соединений Схемы внешних соединений	37
11	Данные об уровне шума Спектр звуковой мощности Спектр звукового давления	38 38 40
12	Установка Способ монтажа Выбор труб с хладагентом	42 42 43
13	Рабочий диапазон Рабочий диапазон	49
14	Подходящие внутренние блоки	50

1 Характеристики

1 - 1 RWEYO-T9

Идеальное решение для высотных зданий, использующее воду в качестве источника теплоты

- Экологически ориентированное решение: сокращение выбросов СО2 благодаря возможности использования геотермальной энергии в качестве источник возобновляемой энергии и меньшим типовым количествам заправляемого хладагента делает решение идеально соответствующим EN378
- Охват всех тепловых потребностей здания единой системой: точное регулирование температуры, вентиляция, вентиляционные установки, воздушные завесы Biddle и ГВС
- Уникальный принцип отсутствия рассеяния тепла исключает необходимость вентиляции или охлаждения в технических помещениях и обеспечивает максимальную гибкость установки
- > Широкий модельный ряд внутренних блоков: возможность сочетания блоков VRV с внутренними блоками Stylish (Daikin Emura, Perfera)
- > Включает стандарты VRV IV и; технологии: Переменная температура хладагента, конфигуратор VRV, 7-сегментный дисплей и компрессоры с полностью инверторным управлением
- > Настройте Вашу систему VRV для получения максимальной сезонной эффективности и; комфорта с использованием функции регулирования температуры хладагента в зависимости от погодных условий. Повышает сезонную эффективность, отсутствуют холодные сквозняки благодаря оптимальной температуре подаваемого воздуха
- Конструкция продумана с точки зрения простоты установки и эксплуатации: выбор между подсоединением труб с хладагентом сверху или спереди и поворачивающаяся распределительная коробка для легкого доступа к обслуживаемым компонентам

- > Компактная и; легкая конструкция позволяют устанавливать блоки многоярусно для экономии места: система 42 л.с. может быть установлена на площади $0.5~{\rm M}^2$
- 2-ступенчатая рекуперация теплоты: первая ступень между внутренними блоками, вторая - между наружными блоками, благодаря сохранению энергии в водяном контуре
- Унифицированная модель для вариантов теплового насоса и рекуперации теплоты, стандартной эксплуатации и использования геотермальной энергии
- Опция управления расходом воды улучшает гибкость и эффективность системы
- 2 аналоговых входных сигнала позволяющих использовать внешнее управление: ВКЛ-ВЫКЛ, режим работы, сигнал ошибки и др.
- Простое соответствие положениям нормативных документов, касающихся F-газов, благодаря автоматизированной функции проверки содержания хладагента
- Способность систем управления контролировать каждую зону индивидуально позволяет свести эксплуатационные расходы к минимуму
- > Возможность поэтапного монтажа
- Поддержание системы в наилучшем состоянии благодаря нашему облачному сервису Daikin Cloud Service:: Непрерывный контроль, обеспечивающий максимальную эффективность, увеличение срока службы, немедленную сервисную поддержку благодаря прогнозу неисправностей

1 Характеристики

Technical Spec		ns			RWEYQ8T9 4 x FXMQ50P7VEB	RWEYQ10T9 4 x FXMQ63P7VEB	RWEYQ12T9 6 x FXMQ50P7VEB	RWEYQ14T9 1 x FXMQ50P7VEB + 5 >
								FXMQ63P7VEB
Холодопроизво-	Prated,c			kW	22,4 (1)	28,0 (1)	33,5 (1)	40,0 (1)
дительность	Ном.	Темп.	Ном. Расход	Btu/h	73.000 (4)	92.000 (4)	110.000 (4)	131.000 (5)
		воды на входе 30°C ID27/19 AHRI	воды	kW	21,30 (4)	27,00 (4)	32,10 (4)	38,40 (5)
		Темп.	Ном. Расход	Btu/h	73.430 (2)	92.080 (2)	109.480 (2)	131.510 (3)
		воды на входе 30°C ID27/19 ISO	воды	kW	21,51 (2)	26,99 (2)	32,09 (2)	38,54 (3)
Теплопроизводи-	Prated,h			kW	25,0	31,5	37,5	45,0
тельность	Max.	6°CWB		kW	25,0 (6)	31,5 (6)	37,5 (6)	45,0 (6)
Power input - 50Hz	Cooling	Ном.	Темп. воды на входе 30°C ID27/19 AHRI	kW	4,52 (4)	5,59 (4)	7,59 (4)	9,01 (5)
			Темп. воды на входе 30°C ID27/19 ISO	kW	4,45 (2)	5,47 (2)	7,45 (2)	8,96 (3)
	30°C inlet water	Nom. Wa		Btu/ h/W	16,10 (4)	16,50 (4)	14,50 (4)	14,50 (5)
	temp. ID27/19 AHRI	Nom. Wa		kW/kW	4,71 (4)	4,83 (4)	4,23 (4)	4,26 (5)
	30°C inlet water	Nom. Wa	erflow	Btu/ h/W	16,49 (2)	16,83 (2)	14,71 (2)	14,69 (3)
	temp. ID27/19 ISO	Nom. Wat	terflow	kW/kW	4,83 (2)	4,93 (2)	4,31 (2)	4,30 (3)
SCOP					13,3	11,8	11,1	10,1
SEER					8,4	7,9	9,2	8,5
ηs,c				%	326,8	307,8	359,0	330,7
ηs,h				%	524,3	465,9	436,0	397,1
помещений	A Condition (35°C - 27/19), cooling tower (inlet/outlet) 30/35	Pdc		% kW	5,6 22,4	4,6 28,0	5,4 33,5	4,2
	B Condition	EERd		%	6,9	6,3	7,0	6,3
	(30°C - 27/19), cooling tower (inlet/outlet) 26/*	Pdc		kW	16,5	20,6	24,7	29,5
	C Condition	EERd		%	10,1	9,1	10,5	9,4
	(25°C - 27/19), cooling tower (inlet/outlet) 22/*	Pdc		kW	10,6	13,3	15,9	18,9
	D Condition	EERd		%	11,9	12,3	14,9	15,6
	(20°C - 27/19), cooling tower (inlet/outlet) 18/*	Pdc		kW	7	9,9	8,2	8,4
Отопление (Уме-	TBivalent	COPd (зая	явленный СОР)		7,2	6,1		5,8
ренный климат)		изводите			25,0	31,5	37,5	45,0
			lent temperature)	°C			10	
	TOL	Pdh (заяв	явленный СОР) ленная теплопро	- kW	7,2 25,0	6,1 31,5	37,5	45,0
			ельное значение	°C		<u> </u>	10	
	Venonie		температуры)		0.1	71	6.6	FO
	условие А (-7°C)		явленный СОР) гленная теплопро- гльность)	- kW	8,1 22,1	7,1 27,9	6,6 33,2	5,8 39,6
	Усповие		явленный СОР)		13,0	11,4	10,7	9,5
	, CHODING	u (3a)	.5,		13,0	11,7	10,7	7,5

Technical Spe			w # ·		RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9		
Отопление (Уме-					19,1	16,8	15,5	14,3		
ренный климат)	C (7°C)	•	зленная теплопро- kW ельность)		8,9	10,9	13,0	15,8		
	Условие	COPd (за	явленный СОР)		19,1	20,1	19,3	23,8		
	D (12°C)		вленная теплопро- kW ельность)	/	8,9	8	,8	9,2		
Диапазон произво	лительно		HP.		8	10	12	14		
PED	Category		• • • • • • • • • • • • • • • • • • • •				ория II			
	Наи-	Наимено	рвание				ля жидкости			
	более	Ps*V	Bar	r*I			84			
	важная	15 (Bui				01			
Markethrani	часть		няемых внутренних бло	01/05		6.1	(7)			
Максимальное кол Индекс произ-	Мин.	юдсоедин	няемых внутренних оло	OKOB	100,0	125,0	150,0	175,0		
лндекс произ- водительности	Макс.			-	300,0	375,0	450,0	525,0		
подсоединяемых	Makc.				300,0	3/3,0	450,0	525,0		
внутренних										
блоков Размеры	Unit	Высота	mm	<u>_</u>		٥	80			
Размеры	JIIIL	Width	mn	_			80 67			
			mn							
	Vanco	Depth	mn	_			60			
	Упако-	Высота	mn	_			131			
	ванный	Ширина	mn	_			90			
2	блок	Глубина	mn	_			60			
Bec	Блок		kg		19		-	97		
V=2×02:		ный блок	kg		20			08		
Упаковка	Материа. Вес	Л	l.a				тон			
Упаковка 2	вес Материа	п	kg	\dashv			рево			
, Hanobha Z	Вес	,ı	kg				ь,3			
Упаковка 3		п	кд				,, <u>3</u> СТИК			
πακυβκά Σ	Материа. Вес	/1	kg),2			
Casina			ку	-			<u>, </u>			
Casing	Colour Material			-+			я кость_			
Теплообменник				-	Окрашенная оцинкованная стальная пластина Паяные пластины					
теплоооменник	Туре	= 0.110	0.1149	\rightarrow						
		не помещ	ения	-+			здух			
	Outdoor			_ +	вода 37,0					
	Расход	Охлаж-								
	воды	дение						8,3 (8)		
		Нагрев	Hом. m³/	/h	6,1 (8)	7,6 (8)	8,9 (8)	10,3 (8)		
Compressor	Количест	гво_					1			
	Туре				Герметич		ссор с инверторным упр	авлением		
		ый нагрев					33			
Рабочий диапазон		Охлаж-	Мин. °СС	DB		1	0			
	ратура	дение								
	воды на									
2-C	входе	0	A4	-						
Рабочий диапазон		Охлаж-	Maкс. °CD	DR		4	15			
	ратура	дение	A4	WD.			10			
	воды на	Нагрев	Мин. °СV	_			0			
	входе		Maкc. °CV	-			15			
	Темпе-	Макс.	°CD	DB		4	10			
	ратура									
	вокруг									
	корпуса	0	A4							
	Влаж-	Охлаж-	Макс. %			3	30			
	ность	дение								
	вокруг	Нагрев	Макс. %			3	30			
/nonous 223	корпуса	Цен	.In	<u>_</u>	6F 0 (0)	71.0 (0)	72.0 (0)	74.0 (0)		
/ровень звуковой		Ном.	dB <i>i</i>	A	65,0 (9)	71,0 (9)	72,0 (9)	74,0 (9)		
мощности	дение	11		_	40.0 (10)	EO O (40)	FC 0 (10)	E0.0 (10)		
Уровень звуково-		Ном.	dB/	Α	48,0 (10)	50,0 (10)	56,0 (10)	58,0 (10)		
го давления	дение						110.4			
Хладагент	Туре						110A			
	GWP			025			87,5	2.0		
	Заправка			O2Eq		5,5		0,0		
2.6	Заправка	1	kg		7,	9		,6		
Refrigerant oil	Туре					Синтетическое (эфи	рное) масло FVC68D			

RWEYQ-T9 1 - 1

Technical Spe	cification	ons			RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9
Подсоединение	Жид-	Туре				Соединен	ие пайкой	
труб	кость	НД		mm	9,	52	12	2,7
	Gas	Type				Соединен	ие пайкой	
		OD		mm	19,1 (11)	22,2 (11)		5 (11)
	HP/LP	Тип					nnections	
	gas	OD		mm	15,9 (12) / 19,1 (13)	19,1 (12) / 22,2 (13)	19,1 (12) / 28,6 (13)	22,2 (12) / 28,6 (13)
	Drain	Размер					/ 10 мм ВД	
		Тип		mm			ВХ шланг	
	Вода	Вход	Тип				я резьба	
			Размер				-G1 1/4 B	
		Выпуск	Тип				я резьба	
			Размер				-G1 1/4 B	
	Общая	Система	Фактическая	m		500	(14)	
	длина							
	трубо-							
	прово-							
	дов							
Регулирование	Способ					С инверторны	м управлением	
производитель-								
ности								
Указатель того, чт	о нагрева	тель обору	/дован дополнит	ельным		Г	10	
нагревателем	Desens	Нагрев	elbu	kW			,0	
Дополнительный			eibu	KVV		U	,0	
нагреватель	ная мощ ность	-						
Потребляемая	Режим	Cooling	PCK	kW		0.0	000	
мощность не в	нагре-	Heating	PCK	kW			000	
активном режиме		ricating	T CIX	KVV		0,0	,000	
активном релиме	картера							
	Режим	Охлаж-	POFF	kW		0.0)46	
	ВЫКЛ	дение				-,.		
		Нагрев	POFF	kW		0,0	050	
	Режим	Охлаж-	PSB	kW)46	
	ожида-	дение				•		
	ния	Нагрев	PSB	kW		0,0)50	
	Режим	Охлаж-	PTO	kW		0,	013	
	ВЫКЛ	дение						
	термо-	Нагрев	PTO	kW		0,0	067	
	стата							
Охлаждение	Cdc (Сни	жение охл	аждения)			0,	25	
Отопление	Cdh (Сни	жение отс	пления)			0,	25	
Safety devices	Item	01				Реле высоко	ого давления	
•		02					рузки инвертора	

Standard accessories: Руководство по эксплуатации; Quantity: 1;

Standard accessories: Соединительные трубопроводы; Quantity: 1;

Standard accessories: Водопровод с сетчатым фильтром; Quantity: 1;

Electrical Spe	ecifications		RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9			
Электропитание	Name		Y1						
	Phase			3N	l~				
	Частота	Hz		50	0				
	Напряжение	V	380-415						
Power supply intal	ke			Внутренний и н	аружный блок				
Диапазон напря-	Мин.	%	-10						
жений	Макс.	%		10	0				
Current	Nominal Cooling running current (RLA)	A (2)	6,5 (15)	9,0 (15)	10,0 (15)	12,6 (15)			
Ток - 50 Гц	Nominal Combination A Cooling	Α		-					
	running CombinationB Cooling current (RLA)	A		-					
	Starting current (MSC) - remark			See no	ote 16				
	Z макс. Список			Требован	ния отс-т				
	Minimum Ssc value	kVa		1.780	(16)				
	Мин. ток цепи (МСА)	Α	15,5 (17)	16,4 (17)	19,5 (17)	22,3 (17)			
	Макс. ток предохранителя (MFA)	Α	20 (18) 25 (18)						
	Полный максимальный ток (ТОСА)	Α		25,0	(19)				

RWEYO-T9

Electrical Spe	cificatio	ons		RWEYQ8T9	RWEYQ10T9	RWEYQ12T9	RWEYQ14T9
Power	Power	Combination B	35°C ISO - Full load		-		
Performance	factor		46°C ISO - Full load		-		
Соединительная	Для	Количест	ВО		50	i	
проводка - 50 Гц	электро-						
	питания						
	Для	Количест	ВО		2		
	подсое-	Примеча	ние		F1,F	-2	
	динения						
	с внутр.						
	бл.						

(1)Охлаждение: темп. в помещении: 27°CDB, 19°CWB, Температура воды на входе: 30°C; эквивалентная длина труб с хладагентом: 7,5м; перепад уровня: 0 м. | (2)Охлаждение ТЗ: Темп. в помещении 29°C сух.т./19°C вл.т. Температура воды на входе 30°C Ном. расход воды Эквивалентная длина труб 7,6 м Перепад высот труб 0 м С учетом потребляемой мощности

внутренних блоков В соответствии со стандартом испытаний ISO 13256: 1998 |

(3)Охлаждение ТЗ: Темп. в помещении 29°C сух.т./19°C вл.т. Температура воды на входе 30°C Ном. расход воды Эквивалентная длина труб 7,5 м Перепад высот труб 0 м С учетом потребляемой мощности внутренних блоков В соответствии со стандартом испытаний ISO 13256: 1998 |

(4)Охлаждение Т1: Темп. в помещении 27°C сух.т./19°C вл.т. Температура воды на входе 30°C Ном. расход воды Эквивалентная длина труб 7,6 м Перепад высот труб 0 м С учетом потребляемой мощности внутренних блоков В соответствии со стандартом испытаний АНRI 1230: 2010 |

(5)Охлаждение Т1: Темп. в помещении 27°C сух.т./19°C вл.т. Температура воды на входе 30°C Ном. расход воды Эквивалентная длина труб 15,5 м Перепад высот труб 0 м С учетом потребляемой мощности внутренних блоков В соответствии со стандартом испытаний АНRI 1230: 2010 |

(б)Нагрев: темп. в помещении: 20°CDB; температура воды на входе: 20°C; эквивалентная длина трубопроводов: 7,5м; перепад уровня: 0 м |

(7)Фактическое количество подключаемых внутренних блоков зависит от типа внутреннего блока (внутренний VRV, Hydrobox (гидроблок), внутренний RA и т.д.) и ограничения по отношению

(8)Расход воды для тестирования производительности в соответствии со стандартными нормативами EN 14511-2. | (9)Уровень звуковой мощности является абсолютной величиной, производимой источником звука. |

(10)Это относительная величина, которая зависит от указанного расстояния и акустики среды. Более подробно см. чертежи с описанием уровней шума. 🛭

(11)В случае системы с тепловым насосом, трубопровод для газа не используется

(12)Для системы с рекуперацией теплоты |

(13)Для системы с тепловым насосом |

(14)См. раздел выбора трубопровода хладагента или руководство по установке

(15)RLA основан на следующих условиях: темп. в помещении: 27°CDB, 19°CWB: темп. воды на входе 30°C I

(16)В соответствии с EN/IEC 61000-3-12 может быть необходимо проконсультироваться у оператора системы коммуникаций для обеспечения подсоединения оборудования исключительно к питанию с Ssc ≥ минимальное значение Ssc |

(17)Для выбора правильного сечения подключаемых на месте проводов необходимо использовать МСА. МСА можно рассматривать как максимальный рабочий ток.

(18)МFA используется для выбора автоматического выключателя и выключатель цепи при замыкании на землю (автоматический выключатель утечек на землю) | (19)ТОСА означает полное значение каждой группы ОС. |

. МSC означает макс, ток при пуске компрессора. В этом блоке используются только инверторные компрессоры. Всегда: пусковой ток ≤ макс. рабочий ток. |

Максимально допустимое изменение диапазона напряжений между фазами составляет 2%. | Диапазон напряжения: блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клемму блока, находится в пределах указанного диапазона. |

Величина уровня звука измеряется в безэховом помещении. | Давление звука в системе [дБ] = 10^{+} log[10^{-} (A/10)+ 10^{-} (B/10)+ 10^{-} (C/10)], с блоком A = A дБА, блоком B = B дБА, блоком C = C дБА |

давис-инс-заума в системе друга — по здрто что и лого и столь до положения и пределы гармонического тока, производимого оборудованием, подсоединенным к общедоступной сети низкого напряжения с потребляемым током > 16А и ≤ 75А одной фазы |

Ssc: мощность короткого замыкания |

Более подробная информация о стандартных принадлежностях приведена в руководстве по монтажу/эксплуатации |

Данные мультисочетания (10~54 л.с.) соответствуют стандартному мультисочетанию

Technical spe	cificatio	ns System		RWEYQ16T9	RWEYQ18T9	RWEYQ20T9	RWEYQ22T9	RWEYQ24T9
System	Outdoor	unit module 1		RWE	YQ8T	RWE'	YQ10T	RWEYQ12T
	Модуль н	наружного блока 2		RWEYQ8T	RWE	YQ10T	RWE	YQ12T
Recommended cor	mbination			4 x FXMQ63P7VEB +	4 x FXMQ50P7VEB +	8 x FXMQ63P7VEB	6 x FXMQ50P7VEB +	12 x FXMQ50P7VEB
				2 x FXMQ80P7VEB	4 x FXMQ63P7VEB		4 x FXMQ63P7VEB	
Холодопроизво- дительность	Prated,c		kW	44,8 (1)	50,4 (1)	56,0 (1)	61,5 (1)	67,0 (1)
Теплопроизводи-	Prated,h		kW	50,0	56,5	62,5	69,0	75,0
тельность	Max.	6°CWB	kW	50,0 (6)	56,5 (6)	62,5 (6)	69,0 (6)	75,0 (6)
SCOP				11,7	12,5	11,9	11,4	11,1
SEER				7	,9	7,7	8,0	8,8
ηs,c			%	307,6	308,7	298,1	311,3	342,6
ηs,h			%	459,2	491,1	466,8	447,9	434,5
Охлаждение	A Condition	EERd	%	5,1	5,0	4,6	5,0	5,4
помещений	(35°C - 27/19), cooling tower (inlet/outlet) 30/35	Pdc	kW	44,8	50,4	56,0	61,5	67,0
	B Condition	EERd	%	6	,5	6,3	6,6	7,0
	(30°C - 27/19), cooling tower (inlet/outlet) 26/*	Pdc	kW	33,0	37,1	41,3	45,3	49,4
	C Condition	EERd	%	9,0	9,5	9,1	9,8	10,5
	(25°C - 27/19), cooling tower (inlet/outlet) 22/*	Pdc	kW	21,2	23,9	26,5	29,1	31,7
	D Condition	EERd	%	11,0	10,1	9,9	9,4	11,5
	(20°C - 27/19), cooling tower (inlet/outlet) 18/*	Pdc	kW	9,4	10,6	11,8	13,0	14,1

Technical spe				RWEYQ16T9	RWEYQ18T9	RWEYQ20T9	RWEYQ22T9	RWEYQ24T9
Отопление (Уме-	TBivalent			6,1	6,6	6,2	6,0	5,8
ренный климат)		•	вленная теплопро- kW ельность)	50,0	56,5	63,0	69,0	75,0
			lent temperature) °C			-10		
	TOL		явленный СОР)	6,1	6,6	6,2	6,0	5,8
			ленная теплопро- kW	50,0	56,5	63,0	69,0	75,0
		изводите						
			ельное значение °C			-10		
			температуры)	60	7.5	71	6.0	
	условие A (-7°C)		явленный СОР) вленная теплопро- kW	6,9 44,2	7,5 50,0	7,1 55,7	6,8 61,0	6,6 66,3
	A (-7 C)	изводите	· ·	44,2	30,0	35,7	01,0	00,5
	Условие		явленный СОР)	11,4	12,1	11,4	11,0	10,7
	B (2°C)		ленная теплопро- kW	26,9	30,4	33,9	37,2	40,4
		изводите						
			явленный СОР)	16,3	17,8	16,8	16,1	15,5
	C (7°C)		ленная теплопро- kW	17,5	19,8	21,8	23,9	26,0
	Vananua	изводите	· · · · · · · · · · · · · · · · · · ·	17,8	17,7	18,3	17,0	16,7
	D (12°C)		явленный СОР) вленная теплопро- kW	8,6	8,7	9,6	10,6	11,5
	_ (0)	изводите	'	0,0			10,0	11,5
Диапазон произво	одительно		HP	16	18	20	22	24
PED	Category					Категория II		
	Наи-	Наимено			П	оиемник для жидко	сти	
	более	Ps*V	Bar*l			484		
	важная часть							
Максимальное ко		толсоелин	яемых внутренних блоко	В		64 (7)		
Индекс произ-	Мин.	юдеоедин	nemon only i permin on one	200,0	225,0	250,0	275,0	300,0
водительности	Макс.			600,0	675,0	750,0	825,0	900,0
подсоединяемых								
внутренних								
блоков								
Теплообменник	Outdoor	не помещ	ения			воздух вода		
	Расход	Охлаж-	Hом. m³/h	8,9 (8)	9,9 (8)	11,0 (8)	12,2 (8)	13,3 (8)
	воды	дение	,	0,5 (0)	2/2 (0)	11,0 (0)	.2,2 (0)	15,5 (6)
		Нагрев	Hом. m³/h	12,1 (8)	13,6 (8)	15,1 (8)	16,4 (8)	17,7 (8)
Уровень звуковой	Охлаж-	Ном.	dBA	68,0 (9)	72,0 (9)	74,0 (9)	75,	0 (9)
мощности	дение							
Уровень звуково-		Ном.	dBA	51,0 (10)	52,0 (10)	53,0 (10)	57,0 (10)	59,0 (10)
го давления Хладагент	дение					R-410A		
лладагент	Type GWP					2.087,5		
Refrigerant oil	Туре				Синтетич	еское (эфирное) мас	ло FVC68D	
Подсоединение	Жид-	Туре				Соединение пайкой		
труб	кость	НД	mm	12,7		15	5,9	
	Gas	Туре				Соединение пайкой	í	
	LIB# 5	OD	mm	-	28,	6 (11)		34,9 (11)
	HP/LP	Тип		22.2 (12)	/ 20 6 /12\	Brazing connections		20 6 (12) / 24 0 (12)
	gas Drain	OD Размер	mm	22,2 (12)	/ 28,6 (13)	28,6 (12) 14 мм НД/ 10 мм ВД	/ 28,6 (13)	28,6 (12) / 34,9 (13)
	Diani	Тип	mm			Гибкий ПВХ шланг		
	Вода	Вход	Тип	†		Наружная резьба		
			Размер			ISO 228-G1 1/4 B		
		Выпуск	Тип			Наружная резьба		
			Размер			ISO 228-G1 1/4 B		
	Общая	Система	Фактическая m			500 (14)		
	длина трубо-							
	прово-							
	дов							
Регулирование производитель-	Способ				Син	верторным управле	нием	
ности								
нагревателем			дован дополнительным			no		
Дополнительный			elbu kW			0,0		
нагреватель	ная мощ- ность							
	пость							

Technical sp	ecificatio	ons Syst	em		RWEYQ16T9	RWEYQ18T9	RWEYQ20T9	RWEYQ22T9	RWEYQ24T9
Потребляемая	Режим	Cooling	PCK	kW			0,000		,
мощность не в	нагре-	Heating	PCK	kW			0,000		
активном режим	е вателя								
	картера								
	Режим	Охлаж-	POFF	kW			0,092		
	ВЫКЛ	дение							
		Нагрев	POFF	kW			0,100		
	Режим	Охлаж-	PSB	kW			0,092		
	ожида-	дение							
	ния	Нагрев	PSB	kW			0,100		
	Режим	Охлаж-	PTO	kW			0,026		
	выкл	дение							
	термо-	Нагрев	PTO	kW			0,134		
	стата								
Охлаждение	Cdc (Сни	жение охл	аждения)				0,25		
Отопление	Cdh (Сни	іжение отс	опления)				0,25		
Safety devices	Item	01				Pe	еле высокого давлен	ния	
		02				Защита	а от перегрузки инв	ертора	
		03				Плавк	кий предохранитель	платы	

Technical spe	cificatio	ns System		RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T9
System	Outdoor	unit module 1		RWEYQ12T	RWEYQ14T		RWEYQ10T	
	Модуль н	наружного блока 2		RWE	YQ14T	RWE'	YQ10T	RWEYQ12T
	Модуль н	наружного блока 3			-	RWEYQ10T	RWE	YQ12T
Recommended cor	mbination				2 x FXMQ50P7VEB + 10 x FXMQ63P7VEB	12 x FXMQ63P7VEB	6 x FXMQ50P7VEB + 8 x FXMQ63P7VEB	
Холодопроизво- дительность	Prated,c		kW	73,5 (1)	80,0 (1)	84,0 (1)	89,5 (1)	95,0 (1)
 Теплопроизводи-	Prated,h		kW	82,5	90,0	94,5	100,5	106,5
тельность	Max.	6°CWB	kW	82,5 (6)	90,0 (6)	94,5 (6)	100,5 (6)	106,5 (6)
SCOP				10,4	9,9	11,9	11,6	11,4
SEER				8,3	7	,9	8,2	8,8
ηs,c			%	322,5	306,1	308,3	318,2	342,5
ηs,h			%	406,9	387,9	467,2	456,1	447,0
Охлаждение	A Condition	EERd	%	4,9	4,5	4,6	4,9	5,1
помещений	(35°C - 27/19), cooling tower (inlet/outlet) 30/35	Pdc	kW	73,5	80,0	84,0	89,5	95,0
	B Condition	EERd	%	6,6	6	,3	6,5	6,7
	(30°C - 27/19), cooling tower (inlet/outlet) 26/*	Pdc	kW	54,2	58,9	61,9	66,0	70,0
	C Condition	EERd	%	9,9	9,4	9,1	9,6	10,1
	(25°C - 27/19), cooling tower (inlet/outlet) 22/*	Pdc	kW	34,8	37,9	39,8	42,4	45,0
	D Condition	EERd	%	10,8	10,2	11,6	11,2	13,5
	(20°C - 27/19), cooling tower (inlet/outlet) 18/*	Pdc	kW	15,5	16,8	17,7	18,8	20,0

Technical spe					RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T
Этопление (Уме-	TBivalent			1.147	5,3	4,9	6,2	6,1	5,9
ренный климат)			ленная теплопро-	kW	82,5	90,0	94,5	100,5	106,5
		изводите		°C			-10		
	TOL		ient temperature) івленный СОР)		5,3	4,9	6,2	6,1	5,9
	TOL		ленная теплопро-	I-\A/	82,5	90,0	94,5	100,5	106,5
		изводите	'	KVV	02,3	90,0	94,5	100,5	100,5
			ельное значение	°C			-10	ı	1
		•	гемпературы)					ı	1
			вленный СОР)		6,1	5,7	7,1	6,9	6,7
	A (-7°C)		ленная теплопро-	kW	73,0	79,6	83,6	88,9	94,2
	Venenue	изводите	льность) івленный СОР)		10,0	0.5	11.4	11 1	10,9
	условие В (2°C)		ленный СОР)	I-\A/	44,4	9,5 48,5	11,4 50,9	11,1 54,1	57,3
	D (2 C)	изводите		KVV	44,4	40,3	30,9	34,1	37,3
	Условие		вленный СОР)		14,8	14,3	16,8	16,3	15,9
	C (7°C)		ленная теплопро-	kW	28,6	31,2	32,7	34,8	36,9
		изводите			,	,	,	,	,
	Условие	COPd (зая	вленный СОР)		15,8	16,0	19	9,4	19,3
	D (12°C)	•	ленная теплопро-	kW	12,7	13,9	17	7,7	17,6
		изводите	льность)						
циапазон произво				HP	26	28	30	32	34
ED	Category						Категория II		
	Наи-	Наимено	зание			Пр	оиемник для жидко	ти	
	более								
	важная часть								
ED	Наи-	Ps*V		Bar*l			484		
	более								
	важная								
	часть								
Паксимальное кол	личество г	одсоедин	яемых внутренних	блоков			64 (7)		
Індекс произ-	Мин.				325,0	350,0	375,0	400,0	425,0
одительности	Макс.				975,0	1.050,0	1.125,0	1.200,0	1.275,0
одсоединяемых									
нутренних									
локов									
еплообменник	Outdoor:	не помеще	РИН!				воздух		
	Расход	Охлаж-	Ном.	m³/h	14,9 (8)	16.1	вода 5 (8)	17,7 (8)	18,8 (8)
	воды	дение	TIOM.	,	14,5 (0)	10,.	5 (6)	17,7 (0)	10,0 (0)
		Нагрев	Ном.	m³/h	19,2 (8)	20,6 (8)	22,7 (8)	24,0 (8)	25,3 (8)
ровень звуковой	Охлаж-	Ном.		dBA	76,0 (9)	77,0 (9)	==/- (=/	76,0 (9)	
ощности	дение								
ровень звуково-	Охлаж-	Ном.		dBA	60,0 (10)	61,0 (10)	55,0 (10)	58,0 (10)	60,0 (10)
о давления	дение								
Іладагент	Туре						R-410A		
	GWP						2.087,5		
lefrigerant oil	Туре	_					еское (эфирное) мас		
одсоединение	Жид-	Туре		ma r-			Соединение пайкой	1	
руб	КОСТЬ	НД		mm	<u> </u>		19,1		
	Gas	Type OD		mm	-		Соединение пайкой 34,9 (11)	1	
	HP/LP	Тип		111111	-		Brazing connections		
	gas	OD		mm			28,6 (12) / 34,9 (13)	•	
	Drain	Размер					14 мм НД/ 10 мм ВД		
	J. 4111	Тип		mm			Гибкий ПВХ шланг		
			_				Наружная резьба		
	Вода	Вход	Тип						
	Вода	Вход	Размер				ISO 228-G1 1/4 B		
	Вода	Вход Выпуск					Наружная резьба		
	Вода		Размер						
	Вода Общая	Выпуск	Размер Тип	m			Наружная резьба		
		Выпуск	Размер Тип Размер	m			Наружная резьба ISO 228-G1 1/4 В		
	Общая	Выпуск	Размер Тип Размер	m			Наружная резьба ISO 228-G1 1/4 В		
	Общая длина	Выпуск	Размер Тип Размер	m			Наружная резьба ISO 228-G1 1/4 В		
	Общая длина трубо- прово- дов	Выпуск	Размер Тип Размер	m			Наружная резьба ISO 228-G1 1/4 B 500 (14)		
егулирование	Общая длина трубо- прово-	Выпуск	Размер Тип Размер	m		Син	Наружная резьба ISO 228-G1 1/4 В	нием	
роизводитель-	Общая длина трубо- прово- дов	Выпуск	Размер Тип Размер	m		Син	Наружная резьба ISO 228-G1 1/4 B 500 (14)	нием	
роизводитель- ости	Общая длина трубо- прово- дов Способ	Выпуск	Размер Тип Размер			С ин	Наружная резьба ISO 228-G1 1/4 B 500 (14)	нием	

Technical specifications System					RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T9		
Дополнительный нагреватель	Резерв- ная мощ ность		elbu	kW			0,0				
Потребляемая	Режим	Cooling		kW			0,000				
мощность не в активном режиме	нагре- вателя картера	Heating	PCK	kW			0,000				
	Режим ВЫКЛ	Охлаж- дение	POFF	kW	0,0	092		0,138			
		Нагрев	POFF	kW	0,	100		0,150			
	Режим ожида-	Охлаж- дение	PSB	kW	0,0	092		0,138			
	ния	Нагрев	PSB	kW	0,	100		0,150			
	Режим ВЫКЛ	Охлаж- дение	PTO	kW	0,0	026		0,039			
	термо- стата	Нагрев	PTO	kW	0,	134		0,201			
Охлаждение	Cdc (Сни	жение охл	паждения)				0,25				
Отопление	Cdh (Сни	жение отс	опления)				0,25				
Safety devices	Item	01			Реле высокого давления						
		02			Защита от перегрузки инвертора						
		03				Плавк	кий предохранитель	платы			

Technical spe	cificatio	ns System		RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9		
System		unit module 1			RWEYQ12T				
,	Модуль н	наружного блока 2		RWE	EYQ12T	RWE	YQ14T		
		наружного блока 3		RWEYQ12T		RWEYQ14T			
Recommended cor	mbination			18 x FXMQ50P7VEB	13 x FXMQ50P7VEB + 5 x FXMQ63P7VEB	8 x FXMQ50P7VEB + 10 x FXMQ63P7VEB	3 x FXMQ50P7VEB + 15 x FXMQ63P7VEB		
Холодопроизво- дительность	Prated,c		kW	100,5 (1)	107,0 (1)	113,5 (1)	120,0 (1)		
Теплопроизводи-	Prated,h		kW	112,5	120,0	127,5	135,0		
тельность	Max.	6°CWB	kW	112,5 (6)	120,0 (6)	127,5 (6)	135,0 (6)		
SCOP				11,2	10,7	10,3	10,0		
SEER				9,0		5,7	8,5		
ηs,c			%	352,3	338,8	341,4	332,9		
ηs,h			%	438,5	419,4	404,4	391,2		
Охлаждение	A Condition	EERd	%	5,4	5,0	4,7	4,5		
помещений	(35°C - 27/19), cooling tower (inlet/outlet) 30/35	Pdc	kW	100,5	107,0	113,5	120,0		
	B Condition	EERd	%	7,0	6,7	6,5	6,3		
	(30°C - 27/19), cooling tower (inlet/outlet) 26/*	Pdc	kW	74,1	78,8	83,6	88,4		
	C Condition	EERd	%	10,5	10,1	9,7	9,4		
	(25°C - 27/19), cooling tower (inlet/outlet) 22/*	Pdc	kW	47,6	50,7	53,8	56,8		
	D Condition	EERd	%	13,1	12,8	15	5,4		
	(20°C - 27/19), cooling tower (inlet/outlet) 18/*	Pdc	kW	21,2	22,5	24,5	25,3		

Technical spe					RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9
топление (Уме-	TBivalent			LAAZ	5,8	5,4	5,1	4,9
енный климат)		Pdh (заяв изводите	ленная теплопро-	KVV	112,5	120,0	127,5	135,0
			llent temperature)	°C			10	
	TOL		явленный СОР)		5,8	5,4	5,1	4,9
			ленная теплопро-	kW	112,5	120,0	127,5	135,0
		изводите	льность)		·	·		·
		Tol (пред	ельное значение	°C			10	
			температуры)					
			явленный СОР)		6,6	6,3	6,0	5,7
	A (-7°C)		ленная теплопро-	kW	99,5	106,2	112,8	119,4
		изводите			10.7	10.2	0.0	0.5
	Условие В (2°C)		явленный СОР)	1.147	10,7	10,2	9,8	9,5
	D (2 C)	изводите	ленная теплопро-	KVV	60,6	64,6	68,6	72,7
	Условие		явленный СОР)		15,5	15,0	14,6	14,3
	C (7°C)		ленная теплопро-	kW	38,9	41,5	44,1	46,7
	- (- /	изводите				,-	,.	,
	Условие	COPd (зая	явленный СОР)		19,3	18,8	18,9	18,4
	D (12°C)	Pdh (заяв	ленная теплопро-	kW	17,6	18,5	19,6	20,8
		изводите	льность)					
иапазон произво				HP	36	38	40	42
ED	Category						ория II	
	Наи-	Наимено	вание			Приемник д	ля жидкости	
	более							
	важная							
ED	часть Наи-	Ps*V		Bar*l		<u>A</u> :	84	
	более			Jui I		7		
	важная							
	часть							
аксимальное кол	личество г	подсоедин	яемых внутренних	к блоков		64	(7)	
ндекс произ-	Мин.				450,0	475,0	500,0	525,0
одительности	Макс.				1.350,0	1.425,0	1.500,0	1.575,0
одсоединяемых								
нутренних								
локов								
еплообменник	Outdoor	не помеще	кин				дух да	
	Расход	Охлаж-	Ном.	m³/h	19,9 (8)	21,5 (8)	23,1 (8)	24,8 (8)
	воды	дение		,	15/5 (0)	2.,5 (5)	25). (6)	2.70 (0)
		Нагрев	Ном.	m³/h	26,6 (8)	28,0 (8)	29,4 (8)	30,9 (8)
ровень звуковой	Охлаж-	Ном.		dBA	77,0 (9)) (9)	79,0 (9)
ощности	дение							
ровень звуково-	Охлаж-	Ном.		dBA	61,0 (10)	62,0	(10)	63,0 (10)
о давления	дение							
ладагент	Туре						10A	
	GWP						87,5	
efrigerant oil	Туре	Torre					рное) масло FVC68D	
одсоединение	Жид-	Туре		mm			ие пайкой	
руб	кость Gas	НД		mm			9,1 ие пайкой	
	Gas	Type OD		mm			ие паикои В (11)	
	HP/LP	Тип					onnections	
	gas	OD		mm	28,6 (12) / 41,3 (13)	Diazing CC	41,3 (13) / 34,9 (12)	
	Drain	Размер				14 мм НЛ	/ 10 мм ВД	
		Тип		mm			ВХ шланг	
	Вода	Вход	Тип				я резьба	
			Размер				-G1 1/4 B	
		Выпуск	Тип				я резьба	
			Размер			ISO 228	-G1 1/4 B	
						500	(14)	
	Общая	Система	Фактическая	m		300		
	длина	Система	Фактическая	m		300		
	длина трубо-	Система	Фактическая	m		500		
	длина трубо- прово-	Система	Фактическая	m		300		
	длина трубо- прово- дов	Система	Фактическая	m				
	длина трубо- прово-	Система	Фактическая	m			м управлением	
роизводитель-	длина трубо- прово- дов	Система	Фактическая	m				
егулирование роизводитель- ости казатель того. чт	длина трубо- прово- дов Способ		Фактическая			С инверторны		

Technical spe	cificatio	ns Syst	em		RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9		
Дополнительный нагреватель	Резерв- ная мощ- ность		elbu	kW		C	,0			
Потребляемая	Режим	Cooling	PCK	kW		0,0	000			
мощность не в активном режиме	нагре- вателя картера	Heating	PCK	kW		0,0	000			
	Режим ВЫКЛ	Охлаж- дение	POFF	kW		0,	138			
		Нагрев	POFF	kW		0,	150			
	Режим ожида-	Охлаж- дение	PSB	kW		0,	138			
	ния	Нагрев	PSB	kW		0,	150			
	Режим ВЫКЛ	Охлаж- дение	PTO	kW		0,0	039			
	термо- стата	Нагрев	PTO	kW		0,	201			
Охлаждение	Cdc (Сни	жение охл	аждения)			0,	25			
Отопление	Cdh (Сни	жение отс	опления)		0,25					
Safety devices	Item	01				Реле высоко	ого давления			
		02				Защита от перег	рузки инвертора			
		03				Плавкий предо	кранитель платы			

cificatio	ns System		RWEYQ16T9	RWEYQ18T9	RWEYQ20T9	RWEYQ22T9	RWEYQ24T9		
Name					Y1	-			
Phase			3N~						
Частота		Hz	50						
Напряже	ние	V			380-415				
e				Внут	ренний и наружный	і блок			
Мин.		%		•	-10				
Макс.		%			10				
Nominal running current (RLA)	Cooling	A (2)	13,0 (15)	15,5 (15)	18,0 (15)	19,0 (15)	20,0 (15)		
Nominal	Combination A Cooling	Α			-				
running current (RLA)	Combination B Cooling	A	-						
Starting o	urrent (MSC) - remark				See note 16				
Z макс.	Список		Требования отс-т						
Minimum	Ssc value	kVa	3.560 (16)						
Мин. ток	цепи (МСА)	Α	31,0 (17)	31,9 (17)	32,7 (17)	35,8 (17)	38,9 (17)		
Макс. тон	предохранителя (MFA)	Α	32 (18) 35 (18) 40 (18)				(18)		
Полный г	иаксимальный ток (ТОСА)	Α	50,0 (19)						
Power	Combination B 35°C ISO - Full loa	d			-				
factor	46°C ISO - Full loa	ıd							
Для Количество электро- питания			5G						
Для Количество			2						
подсое- Примечание динения с внутр.					F1,F2				
	Name Phase Phase Vactora Haпряже e Mин. Maкс. Nominal running current (RLA) Nominal running current (RLA) Carrent (RLA) Nominal running Current (RLA) Nominal Fourtent Amakc. Tok Полный м Роwer factor Для лодсое- динения	Phase Частота Напряжение е Мин. Макс. Nominal Cooling running current (RLA) Nominal Combination A Cooling running current (RLA) Starting current (MSC) - remark ZMakc. Список Minimum Ssc value Мин. ток цепи (МСА) Макс. ток предохранителя (МFA) Полный максимальный ток (ТОСА) Роwer Сомыльной В 35°C ISO - Full Ioa factor 46°C ISO - Full Ioa лектро- питания Для Количество подсое- динения с внутр.	Name Phase Частота Hz Напряжение V е Мин. % Макс. % Nominal Cooling A (2) running current (RLA) Nominal Combination A Cooling A running Combination B Cooling A running Current (MSC) - remark ZMAKC. Список Minimum Ssc value kVa Мин. ток цепи (МСА) A Макс. ток предохранителя (МFA) A Полный максимальный ток (ТОСА) A Роwer Сombination B 35°C ISO - Full load factor 46°C ISO - Full load Для Количество электро- питания Для Количество подсое Примечание динения с внутр.	Name Phase Частота	Name Phase Частота Hz Напряжение V е Bhyт Мин. % Maкс. % Nominal Cooling A (2) 13,0 (15) 15,5 (15) running current (RLA) Tunning Combination A Cooling A A Nominal Combination A Cooling A A Tunning Combination B Cooling A Running Combination B Cooling A Tunning Combination B Cooling A Tunning Combination B Cooling A Tunning Combination B Cooling A Courrent (MCA) A Tunning Combination B Cooling A Courrent (MCA) A Tunning Combination B Cooling A Courrent (MCA) A Tunning Combination B Cooling A Cooling A Courrent (MCA) A Tunning Combination B Cooling A Cooling A Cooling A Courrent (MCA) A Tunning Combination B Cooling A Coo	Name Y1 Phase 3N~ Частота Hz 50 Напряжение V Внутренний и наружный и на	Name Y1 Phase 33N~ Частота Hz 50 Напряжение V Внутренний и наружный блок Мин. % Внутренний и наружный блок Мин. % 10 Nominal Cooling A (2) 13,0 (15) 15,5 (15) 18,0 (15) 19,0 (15) running current (RLA) Combination A Cooling A -		

Electrical spe	cifications System		RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T9			
Электропитание	Name				Y1					
	Phase			3N~						
	Частота	Hz			50					
	Напряжение	V		380-415						
Power supply intal	ke .		Внутренний и наружный блок							
Диапазон напря-	Мин.	%	-10							
жений	Макс.	%								
Current	Nominal Cooling	A (2)	22,6 (15)	25,2 (15)	27,0 (15)	28,0 (15)	29,0 (15)			
	running									
	current									
	(RLA)									

Electrical spe	cificatio	ns System		RWEYQ26T9	RWEYQ28T9	RWEYQ30T9	RWEYQ32T9	RWEYQ34T9	
Ток - 50 Гц	Nominal	Combination A Cooling	Α			-		,	
	running	Combination B Cooling	Α			-			
	current								
	(RLA)								
	Starting o	current (MSC) - remark				See note 16			
	Z макс.	Список			Требования отс-т				
	Minimum	Ssc value	kVa	3.56	0 (16)		5.340 (16)		
	Мин. ток	цепи (МСА)	Α	41,7 (17)	44,6 (17)	49,1 (17)	52,2 (17)	55,3 (17)	
	Макс. ток предохранителя (MFA) A			50 (18)			63	(18)	
	Полный и	максимальный ток (ТОСА)	Α	50,0 (19)			75,0 (19)		
Power	Power	Combination B 35°C ISO - Full loa	d			-			
Performance	factor	46°C ISO - Full loa	nd			-			
Соединительная	Для	Количество		5G					
проводка - 50 Гц	электро-								
	питания								
	Для	Количество		2					
	подсое-	Примечание		F1,F2					
	динения								
	с внутр.								
	бл.								

Electrical specifications System				RWEYQ36T9	RWEYQ38T9	RWEYQ40T9	RWEYQ42T9			
Электропитание	Name			Y1						
	Phase			3N~						
	Частота		Hz	50						
	Напряже	ние	V		380	-415				
Power supply intak	ке				Внутренний и н	наружный блок				
Диапазон напря-	Мин.		%		-1	0				
жений	Макс.		%		1	0				
Current	Nominal	Cooling	A (2)	30,0 (15)	32,6 (15)	35,2 (15)	37,8 (15)			
	running									
	current									
	(RLA)									
Ток - 50 Гц	Nominal	Cooling	A			-				
	running	Cooling	Α	•						
	current									
	(RLA)					.1.16				
		urrent (MSC) - remark				ote 16				
	Zмакс. Minimum	Список	kVa	Требования отс-т 5.340 (16)						
		цепи (МСА)	A A	58,3 (17) 61,2 (17) 64,0 (17)						
		предохранителя (MFA) максимальный ток (TOCA)	A	63 (18) 80 (18) 75,0 (19)						
Power	Power	лаксимальный ток (тоск) 35°C ISO - Full loa			/5,0	(19)				
Power Performance	factor	46°C ISO - Full loa			<u> </u>	-				
Соединительная	Для	Количество	iu			 G				
проводка - 50 Гц	электро-	Поличество			J	ď				
проводна зотц	питания									
	Для	Количество		2						
		Примечание		F1,F2						
	динения	r			. ,					
	с внутр.									
	бл.									

Опции 3

3 - 1 Опции

RWEYQ-T9

				Олин	блок		Несколько блоко	Ηρογοπικό δπογο
Позиция			RWEYQ8		RWEYQ12			в 3
Селекторный переключатель охлаждения/нагрев	а (печатная плата)	См. примечание1.	IIIIEI GO	, merara	T.III.Z.T.G.T.Z.		2A81	
Селекторный переключатель охлаждения/нагрев		См. примечание1.				KRC1	9-26A	
Селекторный переключатель охлаждения/нагрев	а (блок крепления)	См. примечание1.	KJB111A					
Внешний адаптер управления		Наружный агрегат				DTA1	04A62	
						KHRQ:	22M29H	
	Тепловой насос		_	[KHRQ22M64H	
Разветвитель Refinet насадка							KHRQ2	2M75H
Газветвитель Кеппеснасадка						KHRQ:	23M29H	
	Рекуперация тепла		_	[KHRQ23M64H	
							KHRQ2	3M75H
						KHRQ:	22M2OT	
	Тепловой насос		-	l			KHRQ22M64T	
Рефнет-разветвитель							KHRQ22M75T	
Towner passersmons	Рекуперация тепла		KHRQ23M20T KHRQ23M29T9					
						KHRQ2		
			-	l			KHRQ23M64T	ONZET
							KHRQ2	3M/51
Комплект для нескольких соединений наружно	Тепловой насос	См. примечание3.				BHFQ22P1007		
го агрегата								2P1517
	Рекуперация тепла	Рекуперация тепла См. примечание3.					BHFQ23P907	3P1357
Кабель связи						END	CCAB2	JF 1337
TRACETE CENTER							10A7V1B	
Один блок BS			BS1Q16A7V1B					
og/iii o/iok Be			BS1Q25A7V1B					
							114AV1	
)14AV1	
Несколько блоков BS						BS80	14AV1	
несколько олоков во							Q14AV1	
						BS12	Q14AV1	
						BS16	Q14AV1	

- 1. В случае системы регенерации тепла невозможно подключение селекторного переключателя охлаждения/нагрева.
- Не допускается объединение блоков BS серииР(отдельные блоки/мультисистемы) с блоками BS серииА(отдельные блоки/мультисистемы).
 Если при монтаже не требуется соблюдение специальных требований правил противопожарной безопасности, можно использовать стандартные комплекты для нескольких соединений наружного агрегата.

Для монтажа в соответствии со специальными требованиями правил противопожарной безопасности изоляционный материал можно заменить с использованием комплектов EKHBFQ1 и EKHBFQ2.

Комплекты4содержат альтернативный изоляционный материал, который соответствуетEN13501-1:B-S3,dOuBS476-7(класс 1).

Чтобы заменить материал изоляции, определите необходимое количество комплектовЕКВНFQсогласно пр едставленной ниже таблице.

		EKBHFQ1	EKBHFQ2
	BHFQ22P1007	1	1
	BHFQ22P1517	2	2
	BHFQ23P907	2	1
ı	BHF023P1357	4	2

2D108935D

4 Таблица сочетания

4 - 1 Таблица сочетания

RWEYQ-T9

Ограничения на сочетания блоков: наружные агрегаты VRV4 (все модели) + внутренние агрегаты класса 15

Блоки в составе системы: FXZQ15A и FXAQ15A.

- Если система содержит эти внутренние агрегаты и общий коэффициент соединения (CR) ≤ 100%: специальные ограничения отсутствуют.
 Соблюдайте ограничения, которые применяются для стандартных внутренних агрегатов VRV DX.
- 2. Если система содержит эти внутренние агрегаты и общий коэффициент соединения (СR) > 100%: применяются специальные ограничения.
 - А. Если сумма коэффициентов соединения (CR1) всех блоков FXZQ15A и/или FXAQ15A в системе ≤ 70%, и ВСЕ остальные внутренние агрегаты VRV DX имеют индивидуальный класс производительности > 50: специальные ограничени
 - В. Если сумма коэффициентов соединения (CR1) всех блоков FXZQ15A и/или FXAQ15A в системе ≤ 70%, и НЕ ВСЕ остальные внутренние агрегаты VRV DX имеют индивидуальный класс производительности > 50: применяются специал

```
° 100% < CR ≤ 105% ->
° 105% < CR ≤ 110% ->
```

Примечание

Только внутренние агрегаты класса 15, явно указанные на этой странице, входят в состав системы. На остальные внутренние агрегаты распространяются правила, которые применяются для стандартных внутренних агрегатов VRV DX.

3D104665A

4 Таблица сочетания

4 - 1 Таблица сочетания

RWEYQ-T9

Тепловой насос с водяным охлаждением VRV Таблица стандартных сочетаний нескольких блоков

	8НР	10HP	12HP	14HP
RWEYQ8	1			
RWEYQ10		1		
RWEYQ12			1	
RWEYQ14				1
RWEYQ16	2			
RWEYQ18	1	1		
RWEYQ20		2		
RWEYQ22		1	1	
RWEYQ24			2	
RWEYQ26			1	1
RWEYQ28				2
RWEYQ30		3		
RWEYQ32		2	1	
RWEYQ34		1	2	
RWEYQ36			3	
RWEYQ38			2	1
RWEYQ40			1	2
RWEYQ42				3

Примечания

- 1) Допускаются и другие сочетания, помимо указанных выше.
- 2) Никогда не объединяйте более 3 блоков для создания многоблочного сочетания.

3D108944B

4 Таблица сочетания

4 - 1 Таблица сочетания

RXMLQ-T

RXYLQ-T

RWEYQ-T9

Список совместимости: тепловой насос VRV4

- внутренний блок RA DX

Настенный монтаж	Emura	FTXJ20M
		FTXJ25M
		FTXJ35M
		FTXJ50M
	Stylish	FTXA20
		FTXA25
		FTXA35
		FTXA42
		FTXA50
	FTXM	FTXM20R
		FTXM25R
		FTXM35R
		FTXM42R
		FTXM50R
		FTXM60R
	_	FTXM71R
Потолочный/настенный монтаж	Flex	FLXS25B
		FLXS35B
		FLXS50B
Hanna van van van van van van van van van	51.040.4	FLXS60B
Напольная установка	FVXM	FVXM25F
		FVXM35F
		FVXM50F
		FVXM25A
		FVXM35A
		FVXM50A
	Moverna	CVXM20A
	Nexura	FVXG25K FVXG35K
		FVXG50K

Примечание

Ограничения на использование внутренних агрегатов RA DX с тепловым насосом VRV4 устанавливаются в соответствии с правилами, заданными на чертежах 3D079543 и 3D079540.

Если требуется подсоединить внутренние агрегаты RA/SA DX кассетного, потолочного или канального типа, используйте вместо них эквивалентные внутренние агрегаты VRV DX.

3D082373G

5 - 1 Условные обозначения таблицы производительностей

Для удовлетворения потребностей клиентов в быстром доступе к данным в удобном формате мы разработали инструмент, позволяющий воспользоваться таблицами производительности.

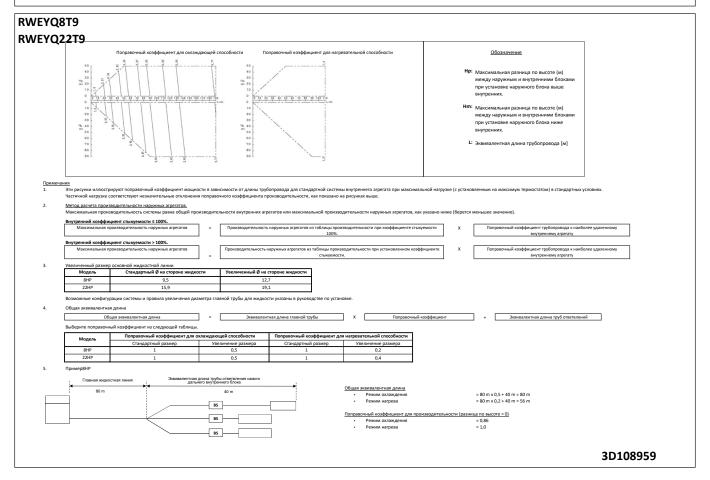
Ниже приведена ссылка на базу данных таблиц производительности и обзор всех инструментов, которые мы предлагаем, чтобы помочь вам выбрать наиболее подходящий продукт:

- <u>База данных таблиц производительности:</u> позволяет быстро найти и экспортировать данные производительности, соответствующие модели блока, температуре хладагента и соотношению подключений.
- Для получения доступа к средству просмотра таблиц производительности посетите сайт: https://my.daikin.eu/content/denv/en_US/home/applications/software-finder/capacity-table-viewer.html

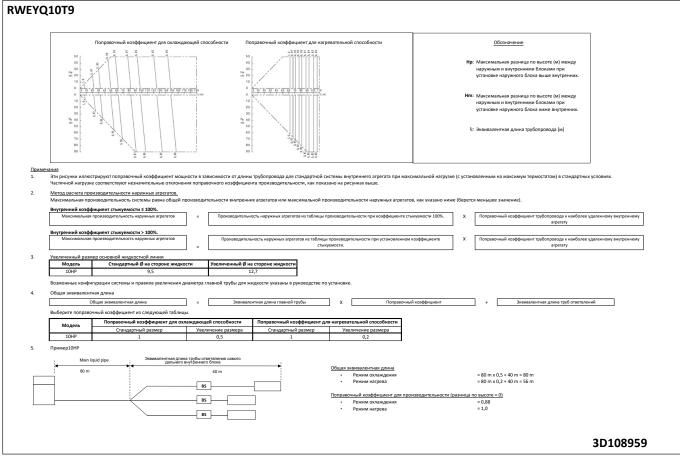
 Обзор <u>всех программных инструментов</u> приведен здесь: https://my.daikin.eu/denv/en_US/home/applications/software-finder.html

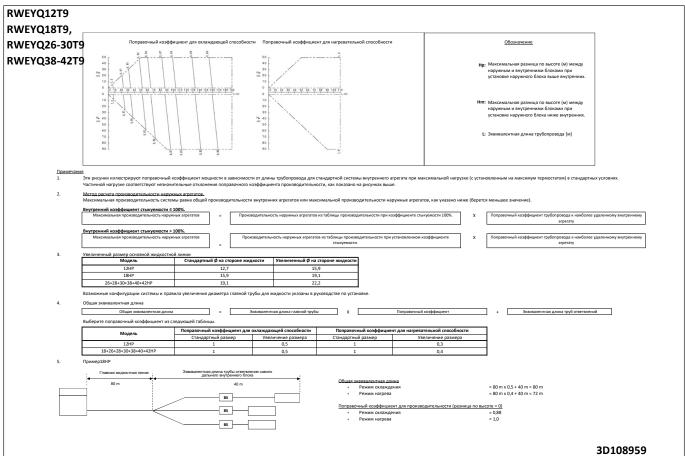
5 - 2 Поправочный коэффициент для производительности

RWEYQ-T9

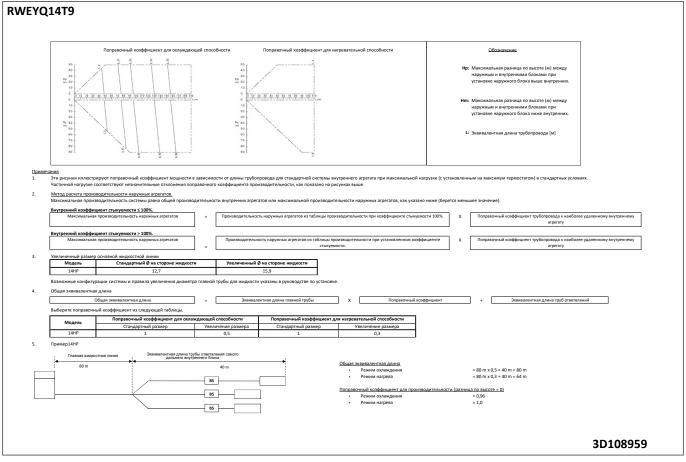

WC VRV Рекуперация тепла Поправочный коэффициент

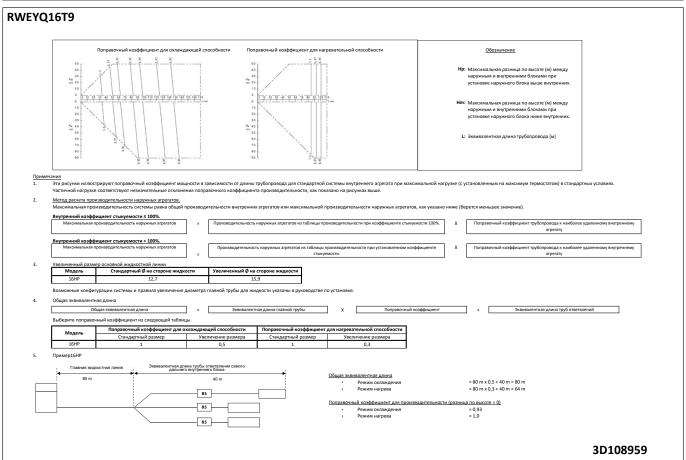
		•		
	Модель	Стр.		
Один блок	8HP	2		
	10HP	3		
	12HP	4		
	14HP	5		
	16HP	6		
	18HP	4		
	20HP	8		
	22HP	2		
Несколько блоков	24HP	7		
	26HP	4		
	28HP	4		
	30HP	4		
	32HP	8		
	34HP	8		
	36HP	9		
	38HP	4		
	40HP	4		
	42HP	4		

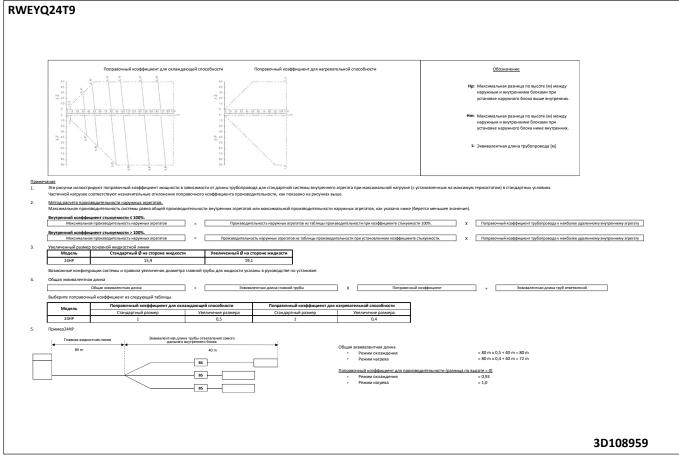

Примечания

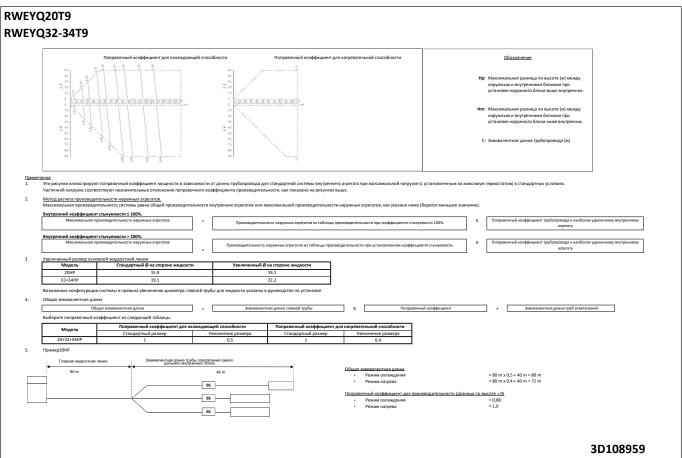

Данные для мультисочетаний соответствуют стандартным мультисочетаниям, описанным на 3D108944 .

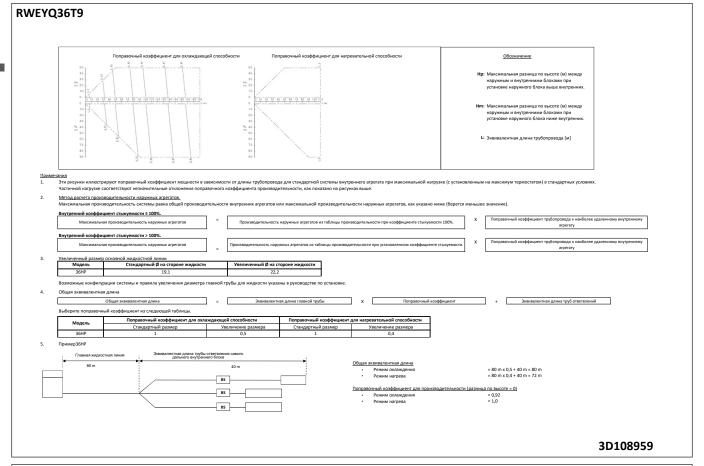
3D108959





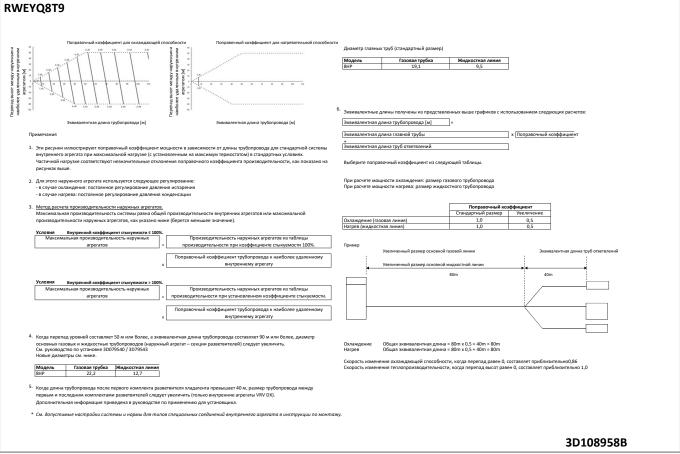


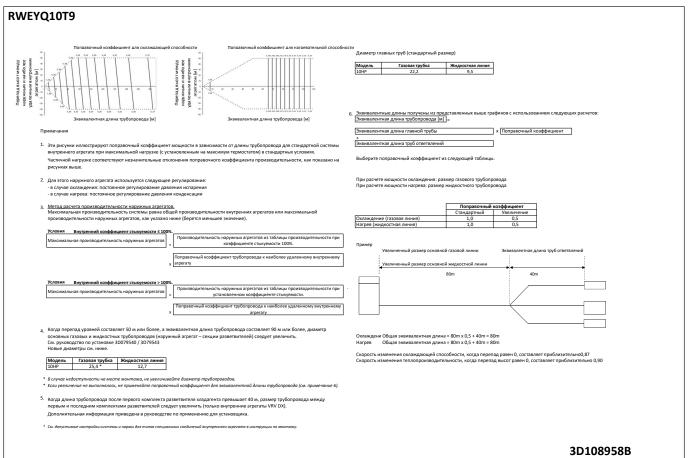




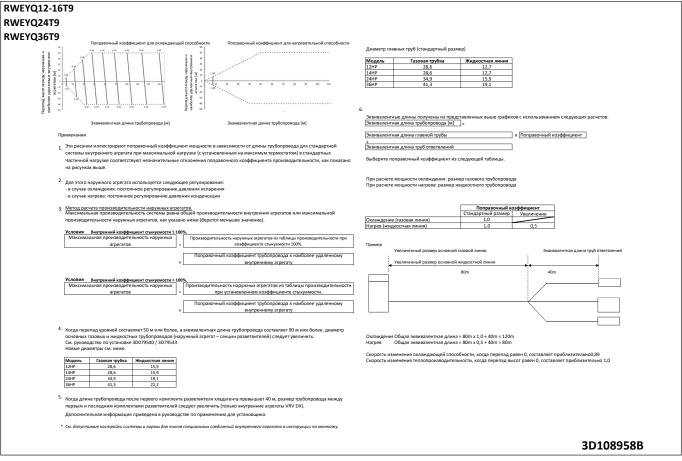
5 - 2 Поправочный коэффициент для производительности

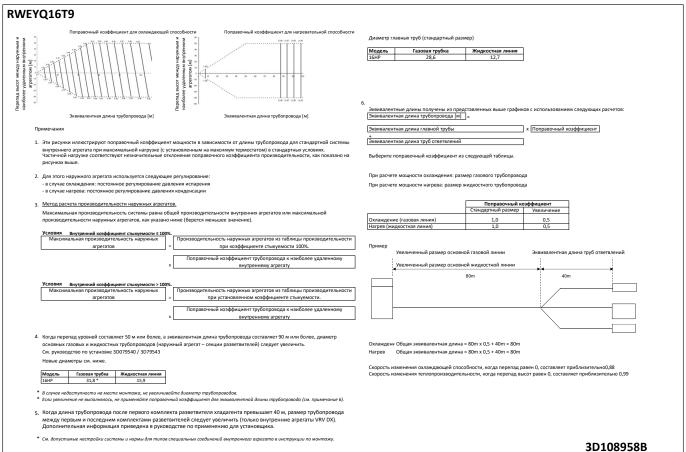
RWEYQ-T9

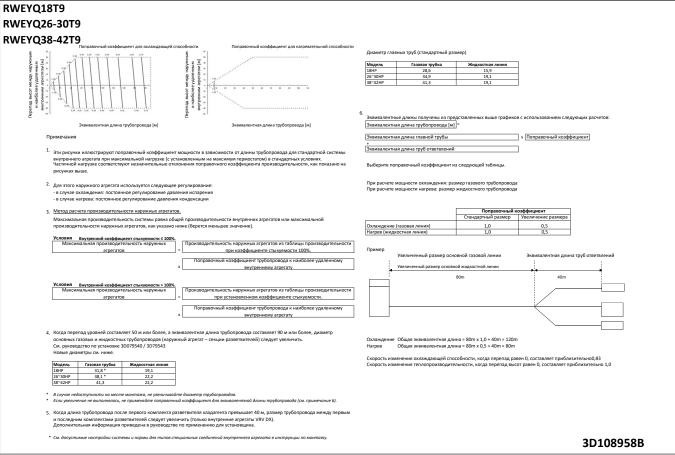

Тепловой насос с водяным охлаждением VRV VRV IV (холодные регионы) Поправочный коэффициент

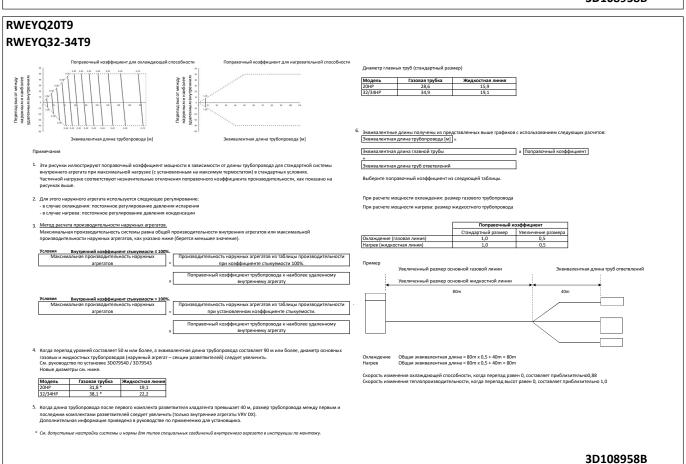

	Модель	Стр.
š	8HP	2
59	10HP	3
Один блок	12HP	4
ŏ	14HP	4
	16HP	4
	18HP	6
	20HP	7
	22HP	8
0 g	24HP	4
Несколько блоков	26HP	6
9 0	28HP	6
¥	30HP	6
8	32HP	7
He	34HP	7
	36HP	4
	38HP	6
	40HP	6
	42HP	6

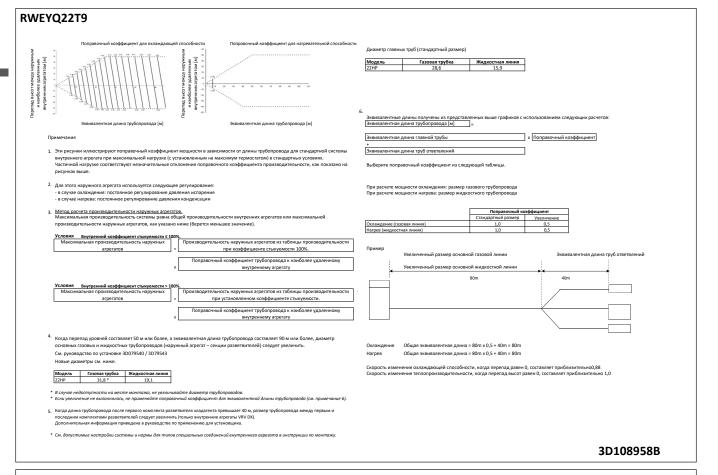
Данные для мультисочетаний соответствуют стандартным мультисочетаниям, описанным на 3D117167.


3D108958B

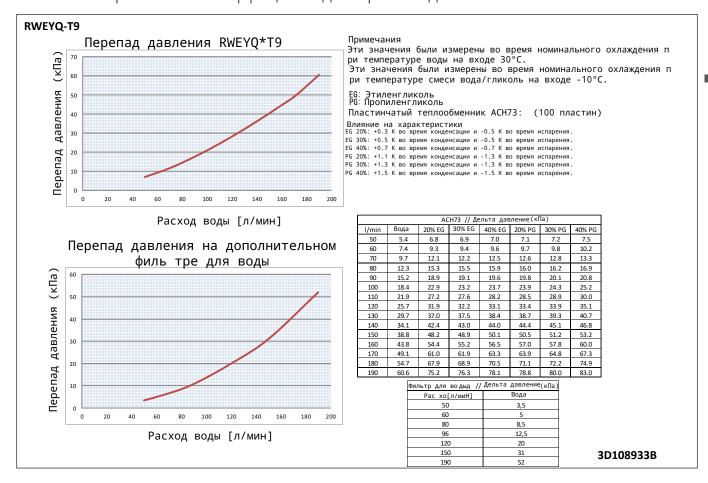








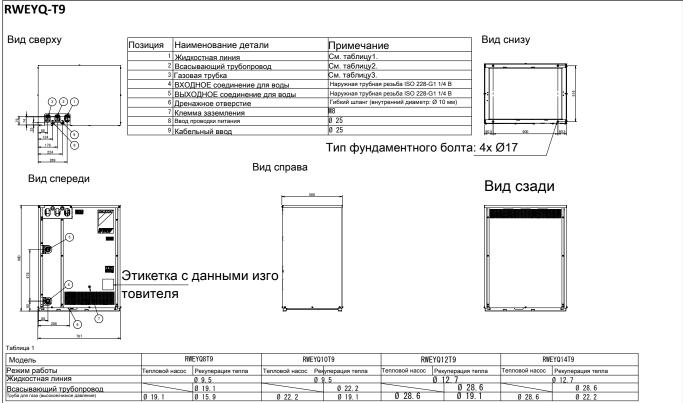
5 - 2 Поправочный коэффициент для производительности


RWEYQ-T9

Поправочный коэффициент на антифриз для систем VRV4 с водяным охлаждением

Этиленгликоль			Пропиленгликоль		
	10%	0,998	Холодопроизводительность	10%	0,992
	20%	0,994		20%	0,988
Холодопроизводительност	30%	0,990		30%	0,983
	40%	0,985		40%	0,974
	50%	0,980		50%	0,968
	10%	0,993	Теплопроизводительность	10%	0,985
	20%	0,989		20%	0,982
Теплопроизводительность	30%	0,986		30%	0,978
	40%	0,982		40%	0,970
	50%	0,979		50%	0,966

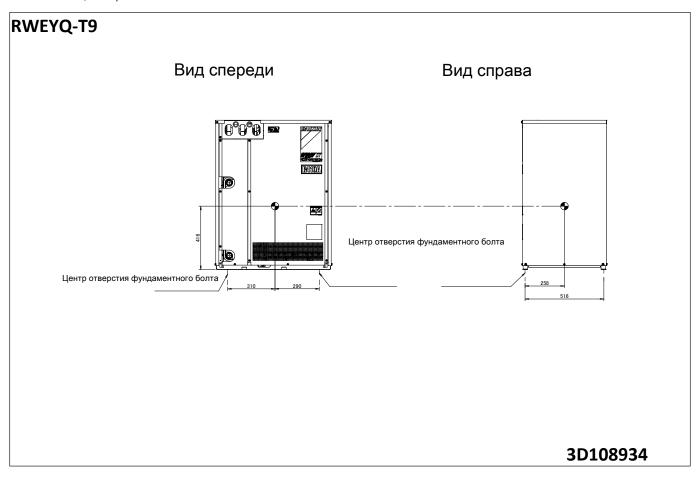
3D108966



6 Размерные чертежи

6 - 1 Размерные чертежи

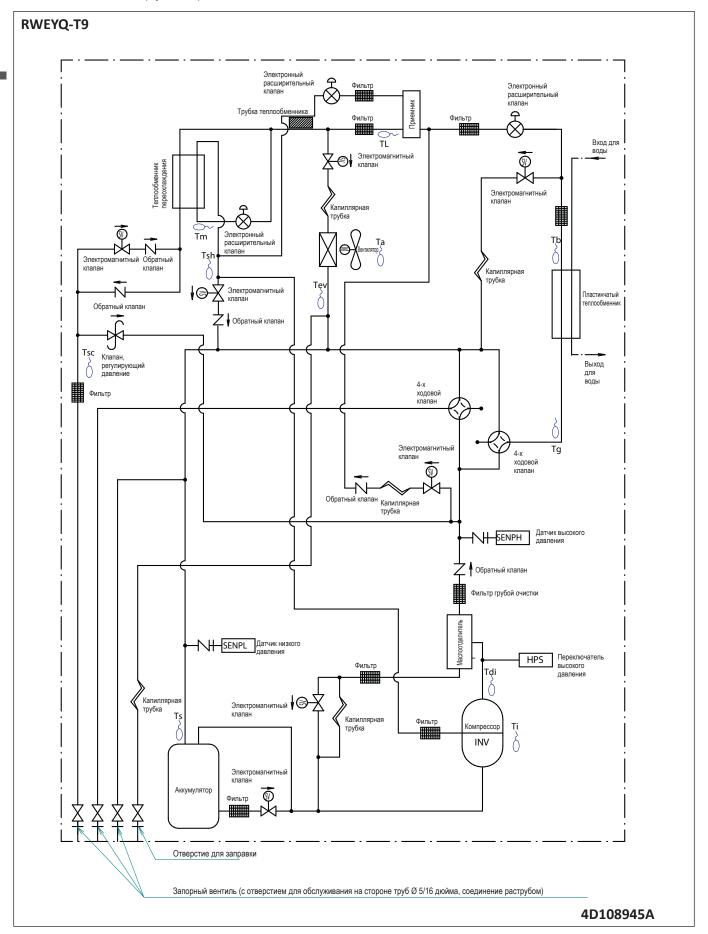
Примечания


- 1. Вывод заземления находится в распределительной коробке.
- 2. Для соединения труб используется пайка.
- 3. В случае теплового насоса всасывающая труба не используется.

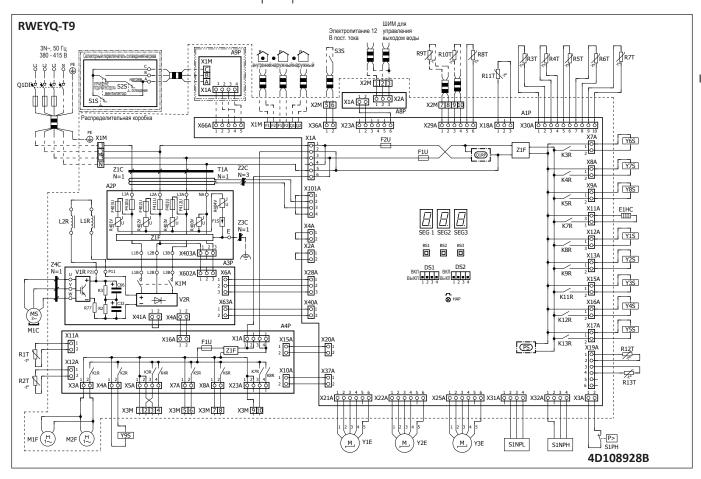
2D108932A

7 Центр тяжести

7 - 1 Центр тяжести



8 Схемы трубопроводов


8 - 1 Схемы трубопроводов

9 Монтажные схемы

9 - 1 Монтажные схемы - Три фазы

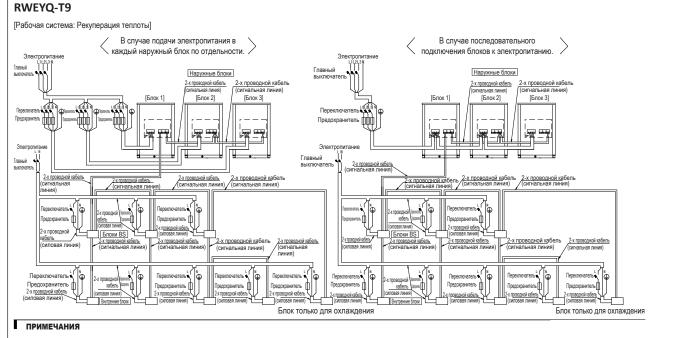
9 Монтажные схемы

9 - 2 Примечания и условные обозначения

RWEYQ-T9 ПРИМЕЧАНИЯ, с которыми следует ознакомиться перед включением УСЛОВНЫЕ ОБОЗНАЧЕНИЯ Описание Деталь № Деталь № Описание Обозначения A1P главная плата S1PH переключатель высокого X1M : Главный разъем давления (disch) плата шумового фильтра S1S: Провод заземления регулятор подачи воздуха A3P плата инвертора Опция переключатель охлаждение 15 A4P плата SUB S2S __: Провод № 15 нагрев A8P плата адаптера ____ _ : Подключение провода на S3S плата селекторного Подключение зависит от месте работы A9P переключателя охлаждения/ : Подключение кабеля на модели SEG*(A1P) 7-сегментный дисплей нагрева датчик определения тока утечки T1A кнопки (режим, установка, BS* (A1P) V1R (A3P) возврат) Модуль питания БТИЗ → **/12.2 : Подключение ** Не установлен в V2R (A3P) C* (A3P) диодный модуль конденсатор продолжение на стр. 12, столб. 2 распределительной коробке DS* (A1P) DIP-переключатель разъем (дистанционное переключение охлаждение/ X66A нагреватель картера E1HC нагрев) : Несколько возможных F1S (A2P) разрядник разъем платы предохранитель Т, 3,15 А, 250 В F1U (A4P) вариантов соединения Обратитесь к руководству по установке или по обслуживанию, чтобы выяснить функции кнопок BS1~ BS3 и DIP-переключателей DS1~DS2. Не эксплуатируйте оборудование путем короткого замыкания защитного устройства (S1PH). Обратитесь к руководству по обслуживанию для получения информации о схеме проводки внутренне наружной передачи F1 - F2, наружно-наружной передачи F1 - F2. X*M клеммная колодка F401U (A2P) предохранитель Т, 6,3 А, 250 В X*M (A*P) колодка зажимов на плате F402U (A2P) предохранитель Т, 6,3 А, 250 В X*Y соединитель F403U (A2P) предохранитель Т, 6,3 А, 250 В электронный расширительный Y*E F410U (A2P) предохранитель Т 63 А 600 В клапан F411U (A2P) предохранитель Т 63 А 600 В Y*S ПОЛОЖЕНИЕ В РАСПРЕДЕЛИТЕЛЬНОЙ КОРОБКЕ электромагнитный клапан F412U (A2P) предохранитель Т 63 А 600 В шумовой фильтр (ферритовый F*U (A1P) предохранитель Т, 3,15 A, 250 В стержень) рабочий светодиод (монитор обслуживания - зеленый) Z*F шумовой фильтр L2R L1R HAP (A1P) : ОПЦИЯ #: поставляется на месте M1F M2F K1M (A3P) магнитный контактор K*R (A*P) магнитное реле L*R A2P реактор M1C двигатель (компрессора) M*F мотор (вентилятора) A8P PS (A1P) электропитание прерыватель в цепи утечки на Q1DI землю схема детектирования Q1RP (A1P) X3M обращения фазы R* (A3P) резистор A4P X2M R*V (A2P) варистор S1NPH датчик высокого давления S1NPL датчик низкого давления 4D108928B

Схемы внешних соединений

10 - 1 Схемы внешних соединений



- Вся проводка, компоненты и материалы, приобретаемые на месте, должны удовлетворять национальным и местным стандартам.

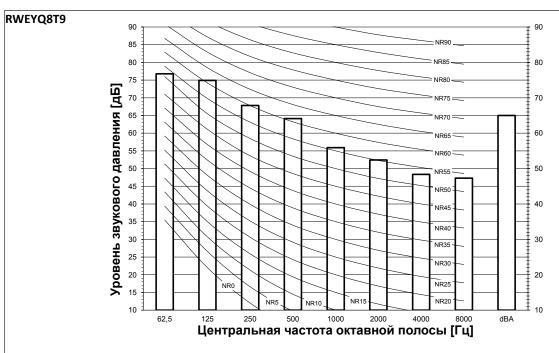
- Используйте только медные проводники. Более подробная информация приведена на электрической схеме Установите выключатель-автомат для обеспечения безопасности.
- Подключения на месте и компоненты должны быть выполнены/предоставлень
- лицензированным электриком. Блок должен быть заземлен в соответствии с применяемыми местными и национальными прав
- На приведенной электрической схеме показаны лишь основные точки соединения, а не все детали данной установки.
 Обязательно установкие переключатель и предохранитель на линии подачи электропитания
- каждой единицы оборудования
- Установите основной выключатель, который может прерывать подачу электропитания от всех источников, поскольку составляющее данную систему оборудование использует несколько источников питания
- источников интелников интелнительного в выписания. В Сегли имвества возможность возникновения обратной фазы, потерянной фазы, нарушения подачи электроэнергии при работе блоков, необходимо подключить (на месте) контур защиты от обратной фазы.
- Запуск оборудования с обратной фазой может нарушить работу компрессора и других частей.

 11. Поскольку блок оснащен инвертором, будут генерироваться гармоники. Если местное законодательство требует подавления гармоник в здании, примите меры для подавления гармоник на стороне электрооборудования

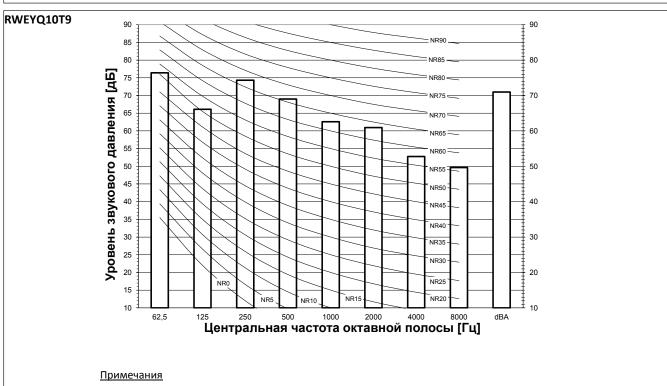
3D048824G

- Вся проводка, компоненты и материалы, приобретаемые на месте, должны удовлетворять национальным и местным стандартам.
- Используйте только медные проводники.
- Более подробная информация приведена на электрической схеме.
- Установите выключатель-автомат для обеспечения безопасности
- Подключения на месте и компоненты должны быть выполнены/предоставлены лицензированным
- Блок должен быть заземлен в соответствии с применяемыми местными и национальными правилами. На приведенной электрической схеме показаны лишь основные точки соединения, а не все детали
- данной установки. Обязательно установите переключатель и предохранитель на линии подачи электропитания каждой единицы оборудования
- Установите основной выключатель, который может прерывать подачу электропитания от всех источников, поскольку составляющее данную систему оборудование использует несколько источников
- 10. Если имеется возможность возникновения обратной фазы, потерянной фазы, нарушения подачи электроэнергии при работе блоков, необходимо подключить (на месте) контур защиты от обратной
- часы».

 Запуск оборудования с обратной фазой может нарушить работу компрессора и других частей

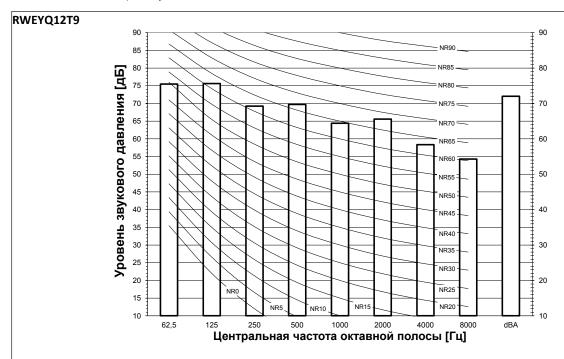

 11. Поскольку блок оснащен инвертором, будут генерироваться гармоники. Если местное законодательство требует подавления гармоник в здании, примите меры для подавления гармоник на стороне электрооборудования.

3D048823G

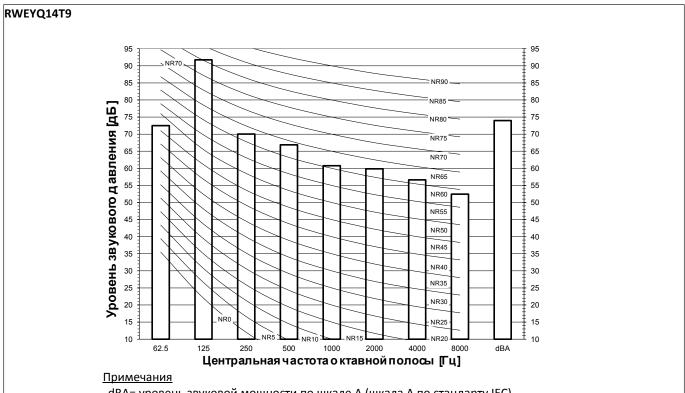


Спектр звуковой мощности

- -dBA= уровень звуковой мощности по шкале A (шкала A по стандарту IEC).
- Базовая акустическая интенсивность 0 дБ = $10E-6\mu W/m^2$
- Измерения согласно стандарту ISO 3744


3D108940

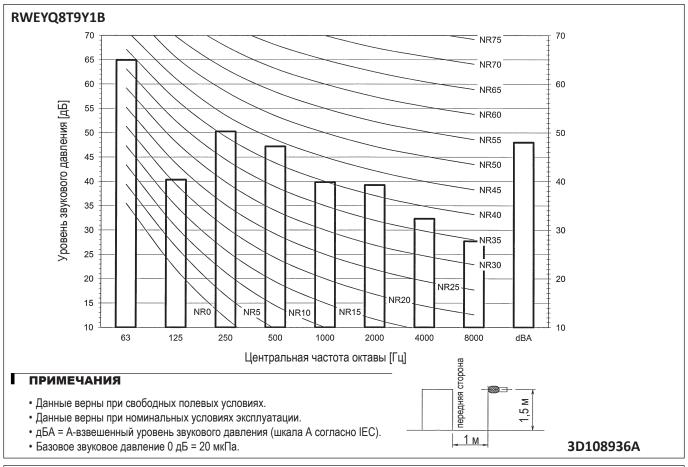
- -dBA= уровень звуковой мощности по шкале A (шкала A по стандарту IEC).
- Базовая акустическая интенсивность 0 дБ = 10E-6µW/m²
- Измерения согласно стандарту ISO 3744


11 - 1 Спектр звуковой мощности

Примечания

- -dBA= уровень звуковой мощности по шкале A (шкала A по стандарту IEC).
- Базовая акустическая интенсивность 0 дБ = $10E-6\mu W/m^2$
- Измерения согласно стандарту ISO 3744

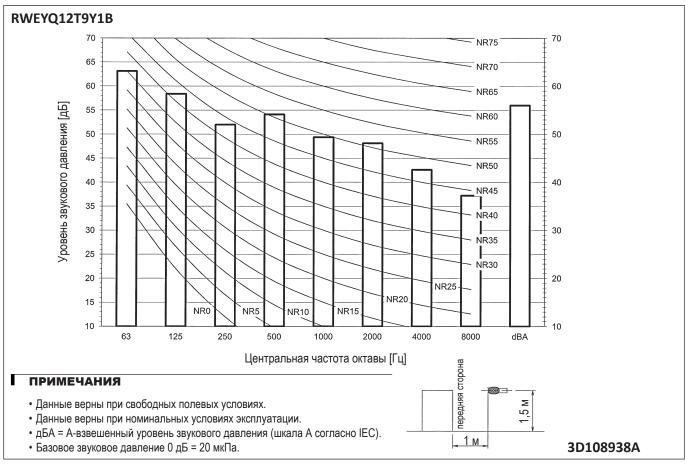
3D108942

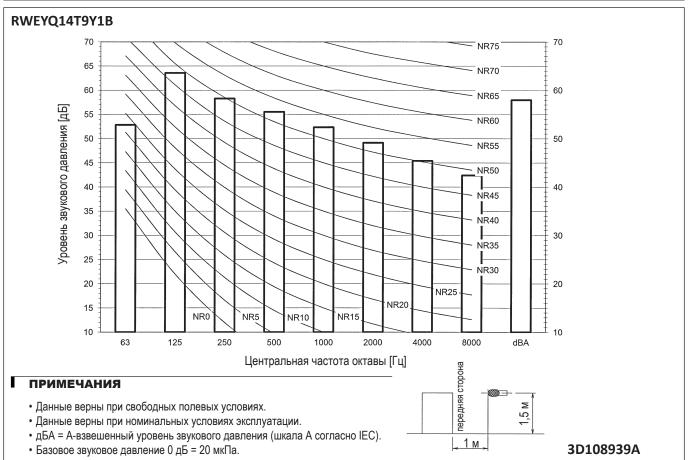


- -dBA= уровень звуковой мощности по шкале A (шкала A по стандарту IEC).
- Базовая акустическая интенсивность 0 дБ = $10E-6\mu W/m^2$
- Измерения согласно стандарту ISO 3744

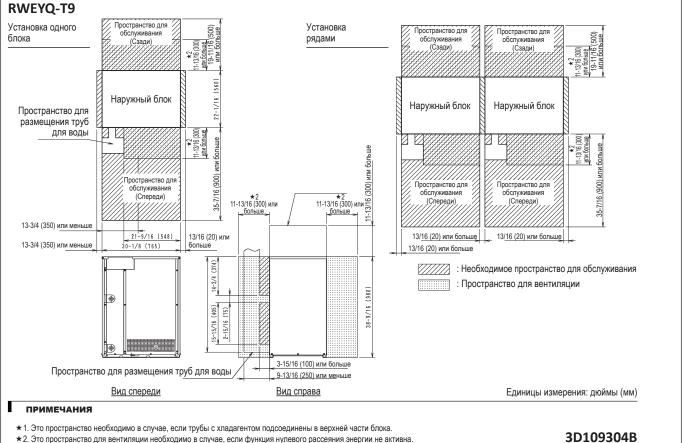
3D108943A

11 - 2 Спектр звукового давления





40


11 - 2 Спектр звукового давления

12 - 1 Способ монтажа

★2. Это пространство для вентиляции необходимо в случае, если функция нулевого рассеяния энергии не активна.

12 - 2 Выбор труб с хладагентом

RWEYQ-T9

Ограничения, касающиеся устанавливаемых на месте трубопроводов для VRV4 с водяным охлаждением Тепловой насос

Ограничения, касающиеся трубопроводов 1/3

		Максималь	Максимальная длина трубопровода			альный переп	ад высот	Общая длина
		Наиболее длинный (A+[B,G,E,J])	После первого разветвления (B,G,E,J)	После первого ответвления (для (D)	Внутренний- наружный ⁽³⁾ (H1)	Внутренний- внутренний (H2)	От наружного до наружного (H3)	труб
		Фактическая / (эквивалентная)	Фактическая	Фактическая / (эквивалентная)	Наружный выше внутреннего/ (внутренний выше наружного)			
Только внутренние блоки VRV DX		165/(190)m ⁽⁵⁾	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	300m
		120/(140)m	40m ⁽¹⁾	10/(13)m	50/(40)m ⁽³⁾	30m	5m	500m
Подключение гидроблока		120/(140)m	40m	10/(13)m	50/(40)m	15m	5m	300m
Подключение RA		100/(120)m	40m ⁽²⁾	-	50/(40)m	15m	-	250m
	Пара ⁽⁶⁾	50/(55)m ⁽⁴⁾	-	-	50/(40)m	-	-	-
Подключение АНИ	Мульти	120/(140)m (5)	40m	10/(13)m	50/(40)m	15m	5m	300m
	(7) Совместное использование различных элементов	120/(140)m	40m	10/(13)m	50/(40)m	15m	5m	300m

Примечание

Доступно только для одномодельной конфигурации.

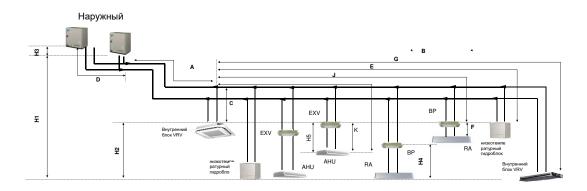
- (1) Если выполняются все представленные ниже условия, предельное значение можно увеличить до 90 м
 - а. Длина трубопровода между всеми внутренними агрегатами и ближайшим комплектом разветвителя не должна превышать 40 м.
 - b. Следует увеличить размер газовых и жидкостных трубопроводов.

Если увеличенный размер трубопровода больше размера основного трубопровода, увеличьте размер последнего.

- с. Если увеличен размер трубопровода, в расчетах следует использовать двойную длину трубопровода.
 - Общая длина трубопровода должна находиться в пределах допустимого диапазона.
- d. Разница длины трубопровода между ближайшим внутренним блоком от первого ответвления до наружного блока и между самым дальним внутренним блоком и наружным блоком составляет ≤40 м.
- (2) Если длина трубопровода между первым ответвлением и блоком ВР или внутренним блоком VRV превышает 20 м, необходимо увеличить длину трубы для газа и жидкости между первым ответвлением и блоком ВР или внутренним блоком VRV.
- (3) Увеличение до 90 м возможно без дополнительного комплекта опции. Необходимо обеспечить соблюдение следующих условий:
 - -> Если наружные блоки расположены выше внутренних:
 - а. Увеличение размера трубы для жидкости
 - b. Требуется специальная настройка наружного агрегата.
 - -> Если наружные блоки расположены ниже внутренних:
 - а. 40~60m
 Максимальное отношение подключений: 80%
 60~65m
 Максимальное отношение подключений: 90%
 65~80m
 Максимальное отношение подключений: 100%
 80~90m
 Максимальное отношение подключений: 110%
 - b. Увеличение размера трубы для жидкости

Требуется специальная настройка наружного агрегата.

- (4) Допустимая минимальная длина 5 м.
- (5) Если эквивалентная длина промежутка трубопровода > 90 м, необходимо увеличить размер главной трубы для жидкости и газа.
- (6) Несколько вентиляционных установок (АНU) (комплекты EKEXV + EKEQ).
- (7) Сочетание вентиляционных установок (AHU) и внутренних блоков VRV DX


12 - 2 Выбор труб с хладагентом

RWEYQ-T9

Ограничения, касающиеся устанавливаемых на месте трубопроводов для VRV4 с водяным охлаждением

Тепловой насос

Ограничения, касающиеся трубопроводов 2/3

- <u>Примечание</u> (1) Схематическая индикация
 - Рисунки могут отличаться от фактического внешнего вида блока.
- (2) Только для иллюстрации ограничений длины трубопровода.

Сочетание типов внутреннего агрегата не допускается.

Информация о допустимых сочетаниях приведена в таблице сочетаний 3D079543.

			Допустимая длина трубопровода		ый перепад высот
		От BP до RA	От EXV до AHU	От BP до RA	От EXV до AHU
		(F)	(K)	(H4)	(H5)
Соединение RA		2~15m	-	5m	-
Соединение	Пара	-	≦ 5m	-	5m
AHU	Мульти ₍₁₎	-	≦ 5m	-	5m
	Совместнфе использовани е различных элементов	-	≦ 5m	-	5m

Примечание

- (1) Несколько вентиляционных установок (AHU) (комплекты EKEXV + EKEQ).
- $^{(2)}$ Сочетание вентиляционных установок (AHU) и внутренних блоков VRV DX

12 - 2 Выбор труб с хладагентом

RWEYQ-T9

Ограничения, касающиеся устанавливаемых на месте трубопроводов для VRV4 с водяным охлаждением

Гепловой насос

Ограничения, касающиеся трубопроводов 3/3

Схема системы Допустимый коэффициент стыкуемости (CR) Другие сочетания не допускаются.		Bcero		Допустимая мощность				
		Мощность	Количество внутренних агрегатов (VRV, RA, AHU, Hydrobox)	Внутренний блок VRV DX	Внутренний блок RA DX	Блок Hydrobox	Центральный кондиционер (AHU)	
	Включая FXZQ15 или FXAQ15	50~125%	Max.64	50~125%	-	-	-	
	Включая FXFQ20 или FXFQ25	50~130%	Max.64	50~130%	-	-	-	
Только внутренние блоки VI	Только FXDQ, FXSQ и FXAQ20~63	50~150%	Max.64	50~150%	-	-	-	
	Все другие модели (одноблочная система)	50~150%	Max.64	50~150%				
	Все другие модели (многоблочная система)	50~130%	Max.64	50~130%	-	-	-	
Внутренний блок VRV DX +	RA DX	80~130%	Max.32 ⁽¹⁾	0~130%	0~130%	-	-	
Только внутренние блоки RA DX		80~130%	Max.32 ⁽¹⁾	-	80~130%	-	-	
Внутренний блок VRV DX + низкотемпературный гидроблок (LT)		50~130%	Max.32	50~130%	-	0~80%	-	
Внутренний блок VRV DX + вентиляционная установка (AHU)		50~110% ⁽³⁾	Max.64 ⁽²⁾	50~110%	-	-	0~110%	
Только вентиляционная установка (AHU) [™] Парная система и мультисистема		90~110% ⁽³⁾	Max.64 ⁽²⁾	-	-	-	90~110%	

Примечание

- (1) Ограничений на количество подключаемых блоков ВР нет.
- (2) Для подключения к вентиляционной установке (AHU)

Комплекты EKEXV также рассматриваются как внутренние блоки.

- (3) Ограничения, касающиеся производительности центрального кондиционера
- (4) Парный АНU = система с 1 центральным кондиционером, соединенным с 1 наружным агрегатом Мультисистема АНU = система с несколькими центральными кондиционерами, соединенными с одним наружным агрегатом

О вариантах применения для вентиляции

- І. Блоки FXMQ_MF считаются вентиляционными установками с присущими им ограничениями.
 - Максимальное отношение подключений в сочетании с внутренними блоками VRV DX: <30%.

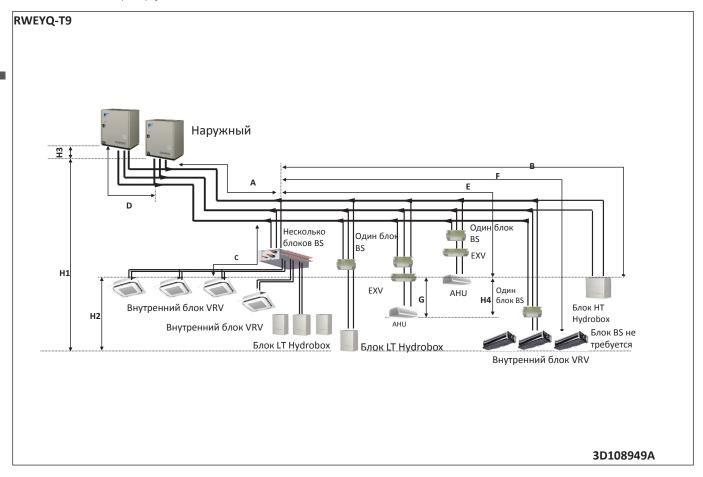
Максимальное отношение подключений при наличии только вентиляционных установок: <100%.

Информация о рабочем диапазоне приведена в документации к блоку FXMQ_MF.

II. Воздушные завесы Biddle считаются вентиляционными установками с присущими им ограничениями: Информация о рабочем диапазоне приведена в документации к блоку Biddle.

- III. Блоки [EKEXV + EKEQ] в сочетании с вентиляционными установками считаются вентиляционными установками с присущими им ограничениями. Информация о рабочем диапазоне приведена в документации к блоку EKEXV-EKEQ.
- IV. Блоки VKM· рассматриваются как обычные внутренние блоки VRV DX.

Информация о рабочем диапазоне приведена в документации к блоку VKM.


V. Ввиду отсутствия соединения для подачи хладагента с наружным блоком (только связь F1/F2) на блоки VAM∙не распространяются ограничения по подключению.

Однако, поскольку связь осуществляется через F1/F2, при расчете максимального количества подсоединяемых внутренних агрегатов рассматривайте их как стандартные внутренние агрегаты.

12 - 2 Выбор труб с хладагентом

12 - 2 Выбор труб с хладагентом

RWEYQ-T9

Ограничения, касающиеся устанавливаемых на месте трубопроводов для VRV4 с водяным охлаждением Рекуперация тепла Ограничения по трубопроводам

		Bce	Bcero		Допустимая мощность			
		Мощность	Мощность Максимальное В		Внутренний блок VRV без	Блок Hydrobox	Центральный	
			количество внутренних		блока BS		кондиционер (AHU)	
			блоков		Только охлаждение			
			(*1)		(*4)			
	Включая FXZQ15 или FXAQ15	50 ~ 125 %	64	50 ~ 125 %	0 ~ 50 %	Не допускается	Не допускается	
Только внутренние блоки	Включая FXFQ20 или FXFQ25	50 ~ 130 %	64	50 ~ 130 %	0 ~ 50 %	Не допускается	Не допускается	
VRV	Только FXDQ, FXSQ и FXAQ20~63	50 ~ 150 %	64	50 ~ 150 %	0 ~ 50 %	Не допускается	Не допускается	
	Все другие модели (одноблочная система)	50 ~ 150 %	64	50 ~ 150 %	0 ~ 50 %	Не допускается	Не допускается	
	Все другие модели (многоблочная система)	50 ~ 130 %	64	50 ~ 130 %	0 ~ 50 %	Не допускается	Не допускается	
Внутренний блок VRV + Гидроблок (Hydrobox)		50 ~ 200 % (*2)	32	50 ~ 110 %	0 ~ 50 %	0~100%	Не допускается	
Buygnousses From V/DV/ + AMI	lc .	50 ~ 110 %	64	EO ~ 110 9/	0 ~ 50 %	Не дописуается	0 ~ 60 %	

Примечания

- 1. Исключая блоки BS и включая комплекты EXV.
- 2. Общая производительность внутренних агрегатов DX и блоков LT Hydrobox составляет 130%.
- 3. Сочетания, отличные от указанных в этой таблице сочетаний, не допускаются.
- 4. Предназначенные только для охлаждения внутренние агрегаты VRV не могут использоваться в сочетании с блоками HT Hydrobox.

Количество блоков, которые можно подключить к блоку BS

	BS1Q10 (*6)	BS1Q16 (*6)	BS1Q25 (*6)	Мульти BS на ответвление (*6)	Мульти ВЅ при сочетании 2 ответвлений (*5) (*6)
Внутренний блок VRV	Максимум 6 блоков	Максимум 8 блоков	Максимум 8 блоков	Максимум 5 блоков	Максимум 5 блоков
Центральный кондиционер (AHU)	Максимум 100 класс	Максимум 160 класс	Максимум 250 класс	Максимум 140 класс	Максимум 250 класс
	Максимум 100 класс	Максимум 160 класс	Максимум 250 класс	Максимум 140 класс	Максимум 250 класс
For the last of the last	= 1 x HXY080	= Максимум 2 х НХҮО8О	= Максимум 3 х НХҮО8О	= Максимум 1 х НХҮО8О	 Максимум 3 х НХҮО80
Блок LT Hydrobox		Или максимум 1 x HXY125	Или максимум 2 х HXY125	Или максимум 1 x HXY125	Или максимум 2 x HXY125
			Или НХҮ080 + НХҮ125		Или НХҮ080 + НХҮ125

Примечания

- 5. При сочетании 2 ответвлений максимальная длина трубопровода между блоком BS и внутренним блоком ≤ 20 м. Если длина трубопровода > 20 м, увеличьте размер трубы для жидкости.
- 6. Когда используются блоки Hydrobox, не объединяйте их с блоками других типов.

3D108949A

12 - 2 Выбор труб с хладагентом

RWEYQ-T9

VRV4 Watercooled Field Piping Restrictions Рекуперация тепла Ограничения по трубопроводам

	Макси	мальная длина трубопр	Максим	альный перепад в	высот	Общая длина труб	
	Самая длинная труба от наружного блока или последнего ответвления трубы в сочетании нескольких наружных блоков	Самая длинная труба после первого ответвления	Самая длинная труба от наружного блока до последнего ответвления трубы в сочетании нескольких наружных блоков	Внутренний- наружный	Внутренний- внутренний	От наружного до наружного	Длина трубопровода
				Наружный блок расположен выше внутреннего блока / Внутренний блок расположен выше наружного блока			
	Фактическая / эквивалентная	Фактическая	Фактическая / эквивалентная				
	Максимум: (A+B, A+C, A+E, A+F)	Максимум: (В,С,Е,F)	Максимум: (D)	Максимум: (Н1)	Максимум: (Н2)	Максимум: (Н3)	
Только	165/190 m (*3)	40 m (*1)		50/40 m (*2)	30m		300 m
внутренние блоки VRV	120/140m (*3)	40 m (*1)	10/13 m	50/40 m (*2)	30m	5 m	500 m
Блок Hydrobox	120/140m (*3)	40 m		50/40 m	15m		300 m
AHU (*4)	120/140m (*3)	40 m		50/40 m	15m		300 m

	Максимальная длина трубопровода	Максимальный перепад высот
	EXV> AHU: G	EXV> AHU: H4
AHU (*4)	5 m	5 m

- Примечания

 1. Если выполняются все представленные ниже условия, предельное значение можно увеличить до 90 м

 1.1 Если используются блоки ВБ, длина трубопровода между всеми внутренними агрегатами и ближайшим комплектом разветвителя не должна превышать 40м.

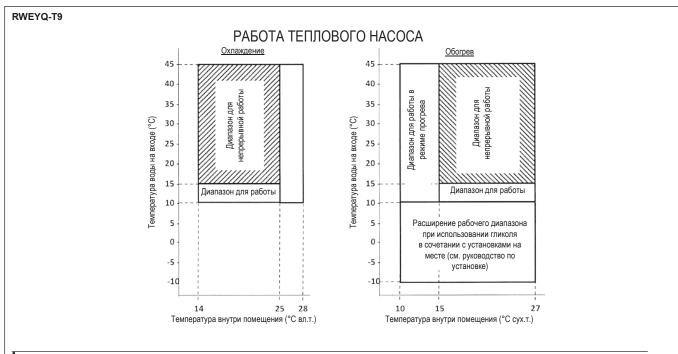
 1 Если используются блоки ВБ, длина трубопровода между всемы внутренними агрегатами и ближом В5 не должна превышать 40м.

 1 Необходимо увеличить размер трубы для жидкости между первым набором ответвления и конечным.

 В отличие от блоков ВБ, блоки ВБ10, не синтатогк наборами ответвлений.

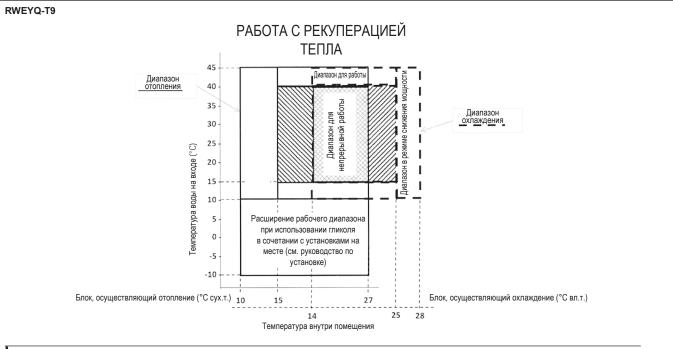
 Если увеличенный размер трубопровода больше размера основного трубопровода, увеличьте размер последнего.

 1 Если увеличенный размер трубопровода, в расчетах следует использовать двойную длину трубопровода.


 2 Длины трубопроводов от ближайшего внутреннего агрегата до наружного агрегата и от наиболее удаленного внутреннего агрегата до наружного агрегата

3D108949A

13 Рабочий диапазон


13 - 1 Рабочий диапазон

ПРИМЕЧАНИЯ

- 1. Диапазон работы в режиме охлаждения сохраняется в любом случае
- 2. Указанные значения представляют собой возможный рабочий диапазон при потоке воды 50~150 л/мин.
- Проектные условия: температура воды: 20 ~ 35 °C объем воды: 60 л/мин или больше
- 4. При малой нагрузке охлаждения выключение термостата может выполняться для защиты от замерзания
- 5. Температура окружающей среды должна быть в диапазоне 0~40°C, а относительная влажность 80% или менее.

3D085182

ПРИМЕЧАНИЯ

- 1. Диапазон работы в режиме охлаждения сохраняется в любом случае
- 2. Указанные значения представляют собой возможный рабочий диапазон при потоке воды 50~150 л/мин.
- Проектные условия: температура воды: 20 ~ 35 °C объем воды: 60 л/мин или больше
- 4. При малой нагрузке охлаждения выключение термостата может выполняться для защиты от замерзания
- 5. Температура окружающей среды должна быть в диапазоне 0~40°C, а относительная влажность 80% или менее.

14 Подходящие внутренние блоки

14 - 1 Подходящие внутренние блоки

RWEYQ-T9

Рекомендуемые внутренние агрегаты для наружных агрегатов RWEYQ*T*

Л. С.	8	10	12	14	16
	4xFXMQ50	4xFXMQ63	6xFXMQ50	1xFXMQ50	4XFXMQ63

В случае нескольких наружных агрегатов >16HP рекомендуемое количество внутренних агрегатов соответствует сумме внутренних агрегатов, определенных для одного наружного агрегата.

Сведения о допустимых сочетаниях приведены в технических характеристиках.

Подходящие внутренние агрегаты для наружных агрегатов RWEYQ*T*

Закрывается ENER LOT21

FXFQ20-25-32-40-50-63-80-100-125

FXZQ15-20-25-32-40-50

FXCQ20-25-32-40-50-63-80-125

FXKQ25-32-40-63

FXDQ15-20-25-32-40-50-63

FXSQ15-20-25-32-40-50-63-80-100-125-140

FXMQ50-63-80-100-125-200-250

FXAQ15-20-25-32-40-50-63

FXHQ32-63-100

FXUQ71-100

FXNQ20-25-32-40-50-63

FXLQ20-25-32-40-50-63

Закрывается ENER LOT10

FTXJ25-35-50

FTXA20-25-35-42-50

FTXM20R-25R-35R-42R-50R-60R-71R

FLXS25-35-50-60

FVXM25F-35F-50F

FVXG25-35-50

FVXM25A-35A-50A

CVXM20A

За пределами ENER LOT21

EKEXV50-63-80-100-125-140-200-250-400-500 + EKEQM / EKEQF

HXY080-125

HXHD125-200

VKM50-80-100

CYVS100-150-200-250

CYVM100-150-200-250

CYVL100-150-200-250

3D113979E

Daikin Europe N.V. Naamloz	ze Vennootschap · Zandvoordestr	EEDRU.	21 09/2021	I · BE 0412 120 336 · RPR Oostende (Responsible Editor) Настоящий буклет составлен только для справочных целей и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели ее содержания, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.